EP0586943B1 - Process of making a plasma display apparatus - Google Patents
Process of making a plasma display apparatus Download PDFInfo
- Publication number
- EP0586943B1 EP0586943B1 EP93113249A EP93113249A EP0586943B1 EP 0586943 B1 EP0586943 B1 EP 0586943B1 EP 93113249 A EP93113249 A EP 93113249A EP 93113249 A EP93113249 A EP 93113249A EP 0586943 B1 EP0586943 B1 EP 0586943B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- patterned
- water
- predetermined solvent
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 45
- 239000000758 substrate Substances 0.000 claims description 72
- 239000002904 solvent Substances 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 238000009792 diffusion process Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 29
- 229920000620 organic polymer Polymers 0.000 claims description 28
- 238000000059 patterning Methods 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 83
- 239000011521 glass Substances 0.000 description 18
- 238000005192 partition Methods 0.000 description 15
- 239000004014 plasticizer Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- -1 poly(vinyl acetate) Polymers 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 239000001856 Ethyl cellulose Substances 0.000 description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 5
- 229920001249 ethyl cellulose Polymers 0.000 description 5
- 235000019325 ethyl cellulose Nutrition 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229940116411 terpineol Drugs 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000005063 solubilization Methods 0.000 description 3
- 230000007928 solubilization Effects 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910052844 willemite Inorganic materials 0.000 description 2
- MYDJEUINZIFHKK-UHFFFAOYSA-N 1,1,2-trichloroethane-1,2-diol Chemical class OC(Cl)C(O)(Cl)Cl MYDJEUINZIFHKK-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- BGJQNPIOBWKQAW-UHFFFAOYSA-N 1-tert-butylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)(C)C BGJQNPIOBWKQAW-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- AHSGHEXYEABOKT-UHFFFAOYSA-N 2-[2-(2-benzoyloxyethoxy)ethoxy]ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOCCOC(=O)C1=CC=CC=C1 AHSGHEXYEABOKT-UHFFFAOYSA-N 0.000 description 1
- UOFRJXGVFHUJER-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;hydrate Chemical compound [OH-].OCC[NH+](CCO)CCO UOFRJXGVFHUJER-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- NHUXFMNHQIITCP-UHFFFAOYSA-N 2-butoxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCCC NHUXFMNHQIITCP-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- IKDHIMYPOLRLJB-UHFFFAOYSA-N 4-hydroxybutyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCO IKDHIMYPOLRLJB-UHFFFAOYSA-N 0.000 description 1
- CJSPFDQEYQBDNN-UHFFFAOYSA-N 6-methylheptyl hexadecanoate Chemical class CCCCCCCCCCCCCCCC(=O)OCCCCCC(C)C CJSPFDQEYQBDNN-UHFFFAOYSA-N 0.000 description 1
- DECACTMEFWAFRE-UHFFFAOYSA-N 6-o-benzyl 1-o-octyl hexanedioate Chemical compound CCCCCCCCOC(=O)CCCCC(=O)OCC1=CC=CC=C1 DECACTMEFWAFRE-UHFFFAOYSA-N 0.000 description 1
- KDUGNDDZXPJVCS-UHFFFAOYSA-N 6-oxo-6-tridecoxyhexanoic acid Chemical compound CCCCCCCCCCCCCOC(=O)CCCCC(O)=O KDUGNDDZXPJVCS-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- OVXRPXGVKBHGQO-UHFFFAOYSA-N abietic acid methyl ester Natural products C1CC(C(C)C)=CC2=CCC3C(C(=O)OC)(C)CCCC3(C)C21 OVXRPXGVKBHGQO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001278 adipic acid derivatives Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- QQQCWVDPMPFUGF-ZDUSSCGKSA-N alpinetin Chemical compound C1([C@H]2OC=3C=C(O)C=C(C=3C(=O)C2)OC)=CC=CC=C1 QQQCWVDPMPFUGF-ZDUSSCGKSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001535 azelaic acid derivatives Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical group [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- ZPMRAKAWGWRPCB-UHFFFAOYSA-N calcium zinc silicate Chemical compound [Ca+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZPMRAKAWGWRPCB-UHFFFAOYSA-N 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000003945 chlorohydrins Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- CRHLEZORXKQUEI-UHFFFAOYSA-N dialuminum;cobalt(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Co+2].[Co+2] CRHLEZORXKQUEI-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- OEIWPNWSDYFMIL-UHFFFAOYSA-N dioctyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C=C1 OEIWPNWSDYFMIL-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- FDXJPPBZXILFHH-UHFFFAOYSA-N ethanol;2-methylprop-2-enoic acid Chemical compound CCO.CC(=C)C(O)=O FDXJPPBZXILFHH-UHFFFAOYSA-N 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002531 isophthalic acids Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- OVXRPXGVKBHGQO-UYWIDEMCSA-N methyl (1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylate Chemical compound C1CC(C(C)C)=CC2=CC[C@H]3[C@@](C(=O)OC)(C)CCC[C@]3(C)[C@H]21 OVXRPXGVKBHGQO-UYWIDEMCSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- IIGMITQLXAGZTL-UHFFFAOYSA-N octyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCC IIGMITQLXAGZTL-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000008029 phthalate plasticizer Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- YTFXKQPZJQVLQI-UHFFFAOYSA-N phthalic acid;1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl.OC(=O)C1=CC=CC=C1C(O)=O YTFXKQPZJQVLQI-UHFFFAOYSA-N 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 150000003458 sulfonic acid derivatives Chemical class 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/10—AC-PDPs with at least one main electrode being out of contact with the plasma
- H01J11/14—AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided only on one side of the discharge space
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/36—Spacers, barriers, ribs, partitions or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/241—Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
- H01J9/242—Spacers between faceplate and backplate
Definitions
- the invention relates to a process of making a plasma display apparatus comprising a plurality of stripe-shaped electrodes arranged in a matrix, a dot-shaped discharge area or pixel area at each solid intersection between said stripe-shaped electrodes and a fluorescent film formed on each of said discharge areas and adapted to emit light when said fluorescent film is excited by ultraviolet rays from the corresponding dischare area.
- a plasma display apparatus typically comprises a pair of forward and backward insulation substrates arranged opposed to each other to form a discharge space therebetween, said discharge space containing a gaseous mixture of He with a trace of Xenon and others, a group of stripe-shaped electrodes on the opposed surfaces of said insulation substrates, said stripe-shaped electrodes being arranged to form a matrix pattern in said discharge space, said matrix parting said discharge space into a plurality of discharge gas containing sub-spaces, each intersection between said stripe-shaped electrodes corresponding to a pixel, and a fluorescent film in each of said sub-spaces.
- the forward insulation substrate 1 is formed of sheet glass, with the internal surface thereof including a film-type light-blocking mask 2 formed thereon and first stripe-shaped electrodes 3 arranged side by side on the internal surface of the substrate 1 in one direction, these electrodes 3 functioning as anodes.
- the internal surface of the other or backward substrate 4 is similarly formed of sheet glass and the internal surface thereof includes second stripe-shaped electrodes 7 arranged to extend in a direction perpendicular to the lengths of the first electrodes 3, these electrodes 7 functioning as cathodes.
- the first and second electrodes 3, 7 are separated from each other by dielectric partitions 8.
- a dot-like discharge area 9 is formed at each of the intersections between the first and second electrodes 3, 7.
- the discharge area 9 contains a discharge gas containing Xenon.
- a dot-like fluorescent film 10 for color display is formed on the surface of each of the second electrodes 3.
- Each of the partitions 8 is formed to have a thickness ranged between 100 ⁇ m and 200 ⁇ m by repeated thick-film printing of insulation paste.
- the discharge gas is a two-component mixture gas containing He and Xe, a three-component mixture gas containing He, Xe and any other suitable component or a single gas (e.g. Xe).
- the discharge gas is sealed within the corresponding discharge area 9 under the pressure of 1.3 to 66.7 kPa (10 to 500 Torr), depending on the composition thereof.
- Such a plasma display apparatus of the prior art e.g.
- EP-A-0382260 was provided by repeating the thick film process to form partitions having a thickness ranged between 100 ⁇ m and 200 ⁇ m on an insulation substrate to define a plurality of dot-like discharge areas thereon or by performing the thick film printing process to form partitions as described, applying a paste containing silver in a groove surrounded and defined by said partitions, and firing the paste to form a group of electrodes. Thereafter, a fluorescent material is placed and fired in a recess formed by said partitions to form a fluorescent member covering one of the electrodes (i.e. one disposed on the backside of the substrate). When these frontside and backside substrates are superposed on each other, sealing, discharging and other gases are sealed therebetween to complete a plasma display apparatus.
- WO 91/06118 discloses a diffusion pattering process involving one patterned and one unpatterned dielectric.
- An object of the invention is to provide a process of making a plasma display apparatus, which process can more easily and effectively produce a plasma display apparatus having a number of electrodes disposed with a reduced dot pitch.
- the invention is therefore directed to
- the diffusion pattering is used on layers of small thickness such as those used in the fabrication of electronic components.
- the patterned layer of dielectric will range from 10 to 30 ⁇ m while the unpatterned layer of dielectric can be of much greater thickness from 10 to 100 ⁇ m.
- the thickness of the patterned layer is limited chiefly by the method of application rather than by considerations of operability.
- the amount of solubilizing agent in the patterned layer must be sufficient to provide a solubilizing amount by diffusion to the underlying layer.
- the patterned layer will contain at least 10% weight solubilizing agent and may contain as much as 90% weight depending upon the solubility relationships of the respective polymers.
- a plasticizer or other solubilizing agent may be added to the underlying unpatterned layer in order to make the polymer more susceptible to the action of the solubilizing agent which is diffused from the patterned layer.
- the dielectric pastes for the formation of the unpatterned layer are typically printed twice with 200 mesh screens at 2.5-5.1 cm (1-2 inches) per second squeegee speed.
- the patterning pastes are printed over the dielectric at higher speeds, since only a small part of the screen is open mesh.
- the conductor pastes for the formation of electrodes are printed with a 325 or 400 mesh screen, depending on the conductor thickness and resolution desired. Patterning pastes are likewise printed with a 325 or 400 mesh screen, to optimize the amount of plasticizer delivered to the underprint. Thinner screens and fewer prints are needed than with the dielectric, because of the thinner films typically used with conductors.
- any polymers known in the art can be used as the material for the preparation of the above pastes.
- Representative examples of those polymers include cellulosic polymers such as ethyl cellulose, polystyrene polyacrylates (including methacrylates), poly(vinyl acetate), poly(vinyl butyral), poly(vinyl chloride) or phenol-formaldehyde resins.
- plasticizers which are compatible with ethyl cellulose, a typical polymer used in the patterning paste: acid esters of abietic acid (methyl abietate), acetic acid esters (cumphenylacetate), adipic acid derivatives (e.g.
- benzyloctyl adipate diisodecyl adipate, tridecyl adipate
- azelaic acid esters such as diisooctyl azelate, diethylene glycol dibenzoate, triethylene glycol dibenzoate, citrates such as triethyl citrate, epoxy type plasticizers, polyvinyl methyl ethers, glycerol mono-, di-, and triacetates, ethylene glycol diacetate, polyethylene glycol 200 to 1000, phthalate esters (dimethyl to dibutyl), isophthalic acid esters (dimethyl, diisooctyl, di-2-ethylhexyl), mellitates such as trioctyl trimellitate and isooctylisodecyl trimellitate, isopropyl myristate, methyl and propyl oleates, isopropyl and isooctyl palmitates
- Fig. 1 is an elevational view in section of the primary parts of a plasma display apparatus constructed in accordance with the present invention.
- Fig. 2 is a foreshortened view in plan, partly in section of the plasma display apparatus.
- Fig. 3 is a perspective view showing the structures of ridges and Y electrodes.
- Fig. 4 and 5 are a series of views illustrating a sequence of steps in the process of the present invention.
- Fig. 6 through 9 are a series of views illustrating another sequence of steps in the process of the present invention.
- Fig. 10 is an elevational view in section of a plasma display apparatus constructed in accordance with the prior art.
- a plasma display apparatus of the present invention which comprises first and second dielectric substrates 1, 2 of a sheet glass having a thickness equal to 2 mm, a plurality of X electrodes (first electrodes) laterally extending on the inner face of the first substrate 2, a plurality of Y electrodes (second electrodes) longitudinally extending on the inner face of the second substrate 2, and a plurality of fluorescent materials 5 for converting discharged ultraviolet rays into visible rays.
- the plasma display apparatus also comprises a matrix-like (or mesh-like) ridge 10 which defines a plurality of pixel areas and is adapted to provide a partition wall for maintaining the spacing between the first and second substrates 1, 2.
- Each of the (line) X electrodes 3 is disposed on dielectric layer 14 to electrically insulate from the (column) Y electrodes, and another dielectic layer 18 is arranged over the line electrodes 3 to separate from a discharge space 19.
- Protective layer 16 may be provided on dielectric layer 18.
- Each of the fluorescent materials 5 is formed by pouring a luminescence color fluorescent material into each of recesses 13 which are formed by the matrix-like ridge 10.
- the flurescent material may be Zn 2 SiO 4 :Mn for green color, (Y 1 Gd) BO 3 :Eu 3+ for red color or BaMgAl 14 O 23 :Eu 2+ for blue color.
- a discharge space 19 formed between the substrates 1, 2 by the matrix-like ridge 10 is filled with any suitable mixture gas, for example, consisting of neon and xenon.
- a discharge cell is formed at each of the intersections between the X electrodes 3 and the Y electrodes 4. When each discharging cell is energized, one fluorescent material 5 corresponding to the energized cell is excited to emit light.
- the fluorescent material 5 may be selectively excited through the intersecting electrodes 3 and 4.
- any structural members mentioned from now are referred to Figs. 1-3.
- the ridge in the plasma display apparatus may be produced in accordance with a negative acting pattern forming process shown in Figs. 4 and 5.
- the plasma display apparatus is fabricated with a ridge or a partition wall structure which is negatively patterned and sequentially developed as shown in Fig. 4 or negatively patterned and co-developed (as illustrated in Fig. 5) using diffusion patterning.
- a layer of thick film dielectric paste 23 is applied by screen printing to glass substrate 21.
- the thick film paste is comprised of finely divided particles of glass dispersed in an organic medium comprising an acid labile polymer dissolved in dibutyl phthalate plasticizer and terpineol. After printing the layer 23, the terpineol is removed by heating the layer to a temperature of 80°C for a period of 10 minutes.
- a patterned second layer 25 is screen printed over the solvent-free thick film layer 23, the second layer is a liquid solution comprised of p-toluene sulfonic acid, dibutyl phthalate and terpineol, as shown in Fig. 4(b).
- the assemblage Upon forming the patterned layer 25, the assemblage is heated to 90°C during which the terpineol is evaporated from the layer and the acid and dibutyl phthalate are diffused into the underlying areas of thick film dielectric layer 23 whereby the acid reacts with the acid labile groups of the polymer to render it water dispersible (Fig. 4(c)).
- the patterned layer 25 consists mainly of small amounts of residual acid and dibutyl phthalate. It is then washed with water having a pH of at least 7 to remove the underlying diffusion patterned layer 25, which consists largely of the solubilized acid labile polymer and the other materials in the underlying imaged areas of thick film layer 23. Upon completion of the washing, the surface of substrate 21 is exposed in the areas which underlay the pattern of layer 25 and a very precise negative image of the pattern remains on the surface of substrate 21 (Fig. 4(d)). The thus patterned dielectric is subsequently fired.
- a matrix-like ridge 10 is formed by the layer such that a discharge space for each pixel area is formed by each of the recesses 13 having, for example, a depth ranged between 25 and 100 ⁇ m depending on the pitch size of pixel.
- Figs. 4-8 When it is desirable to obtain a thicker or more raised ridge, one may repeat a series of the steps of dielectric print/dry through development as shown in Figs. 4-8.
- Fig. 5 illustrates schematically the process of producing the same negatively patterned and co-developed by use of 2 or 3 diffusion patterning steps.
- the dielectric is fired on the surface of the glass substrate 21, conductor is applied to form the line and column of electrodes on the other glass substrate 2 opposing the substrate 21 as described previously.
- Each group of the electrodes is formed by the screen printing process (thick film process) wherein a paste containing a metal selected from the group consisting of Au, Ni, Al, Cu and silver as a principal component is applied and then fired to form an electrode layer which is used to form each group of electrodes. The material of this electrode layer is then partially removed to form the electrodes.
- the width of the electrode layer may be larger than that of the final electrode.
- the overall surface of the glass substrate 2 is coated with a lead borate, low melting glass paste containing a dielectric material such as aluminum oxide or silicon oxide.
- the paste is then fired to form dielectric layers 14 and 18.
- the glass substrate 2 may include a protective layer 16 of magnesium oxide which is formed over the dielectric layer.
- Each of the recesses 13 defined by the ridge 10 is filled with a fluorescent material 5 at the bottom.
- each of the fluorescent material 5 is formed by depositing a fluorescent material on the inner bottom face 13 of the corresponding recess, for example, Zn 2 SiO 4 emitting a green-colored light. If it is wanted to provide a multicolor display, fluorescent materials for emitting red(R)-, green(G)- and blue(B)-colors are sequentially deposited on the inner bottom face of each discharge area for each pixel area line in the X or Y direction or for each pixel area PA (Fig. 3).
- the said diffusion patterning process may be applied to both substrates 1 and 2 to fabricate the ridge or the entire partition wall.
- the glass substrate 2 is superposed over the display side glass substrate 1.
- the space between the glass substrates 1, 2 is sealed by sealing glass and at the same time a discharge mixture gas is sealingly enclosed in the space.
- a plasma display apparatus is thus assembled.
- a positive-acting non-photographic method for making patterns in dielectric films comprising the sequential steps:
- the insolubilizer-depleted areas of the patterned second layer 115 are soluble in the solvent, they will be removed during the solvent-washing step (Fig. 6 (a) to (d)). On the other hand, if the insolubilizer-depleted areas of the patterned second layer 115 are insoluble-in the solvent, they will remain after the solvent-washing step ( Fig. 7 (a) to (d)).
- the unpatterned layer 113 comprising an organic polymer or the patterned layer 115 comprising a polymer insoluble in the solvent and the corresponding organic polymer layer 113 are left on the substrate to form a matrix-like ridge 10 defining pixel areas in the plasma display and forming a discharge space.
- the remaining steps for producing the plasma display are similar to those of the aforementioned process.
- FIGs. 6 and 7 illustrate schematically the steps involved to apply up to 3 DP steps.
- Fig. 8 represents the case that the DP layers are insoluble in the developing solvent. If the DP layer became soluble after being depleted of the insolubilizing agent, only top of the built became insoluble since the lower DP layers remain insoluble after receiving supply of desolubilizing agent from the DP layer immediately above the said layer. This is illustrated in Fig. 9 (f) to (i).
- the above method can also be applied to both substrates 1 and 2, if desirable.
- partition walls are formed on the display side of glass substrates 2 separately of the ridge 10 formed on the first substrate 1.
- the following example illustrates the formulation of dielectric and patterning pastes.
- Two pastes were formulated: One a dielectric paste, and one a patterning paste as follows: Dielectric Paste Glass A 15.78 grams Glass B 0.83 Alumina A 7.89 Alumina B 3.24 Cobalt Aluminate 0.08 Polymethyl methacrylate 5.36 Wetting Agent 1.25 t-Butylanthraquinone 0.50 Shell Ionol® 0.03 Butyl Carbitol®, Acetate 14.10 Butyl Benzyl Phthalate 0.75 Glass A SiO 2 56.2% wt. PbO 18.0 Al 2 O 3 8.6 CaO 7.4 B 2 O 3 4.5 Na 2 O 2.7 K 2 O 1.6 MgO 0.8 ZrO 2 0.2
- Glass A has a D 50 of ca. 4 to 4.5 ⁇ m; it is milled and classified to remove coarse and fine fractions. Its D 10 is about 1.6 microns; and D 90 is 10-12 microns. Surface area is 1.5 to 1.8 m 2 /g.
- Glass B is a barium borosilicate glass used to lower the sintering temperature of the dielectric composite, due to the large particle size of glass A. Its formula follows: BaO 37.5% wt. B 2 O 3 38.3 SiO 2 16.5 MgO 4.3 ZrO 2 3.0
- Alumina A is a 1 micron powder with a narrow particle size distribution: D 10 , D 50 , and D 90 are, respectively, ca. 0.5, 1.1, and 2.7 microns. It is classified by settling to remove coarses and fines. Surface area is about 2.7-2.8 m 2 /g.
- Alumina B is a 0.4 micron average particle size powder with surface area of about 5 m 2 /g. Patterning Paste Alumina A 60.0 grams Hydrogenated Castor Oil 1.4 Mineral Spirits 4.0 Colorant 2.2 Ethyl Cellulose T-200 4.3 Terpineol 11.9 Butyl Benzyl Phthalate 16.2
- the materials were processed by printing the dielectric optionally one, two, or three prints, with each print followed by drying 10 to 15 minutes at 80 to 90 °C.
- the patterning layer was then printed by using a via fill screen with several sizes of via openings.
- the patterning paste was then dried at 80 to 100 °C for 5 to 10 minutes.
- the pattern was then generated in the dielectric by immersing the overpinted layers in 1.1.1-trichloroethane with ultrasonic agitation until the overprinted areas were removed and the areas under the overprinted patterning paste were dissolved away.
- the pattern may be positive or negative working, i.e. the area under the overprint may either be solubilized, as in Examples 2-3 or it may be insolubilized, for example by overprinting an aqueously developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.
- methyl and ethyl methacrylate may be combined to allow positive or negative working resists.
- plasticizers such as triethylene glycol would produce a negative working resist in ethanol pattern generating solvent.
- a calcium zinc silicate glass was formulated with a cellulosic vehicle and 3% butyl benzyl phthalate.
- a film of each paste was screen printed onto an alumina substrate and dried at 95°-100°C.
- a patterning paste containing 7 g alumina, 3.5 g Tergitol® TMN-6, 3.15 g of terpineol isomers and 0.35 g ethyl cellulose was screen printed onto the dried dielectric paste layers and heated at 95°-100°C to dry the overprinted paste and to effect diffusion of the Tergitol detergent into the underlying dielectric layer.
- 152 ⁇ m (6mil) vias were clearly resolved. In subsequent tests, it was shown that the use of additional plasticizer in the underlying polymer layer improved resolution still further.
- the diffusion patterning process it is preferred to carry out the diffusion patterning process to fabricate a partition wall in the plasma display apparatus as described in Examples 2-3. Nevertheless, it can be carried out by other methods, for example by overprinting an aqueous developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4222413A JPH06267439A (ja) | 1992-08-21 | 1992-08-21 | プラズマディスプレイ装置およびその製造方法 |
JP222413/92 | 1992-08-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0586943A1 EP0586943A1 (en) | 1994-03-16 |
EP0586943B1 true EP0586943B1 (en) | 1998-11-04 |
Family
ID=16781999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93113249A Expired - Lifetime EP0586943B1 (en) | 1992-08-21 | 1993-08-19 | Process of making a plasma display apparatus |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0586943B1 (enrdf_load_stackoverflow) |
JP (1) | JPH06267439A (enrdf_load_stackoverflow) |
KR (1) | KR0123793B1 (enrdf_load_stackoverflow) |
CN (1) | CN1088023A (enrdf_load_stackoverflow) |
DE (1) | DE69321912T2 (enrdf_load_stackoverflow) |
TW (1) | TW239208B (enrdf_load_stackoverflow) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635334A (en) * | 1992-08-21 | 1997-06-03 | E. I. Du Pont De Nemours And Company | Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics |
EP0613166B1 (en) * | 1993-02-26 | 2000-04-19 | E.I. Du Pont De Nemours And Company | Method of making plasma display apparatus |
TW320732B (enrdf_load_stackoverflow) * | 1995-04-20 | 1997-11-21 | Matsushita Electron Co Ltd | |
KR100320328B1 (ko) * | 1995-08-25 | 2002-06-22 | 아끼구사 나오유끼 | 면방전형플라즈마디스플레이패널 |
JP3885246B2 (ja) * | 1996-01-12 | 2007-02-21 | 松下電器産業株式会社 | プラズマディスプレイパネル |
KR100197131B1 (ko) * | 1996-05-22 | 1999-06-15 | 김영환 | 플라즈마 디스플레이 패널 및 그의 제조방법 |
JP3646510B2 (ja) * | 1998-03-18 | 2005-05-11 | セイコーエプソン株式会社 | 薄膜形成方法、表示装置およびカラーフィルタ |
JP2000133197A (ja) | 1998-10-30 | 2000-05-12 | Applied Materials Inc | イオン注入装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910003690B1 (en) * | 1988-09-14 | 1991-06-08 | Samsung Electronic Devices | Pdp manufacturing method |
DE69019010T2 (de) * | 1989-02-10 | 1996-01-18 | Dainippon Printing Co Ltd | Plasma-Anzeigetafel und Herstellungsverfahren derselben. |
US5032216A (en) * | 1989-10-20 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Non-photographic method for patterning organic polymer films |
-
1992
- 1992-08-21 JP JP4222413A patent/JPH06267439A/ja active Pending
-
1993
- 1993-08-19 EP EP93113249A patent/EP0586943B1/en not_active Expired - Lifetime
- 1993-08-19 DE DE69321912T patent/DE69321912T2/de not_active Expired - Fee Related
- 1993-08-21 CN CN93116299A patent/CN1088023A/zh active Pending
- 1993-08-21 KR KR1019930016285A patent/KR0123793B1/ko not_active Expired - Fee Related
- 1993-08-27 TW TW082106967A patent/TW239208B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR0123793B1 (ko) | 1997-12-01 |
DE69321912D1 (de) | 1998-12-10 |
EP0586943A1 (en) | 1994-03-16 |
DE69321912T2 (de) | 1999-03-25 |
KR940005195A (ko) | 1994-03-16 |
CN1088023A (zh) | 1994-06-15 |
JPH06267439A (ja) | 1994-09-22 |
TW239208B (enrdf_load_stackoverflow) | 1995-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5909083A (en) | Process for producing plasma display panel | |
US5674634A (en) | Insulator composition, green tape, and method for forming plasma display apparatus barrier-rib | |
US6692885B2 (en) | Method of fabricating barrier ribs in plasma display panel | |
EP0613166B1 (en) | Method of making plasma display apparatus | |
EP0586943B1 (en) | Process of making a plasma display apparatus | |
US5906527A (en) | Method of making plasma display panels | |
US5635334A (en) | Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics | |
EP0722179A2 (en) | Insulator composition, green tape, and method for forming plasma display apparatus barrier-rib | |
EP0742572A2 (en) | Method of making plasma display apparatus | |
CN100349195C (zh) | 等离子体面板的制作工艺 | |
EP0893813A2 (en) | Composite and method for forming plasma display apparatus barrier rib | |
JPH0721916A (ja) | プラズマディスプレイ装置または多層厚膜回路の製造方法 | |
JP2001236892A (ja) | 電極及び電極の製造方法及びプラズマディスプレイ表示装置及びプラズマディスプレイ表示装置の製造方法 | |
JP3619605B2 (ja) | パターン形成材料と厚膜パターン形成方法およびプラズマディスプレイパネル | |
KR19990015478A (ko) | 플라스마 디스플레이 패널의 격벽 제조방법 | |
DE602005004708T2 (de) | Verfahren zur Herstellung von Plasma Anzeigetafeln | |
Kim et al. | 32.2: Development of PDP Rear Panel by Etching Technology | |
JPH03263731A (ja) | カラー表示装置の製造方法 | |
KR100700779B1 (ko) | 플라즈마 디스플레이 패널의 격벽 제조방법 | |
JPH1116503A (ja) | プラズマディスプレイパネルの隔壁及び蛍光体形成用積層シート | |
JPH10162724A (ja) | プラズマディスプレイパネルの製造方法 | |
JP3695891B2 (ja) | 表示パネルの隔壁形成方法 | |
JPH09161676A (ja) | ガス放電パネルの製造方法 | |
JPH0770288B2 (ja) | 気体放電型パネル | |
KR20050038477A (ko) | 플라즈마 디스플레이 패널의 격벽 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19940506 |
|
17Q | First examination report despatched |
Effective date: 19950714 |
|
APAB | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPE |
|
APBJ | Interlocutory revision of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOS IRAPE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69321912 Country of ref document: DE Date of ref document: 19981210 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060817 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080818 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080827 Year of fee payment: 16 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090819 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090819 |