EP0586943A1 - Plasma display apparatus and process of making the same - Google Patents

Plasma display apparatus and process of making the same Download PDF

Info

Publication number
EP0586943A1
EP0586943A1 EP93113249A EP93113249A EP0586943A1 EP 0586943 A1 EP0586943 A1 EP 0586943A1 EP 93113249 A EP93113249 A EP 93113249A EP 93113249 A EP93113249 A EP 93113249A EP 0586943 A1 EP0586943 A1 EP 0586943A1
Authority
EP
European Patent Office
Prior art keywords
dielectric
layer
ridge
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93113249A
Other languages
German (de)
French (fr)
Other versions
EP0586943B1 (en
Inventor
William Borland
Ryosuke Kuwada
Noboru Nishi
Carl Baasun Wang
Yasuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0586943A1 publication Critical patent/EP0586943A1/en
Application granted granted Critical
Publication of EP0586943B1 publication Critical patent/EP0586943B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/14AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided only on one side of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate

Definitions

  • the invention relates to a plasma display apparatus comprising a plurality of stripe-shaped electrodes arranged in a matrix, a dot-shaped discharge area or pixel area at each solid intersection between said stripe-shaped electrodes and a fluorescent film formed on each of said discharge areas and adapted to emit light when said fluorescent film is excited by ultraviolet rays from the corresponding dischare area, and a process of making such a plasma display apparatus.
  • the plasma display apparatus typically comprises a pair of forward and backward insulation substrates arranged opposed to each other to form a discharge space therebetween, said discharge space containing a gaseous mixture of He with a trace of Xenon and others, a group of stripe-shaped electrodes on the opposed surfaces of said insulation substrates, said stripe-shaped electrodes being arranged to form a matrix pattern in said discharge space, said matrix parting said discharge space into a plurality of discharge gas containing sub-spaces, each intersection between said stripe-shaped electrodes corresponding to a pixel, and a fluorescent film in each of said sub-spaces.
  • the forward insulation substrate 1 is formed of sheet glass, with the internal surface thereof including a film-type light-blocking mask 2 formed thereon and first stripe-shaped electrodes 3 arranged side by side on the internal surface of the substrate 1 in one direction, these electrodes 3 functioning as anodes.
  • the internal surface of the other or backward substrate 4 is similarly formed of sheet glass and the internal surface thereof includes second stripe-shaped electrodes 7 arranged to extend in a direction perpendicular to the lengths of the first electrodes 3, these electrodes 7 functioning as cathodes.
  • the first and second electrodes 3, 7 are separated from each other by dielectric partitions 8.
  • a dot-like discharge area 9 is formed at each of the intersections between the first and second electrodes 3, 7.
  • the discharge area 9 contains a discharge gas containing Xenon.
  • a dot-like fluorescent film 10 for color display is formed on the surface of each of the second electrodes 3.
  • Each of the partitions 8 is formed to have a thickness ranged between 100 microns and 200 microns by repeated thick-film printing of insulation paste.
  • the discharge gas is a two-component mixture gas containing He and Xe, a three-component mixture gas containing He, Xe and any other suitable component or a single gas (e.g. Xe).
  • the discharge gas is sealed within the corresponding discharge area 9 under the pressure of 10 to 500 Torr., depending on the composition thereof.
  • Such a plasma display apparatus of the prior art was provided by repeating the thick film process to form partitions having a thickness ranged between 100 microns and 200 microns on an insulation substrate to define a plurality of dot-like discharge areas thereon or by performing the thick film printing process to form partitions as described, applying a paste containing silver in a groove surrounded and defined by said partitions, and firing the paste to form a group of electrodes. Thereafter, a fluorescent material is placed and fired in a recess formed by said partitions to form a fluorescent member covering one of the electrodes (i.e. one disposed on the backside of the substrate). When these frontside and backside substrates are superposed on each other, sealing, discharging and other gases are sealed therebetween to complete a plasma display apparatus.
  • An object of the invention is to provide a plasma display apparatus which can be produced more easily and inexpensively and which can operate more stably.
  • Another object of the invention is to provide a process of making a plasma display apparatus, which process can more easily and effectively produce a plasma display apparatus having a number of electrodes disposed with a reduced dot pitch.
  • the invention is therefore directed to a plasma display apparatus which comprises a first dielectric substrate; a plurality of first electrodes extending in one direction on the first substrate; a second dielectric substrate; a plurality of second electrodes extending in another direction perpendicular to said one direction on the second substrate; a ridge defining a plurality of pixel areas and being adapted to provide a partition wall and fluorescent materials provided in said pixel areas, the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
  • the invention is directed to a process of making a plasma display apparatus, comprising the steps of providing dielectric substrates; forming a plurality of first electrodes on one of said substrates to extend in one direction; forming a plurality of second electrodes on the other substrate to extend in another direction perpendicular to said one direction; forming a ridge on at least one of said substrates to define a plurality of pixel areas; and providing fluorescent materials in said pixel areas, the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
  • the diffusion patterning for use on layers of small thickness such as those used in the fabrication of electronic components.
  • the patterned layer of dielectric will range from 10 to 30 microns while the unpatterned layer of dielectric can be of much greater thickness from 10 to 100 microns.
  • the thickness of the patterned layer is limited chiefly by the method of application rather than by considerations of operability.
  • the amount of solubilizing agent in the patterned layer must be sufficient to provide a solubilizing amount by diffusion to the underlying layer.
  • the patterned layer will contain at least 10% weight solubilizing agent and may contain as much as 90% weight depending upon the solubility relationships of the respective polymers.
  • a plasticizer or other solubilizing agent may be added to the underlying unpatterned layer in order to make the polymer more susceptible to the action of the solubilizing agent which is diffused from the patterned layer.
  • the dielectric pastes for the formation of the unpatterned layer are typically printed twice with 200 mesh screens at one to two inches per second squeegee speed.
  • the patterning pastes are printed over the dielectric at higher speeds, since only a small part of the screen is open mesh.
  • the conductor pastes for the formation of electrodes are printed with a 325 or 400 mesh screen, depending on the conductor thickness and resolution desired. Patterning pastes are likewise printed with a 325 or 400 mesh screen, to optimize the amount of plasticizer delivered to the underprint. Thinner screens and fewer prints are needed than with the dielectric, because of the thinner films typically used with conductors.
  • any polymers known in the art can be used as the material for the preparation of the above pastes.
  • Representative examples of those polymers include cellulosic polymers such as ethyl cellulose, polystyrene polyacrylates (including methacrylates), poly(vinyl acetate), poly(vinyl butyral), poly(vinyl chloride), phenol-formaldehyde resins or the like.
  • benzyloctyl adipate diisodecyl adipate, tridecyl adipate
  • azelaic acid esters such as diisooctyl azelate, diethylene glycol dibenzoate, triethylene glycol dibenzoate, citrates such as triethyl citrate, epoxy type plasticizers, polyvinyl methyl ethers, glycerol mono-, di-, and triacetates, ethylene glycol diacetate, polyethylene glycol 200 to 1000, phthalate esters (dimethyl to dibutyl), isophthalic acid esters (dimethyl, diisooctyl, di-2-ethylhexyl), mellitates such as trioctyl trimellitate and isooctylisodecyl trimellitate, isopropyl myristate, methyl and propyl oleates, isopropyl and isooctyl palmitates
  • Fig. 1 is an elevational view in section of the primary parts of a plasma display apparatus constructed in accordance with the present invention.
  • Fig. 2 is a foreshortened view in plan, partly in section of the plasma display apparatus.
  • Fig. 3 is a perspective view showing the structures of ridges and Y electrodes.
  • Fig. 4 and 5 are a series of views illustrating a sequence of steps in the process of the present invention.
  • Fig. 10 is an elevational view in section of a plasma display apparatus constructed in accordance with the prior art.
  • a plasma display apparatus of the present invention which comprises first and second dielectric substrates 1, 2 of a sheet glass having a thickness equal to 2 mm, a plurality of X electrodes (first electrodes) laterally extending on the inner face of the first substrate 2, a plurality of Y electrodes (second electrodes) longitudinally extending on the inner face of the second substrate 2, and a plurality of fluorescent materials 5 for converting discharged ultraviolet rays into visible rays.
  • the plasma display apparatus also comprises a matrix-like (or mesh-like) ridge 10 which defines a plurality of pixel areas and is adapted to provide a partition wall for maintaining the spacing between the first and second substrates 1, 2.
  • Each of the (line) X electrodes 3 is disposed on dielectric layer 14 to electrically insulate from the (column) Y electrodes, and another dielectic layer 18 is arranged over the line electrodes 3 to separate from a discharge space 19.
  • Protective layer 16 may be provided on dielectric layer 18.
  • Each of the fluorescent materials 5 is formed by pouring a luminescence color fluorescent material into each of recesses 13 which are formed by the matrix-like ridge 10.
  • the flurescent material may be Zn2SiO4:Mn for green color, (Y1 Gd) BO3:Eu3+ for red color or BaMgAl14O23:Eu2+ for blue color.
  • a discharge space 19 formed between the substrates 1, 2 by the matrix-like ridge 10 is filled with any suitable mixture gas, for example, consisting of neon and xenon.
  • a discharge cell is formed at each of the intersections between the X electrodes 3 and the Y electrodes 4. When each discharging cell is energized, one fluorescent material 5 corresponding to the energized cell is excited to emit light.
  • the fluorescent material 5 may be selectively excited through the intersecting electrodes 3 and 4.
  • any structural members mentioned from now are referred to Figs. 1-3.
  • a layer of thick film dielectric paste 23 is applied by screen printing to glass substrate 21.
  • the thick film paste is comprised of finely divided particles of glass dispersed in an organic medium comprising an acid labile polymer dissolved in dibutyl phthalate plasticizer and terpineol. After printing the layer 23, the terpineol is removed by heating the layer to a temperature of 80°C for a period of about 10 minutes.
  • a patterned second layer 25 is screen printed over the solvent-free thick film layer 23, the second layer is a liquid solution comprised of p-toluene sulfonic acid, dibutyl phthalate and terpineol, as shown in Fig. 4(b).
  • the assemblage Upon forming the patterned layer 25, the assemblage is heated to 90°C during which the terpineol is evaporated from the layer and the acid and dibutyl phthalate are diffused into the underlying areas of thick film dielectric layer 23 whereby the acid reacts with the acid labile groups of the polymer to render it water dispersible (Fig. 4(c)).
  • a matrix-like ridge 10 is formed by the layer such that a discharge space for each pixel area is formed by each of the recesses 13 having, for example, a depth ranged between 25 and 100 microns depending on the pitch size of pixel.
  • Figs. 4-8 When it is desirable to obtain a thicker or more raised ridge, one may repeat a series of the steps of dielectric print/dry through development as shown in Figs. 4-8.
  • Fig. 5 illustrates schematically the process of producing the same negatively patterned and co-developed by use of 2 or 3 diffusion patterning steps.
  • the dielectric is fired on the surface of the glass substrate 21, conductor is applied to form the line and column of electrodes on the other glass substrate 2 opposing the substrate 21 as described previously.
  • Each group of the electrodes is formed by the screen printing process (thick film process) wherein a paste containing a metal selected from the group consisting of Au, Ni, Al, Cu and silver as a principal component is applied and then fired to form an electrode layer which is used to form each group of electrodes. The material of this electrode layer is then partially removed to form the electrodes.
  • the width of the electrode layer may be larger than that of the final electrode.
  • Each of the recesses 13 defined by the ridge 10 is filled with a fluorescent material 5 at the bottom.
  • each of the fluorescent material 5 is formed by depositing a fluorescent material on the inner bottom face 13 of the corresponding recess, for example, Zn2SiO4 emitting a green-colored light. If it is wanted to provide a multicolor display, fluorescent materials for emitting red(R)-, green(G)- and blue(B)-colors are sequentially deposited on the inner bottom face of each discharge area for each pixel area line in the X or Y direction or for each pixel area PA (Fig. 3).
  • the said diffusion patterning process may be applied to both substrates 1 and 2 to fabricate the ridge or the entire partition wall.
  • the glass substrate 2 is superposed over the display side glass substrate 1.
  • the space between the glass substrates 1, 2 is sealed by sealing glass and at the same time a discharge mixture gas is sealingly enclosed in the space.
  • a plasma display apparatus is thus assembled.
  • a positive-acting non-photographic method for making patterns in dielectric films comprising the sequential steps:
  • the insolubilizer-depleted areas of the patterned second layer 115 are soluble in the solvent, they will be removed during the solvent-washing step (Fig. 6 (a) to (d)). On the other hand, if the insolubilizer-depleted areas of the patterned second layer 115 are insoluble in the solvent, they will remain after the solvent-washing step (Fig. 7 (a) to (d)).
  • the unpatterned layer 113 comprising an organic polymer or the patterned layer 115 comprising a polymer insoluble in the solvent and the corresponding organic polymer layer 113 are left on the substrate to form a matrix-like ridge 10 defining pixel areas in the plasma display and forming a discharge space.
  • the remaining steps for producing the plasma display are similar to those of the aforementioned process.
  • FIGs. 6 and 7 illustrate schematically the steps involved to apply up to 3 DP steps.
  • Fig. 8 represents the case that the DP layers are insoluble in the developing solvent. If the DP layer became soluble after being depleted of the insolubilizing agent, only top of the built became insoluble since the lower DP layers remain insoluble after receiving supply of desolubilizing agent from the DP layer immediately above the said layer. This is illustrated in Fig. 9 (f) to (i).
  • the above method can also be applied to both substrates 1 and 2, if desirable.
  • partition walls are formed on the display side of glass substrates 2 separately of the ridge 10 formed on the first substrate 1.
  • the following example illustrates the formulation of dielectric and patterning pastes.
  • Two pastes were formulated: One a dielectric paste, and one a patterning paste as follows: Dielectric Paste Glass A 15.78 grams Glass B 0.83 Alumina A 7.89 Alumina B 3.24 Cobalt Aluminate 0.08 Polymethyl methacrylate 5.36 Wetting Agent 1.25 t-Butylanthraquinone 0.50 Shell Ionol® 0.03 Butyl Carbitol®, Acetate 14.10 Butyl Benzyl Phthalate 0.75 Glass A SiO2 56.2% wt. PbO 18.0 Al2O3 8.6 CaO 7.4 B2O3 4.5 Na2O 2.7 K2O 1.6 MgO 0.8 ZrO2 0.2
  • Glass A has a D50 of ca. 4 to 4.5 microns; it is milled and classified to remove coarse and fine fractions. Its D10 is about 1.6 microns; and D90 is 10-12 microns. Surface area is 1.5 to 1.8 m2/g.
  • Glass B is a barium borosilicate glass used to lower the sintering temperature of the dielectric composite, due to the large particle size of glass A. Its formula follows: BaO 37.5% wt. B2O3 38.3 SiO2 16.5 MgO 4.3 ZrO2 3.0
  • Alumina A is a 1 micron powder with a narrow particle size distribution: D10, D50, and D90 are, respectively, ca. 0.5, 1.1, and 2.7 microns. It is classified by settling to remove coarses and fines. Surface area is about 2.7-2.8 m2/g.
  • Alumina B is a 0.4 micron average particle size powder with surface area of about 5 m2/g. Patterning Paste Alumina A 60.0 grams Hydrogenated Castor Oil 1.4 Mineral Spirits 4.0 Colorant 2.2 Ethyl Cellulose T-200 4.3 Terpineol 11.9 Butyl Benzyl Phthalate 16.2
  • the above paste compositions were prepared in the manner familiar to those skilled in formulation of thick film materials and were prepared for printing as follows: The materials were processed by printing the dielectric optionally one, two, or three prints, with each print followed by drying 10 to 15 minutes at 80 to 90 degrees Celsius. The patterning layer was then printed by using a via fill screen with several sizes of via openings. The patterning paste was then dried at 80 to 100 degrees C for 5 to 10 minutes.
  • the pattern was then generated in the dielectric by immersing the overpinted layers in 1.1.1-trichloroethane with ultrasonic agitation until the overprinted areas were removed and the areas under the overprinted patterning paste were dissolved away.
  • the pattern may be positive or negative working, i.e. the area under the overprint may either be solubilized, as in Examples 2-3 or it may be insolubilized, for example by overprinting an aqueously developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.
  • methyl and ethyl methacrylate may be combined to allow positive or negative working resists.
  • plasticizers such as triethylene glycol would produce a negative working resist in ethanol pattern generating solvent.
  • a calcium zinc silicate glass was formulated with a cellulosic vehicle and 3% butyl benzyl phthalate.
  • a film of each paste was screen printed onto an alumina substrate and dried at 95°-100°C.
  • a patterning paste containing 7 g alumina, 3.5 g Tergitol® TMN-6, 3.15 g of terpineol isomers and 0.35 g ethyl cellulose was screen printed onto the dried dielectric paste layers and heated at 95°-100°C to dry the overprinted paste and to effect diffusion of the Tergitol detergent into the underlying dielectric layer.
  • the dried layer was washed under tap water, six mil vias were clearly resolved. In subsequent tests, it was shown that the use of additional plasticizer in the underlying polymer layer improved resolution still further.
  • the diffusion patterning process it is preferred to carry out the diffusion patterning process to fabricate a partition wall in the plasma display apparatus as described in Examples 2-3. Nevertheless, it can be carried out by other methods, for example by overprinting an aqueous developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

A plasma display apparatus comprises a first dielectric substrate; a plurality of first electrodes extending in one direction on the first substrate; a second dielectric substrate; a plurality of second electrodes extending in another direction perpendicular to said one direction on the second substrate; a ridge defining a plurality of pixel areas and being adapted to provide a partition wall and fluorescent materials provided in said pixel areas;
   The ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.

Description

    FIELD OF INVENTION
  • The invention relates to a plasma display apparatus comprising a plurality of stripe-shaped electrodes arranged in a matrix, a dot-shaped discharge area or pixel area at each solid intersection between said stripe-shaped electrodes and a fluorescent film formed on each of said discharge areas and adapted to emit light when said fluorescent film is excited by ultraviolet rays from the corresponding dischare area, and a process of making such a plasma display apparatus.
  • BACKGROUND OF THE INVENTION
  • The plasma display apparatus typically comprises a pair of forward and backward insulation substrates arranged opposed to each other to form a discharge space therebetween, said discharge space containing a gaseous mixture of He with a trace of Xenon and others, a group of stripe-shaped electrodes on the opposed surfaces of said insulation substrates, said stripe-shaped electrodes being arranged to form a matrix pattern in said discharge space, said matrix parting said discharge space into a plurality of discharge gas containing sub-spaces, each intersection between said stripe-shaped electrodes corresponding to a pixel, and a fluorescent film in each of said sub-spaces.
  • More particularly, as shown in Fig. 10, the forward insulation substrate 1 is formed of sheet glass, with the internal surface thereof including a film-type light-blocking mask 2 formed thereon and first stripe-shaped electrodes 3 arranged side by side on the internal surface of the substrate 1 in one direction, these electrodes 3 functioning as anodes. The internal surface of the other or backward substrate 4 is similarly formed of sheet glass and the internal surface thereof includes second stripe-shaped electrodes 7 arranged to extend in a direction perpendicular to the lengths of the first electrodes 3, these electrodes 7 functioning as cathodes. The first and second electrodes 3, 7 are separated from each other by dielectric partitions 8. A dot-like discharge area 9 is formed at each of the intersections between the first and second electrodes 3, 7. The discharge area 9 contains a discharge gas containing Xenon. A dot-like fluorescent film 10 for color display is formed on the surface of each of the second electrodes 3.
  • Each of the partitions 8 is formed to have a thickness ranged between 100 microns and 200 microns by repeated thick-film printing of insulation paste. The discharge gas is a two-component mixture gas containing He and Xe, a three-component mixture gas containing He, Xe and any other suitable component or a single gas (e.g. Xe). The discharge gas is sealed within the corresponding discharge area 9 under the pressure of 10 to 500 Torr., depending on the composition thereof.
  • Such a plasma display apparatus of the prior art was provided by repeating the thick film process to form partitions having a thickness ranged between 100 microns and 200 microns on an insulation substrate to define a plurality of dot-like discharge areas thereon or by performing the thick film printing process to form partitions as described, applying a paste containing silver in a groove surrounded and defined by said partitions, and firing the paste to form a group of electrodes. Thereafter, a fluorescent material is placed and fired in a recess formed by said partitions to form a fluorescent member covering one of the electrodes (i.e. one disposed on the backside of the substrate). When these frontside and backside substrates are superposed on each other, sealing, discharging and other gases are sealed therebetween to complete a plasma display apparatus.
  • The prior art process requires too many producing steps which would reduce the mass-producibility and increase the manufacturing cost. Since the electrodes, partitions and others are formed by repeating the thick-wall printing and firing steps, possible dot pitch is limited. The thickness of film must be controlled with high accuracy. Further, the substrates must be superposed and fixed to each other with a high precision.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a plasma display apparatus which can be produced more easily and inexpensively and which can operate more stably.
  • Another object of the invention is to provide a process of making a plasma display apparatus, which process can more easily and effectively produce a plasma display apparatus having a number of electrodes disposed with a reduced dot pitch.
  • The invention is therefore directed to a plasma display apparatus which comprises a first dielectric substrate; a plurality of first electrodes extending in one direction on the first substrate; a second dielectric substrate; a plurality of second electrodes extending in another direction perpendicular to said one direction on the second substrate; a ridge defining a plurality of pixel areas and being adapted to provide a partition wall and fluorescent materials provided in said pixel areas, the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
  • Further, the invention is directed to a process of making a plasma display apparatus, comprising the steps of providing dielectric substrates; forming a plurality of first electrodes on one of said substrates to extend in one direction; forming a plurality of second electrodes on the other substrate to extend in another direction perpendicular to said one direction; forming a ridge on at least one of said substrates to define a plurality of pixel areas; and providing fluorescent materials in said pixel areas, the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
  • In such an arrangement of the present invention, there can be employed the diffusion patterning for use on layers of small thickness such as those used in the fabrication of electronic components. Typically the patterned layer of dielectric will range from 10 to 30 microns while the unpatterned layer of dielectric can be of much greater thickness from 10 to 100 microns. The thickness of the patterned layer is limited chiefly by the method of application rather than by considerations of operability.
  • The amount of solubilizing agent in the patterned layer must be sufficient to provide a solubilizing amount by diffusion to the underlying layer. Thus, the patterned layer will contain at least 10% weight solubilizing agent and may contain as much as 90% weight depending upon the solubility relationships of the respective polymers.
  • Furthermore, in some instances, it may be desirable to add a plasticizer or other solubilizing agent to the underlying unpatterned layer in order to make the polymer more susceptible to the action of the solubilizing agent which is diffused from the patterned layer.
  • By and large, the individual steps for preparation of components for the plasma display apparatus of the invention are similar to those which are known by those skilled in the art of conventional thick film, green tape and polymer technology. Thus, the following procedures may not be new by themselves, but illustrate a preferred method for formulating and preparing the materials to be used in the invention.
  • The dielectric pastes for the formation of the unpatterned layer are typically printed twice with 200 mesh screens at one to two inches per second squeegee speed. The patterning pastes are printed over the dielectric at higher speeds, since only a small part of the screen is open mesh.
  • The conductor pastes for the formation of electrodes are printed with a 325 or 400 mesh screen, depending on the conductor thickness and resolution desired. Patterning pastes are likewise printed with a 325 or 400 mesh screen, to optimize the amount of plasticizer delivered to the underprint. Thinner screens and fewer prints are needed than with the dielectric, because of the thinner films typically used with conductors.
  • Any polymers known in the art can be used as the material for the preparation of the above pastes. Representative examples of those polymers include cellulosic polymers such as ethyl cellulose, polystyrene polyacrylates (including methacrylates), poly(vinyl acetate), poly(vinyl butyral), poly(vinyl chloride), phenol-formaldehyde resins or the like.
  • It will be recognized by those skilled in polymer technology that each polymer species is compatible with a large number of different types of plasticizers or non-volatile solvents. As a result, the number of suitable polymer/solvent/non-solvent combinations is legion.
  • Following are examples of several commercially available plasticizers which are compatible with ethyl cellulose, a typical polymer used in the patterning paste: acid esters of abietic acid (methyl abietate), acetic acid esters (cumphenylacetate), adipic acid derivatives (e.g. benzyloctyl adipate), diisodecyl adipate, tridecyl adipate), azelaic acid esters such as diisooctyl azelate, diethylene glycol dibenzoate, triethylene glycol dibenzoate, citrates such as triethyl citrate, epoxy type plasticizers, polyvinyl methyl ethers, glycerol mono-, di-, and triacetates, ethylene glycol diacetate, polyethylene glycol 200 to 1000, phthalate esters (dimethyl to dibutyl), isophthalic acid esters (dimethyl, diisooctyl, di-2-ethylhexyl), mellitates such as trioctyl trimellitate and isooctylisodecyl trimellitate, isopropyl myristate, methyl and propyl oleates, isopropyl and isooctyl palmitates, chlorinated paraffin, phosphoric acid derivatives such as triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, polyesters, dibutyl sebacate, dioctyl sebacate, stearates such as octyl stearate, butoxyethyl stearate, tetramethylene glycol monostearate, sucrose derivatives such as sucrose octoacetate, sulfonic acid derivatives such as benzenesulfonmethylamide, or dioctyl terephthalate.
  • Solvent/non-solvent systems for the ethyl cellulose/plasticizer combinations include:
    Solvents: (D.S. denotes degree of substitution with ethoxyl groups.) D.S.=1.0 to 1.5: Pyridine, formic acid, acetic acid, water (cold) D.S.=2 Methylene chloride, chloroform, dichloroethylene, chlorohydrins, ethanol, THF. D.S.=2.3 Benzene, toluene, alkyl halogenides, alcohols, furan derivatives, ketones, acetic esters, carbon disulfide, nitromethane. D.S.=3.0 Benzene, toluene, methylene chloride, alcohols, esters.
    Non-Solvents: D.S.=1.0 to 1.5: Ethanol. D.S.=2.0 Hydrocarbons, carbon tetrachloride, trichloroethylene, alcohols, diethyl ether, ketones, esters, water. D.S.=2.3 Ethylene glycol, acetate (cold). D.S.=3.0 Hydrocarbons, decalin, xylene, carbon tetrachloride, tetrahydrofurfuryl alcohol, diols, n-propyl ether.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is an elevational view in section of the primary parts of a plasma display apparatus constructed in accordance with the present invention.
  • Fig. 2 is a foreshortened view in plan, partly in section of the plasma display apparatus.
  • Fig. 3 is a perspective view showing the structures of ridges and Y electrodes.
  • Fig. 4 and 5 are a series of views illustrating a sequence of steps in the process of the present invention.
  • Fig. 6 through 9 are a series of views illustrating another sequence of steps in the process of the present invention.
  • Fig. 10 is an elevational view in section of a plasma display apparatus constructed in accordance with the prior art.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring first to Figs. 1 and 2, there is shown a plasma display apparatus of the present invention which comprises first and second dielectric substrates 1, 2 of a sheet glass having a thickness equal to 2 mm, a plurality of X electrodes (first electrodes) laterally extending on the inner face of the first substrate 2, a plurality of Y electrodes (second electrodes) longitudinally extending on the inner face of the second substrate 2, and a plurality of fluorescent materials 5 for converting discharged ultraviolet rays into visible rays. The plasma display apparatus also comprises a matrix-like (or mesh-like) ridge 10 which defines a plurality of pixel areas and is adapted to provide a partition wall for maintaining the spacing between the first and second substrates 1, 2. Each of the (line) X electrodes 3 is disposed on dielectric layer 14 to electrically insulate from the (column) Y electrodes, and another dielectic layer 18 is arranged over the line electrodes 3 to separate from a discharge space 19. Protective layer 16 may be provided on dielectric layer 18. Each of the fluorescent materials 5 is formed by pouring a luminescence color fluorescent material into each of recesses 13 which are formed by the matrix-like ridge 10. The flurescent material may be Zn₂SiO₄:Mn for green color, (Y₁ Gd) BO₃:Eu³⁺ for red color or BaMgAl₁₄O₂₃:Eu²⁺ for blue color.
  • A discharge space 19 formed between the substrates 1, 2 by the matrix-like ridge 10 is filled with any suitable mixture gas, for example, consisting of neon and xenon. A discharge cell is formed at each of the intersections between the X electrodes 3 and the Y electrodes 4. When each discharging cell is energized, one fluorescent material 5 corresponding to the energized cell is excited to emit light.
  • In such an arrangement, the fluorescent material 5 may be selectively excited through the intersecting electrodes 3 and 4. As to the plasma display apparatus of the invention, any structural members mentioned from now are referred to Figs. 1-3.
  • The ridge in the plasma display apparatus may be produced in accordance with a negative acting pattern forming process shown in Figs. 4 and 5. The plasma display apparatus is fabricated with a ridge or a partition wall structure which is negatively patterned and sequentially developed as shown in Fig. 4 or negatively patterned and co-developed (as illustrated in Fig. 5) using diffusion patterning.
  • As illustrated in Fig. 4, a layer of thick film dielectric paste 23 is applied by screen printing to glass substrate 21. The thick film paste is comprised of finely divided particles of glass dispersed in an organic medium comprising an acid labile polymer dissolved in dibutyl phthalate plasticizer and terpineol. After printing the layer 23, the terpineol is removed by heating the layer to a temperature of 80°C for a period of about 10 minutes.
  • A patterned second layer 25 is screen printed over the solvent-free thick film layer 23, the second layer is a liquid solution comprised of p-toluene sulfonic acid, dibutyl phthalate and terpineol, as shown in Fig. 4(b).
  • Upon forming the patterned layer 25, the assemblage is heated to 90°C during which the terpineol is evaporated from the layer and the acid and dibutyl phthalate are diffused into the underlying areas of thick film dielectric layer 23 whereby the acid reacts with the acid labile groups of the polymer to render it water dispersible (Fig. 4(c)).
  • The patterned layer 25 consists mainly of small amounts of residual acid and dibutyl phthalate. It is then washed with water having a pH of at least 7 to remove the underlying diffusion patterned layer 25, which consists largely of the solubilized acid labile polymer and the other materials in the underlying imaged areas of thick film layer 23. Upon completion of the washing, the surface of substrate 21 is exposed in the areas which underlay the pattern of layer 25 and a very precise negative image of the pattern remains on the surface of substrate 21 (Fig. 4(d)). The thus patterned dielectric is subsequently fired.
  • In such a manner, a matrix-like ridge 10 is formed by the layer such that a discharge space for each pixel area is formed by each of the recesses 13 having, for example, a depth ranged between 25 and 100 microns depending on the pitch size of pixel. When it is desirable to obtain a thicker or more raised ridge, one may repeat a series of the steps of dielectric print/dry through development as shown in Figs. 4-8. Fig. 5 illustrates schematically the process of producing the same negatively patterned and co-developed by use of 2 or 3 diffusion patterning steps.
  • After desirable thickness of the ridge is obtained, the dielectric is fired on the surface of the glass substrate 21, conductor is applied to form the line and column of electrodes on the other glass substrate 2 opposing the substrate 21 as described previously. Each group of the electrodes is formed by the screen printing process (thick film process) wherein a paste containing a metal selected from the group consisting of Au, Ni, Al, Cu and silver as a principal component is applied and then fired to form an electrode layer which is used to form each group of electrodes. The material of this electrode layer is then partially removed to form the electrodes. Thus, the width of the electrode layer may be larger than that of the final electrode.
  • By the use of the screen printing process, the overall surface of the glass substrate 2 is coated with a lead borate, low melting glass paste containing a dielectric material such as aluminum oxide or silicon oxide. The paste is then fired to form dielectric layers 14 and 18. The glass substrate 2 may include a protective layer 16 of magnesium oxide which is formed over the dielectric layer.
  • Each of the recesses 13 defined by the ridge 10 is filled with a fluorescent material 5 at the bottom.
  • When to be used for monocolor display, each of the fluorescent material 5 is formed by depositing a fluorescent material on the inner bottom face 13 of the corresponding recess, for example, Zn₂SiO₄ emitting a green-colored light. If it is wanted to provide a multicolor display, fluorescent materials for emitting red(R)-, green(G)- and blue(B)-colors are sequentially deposited on the inner bottom face of each discharge area for each pixel area line in the X or Y direction or for each pixel area PA (Fig. 3).
  • When it is desirable, the said diffusion patterning process may be applied to both substrates 1 and 2 to fabricate the ridge or the entire partition wall.
  • Thereafter, the glass substrate 2 is superposed over the display side glass substrate 1. The space between the glass substrates 1, 2 is sealed by sealing glass and at the same time a discharge mixture gas is sealingly enclosed in the space. A plasma display apparatus is thus assembled.
  • Referring further to Figs. 6 and 7, an alternative process of fabricating a ridge or partition wall in the plasma display apparatus of the invention is explained, for instance, a positive-acting non-photographic method for making patterns in dielectric films comprising the sequential steps:
    • a. Applying to a substrate 111 an unpatterned first layer 113 comprising a solid organic polymer which is soluble in a predetermined solvent or water;
    • b. Applying to the unpatterned first layer 113 a patterned second layer 115 comprising a desolubilizing agent which is capable of decreasing the solubility of the organic polymer in the solvent;
    • c. Heating the patterned second layer 115 to effect patterned diffusion of the desolubilizing agent into the underlying first organic polyer layer 113 and to render the diffusion patterned areas of the polymer in the first layer 113 insoluble in the solvent; and
    • d. Removing the non-patterned areas of the underlying first layer 113 by washing them in the predetermined solvent.
  • If the insolubilizer-depleted areas of the patterned second layer 115 are soluble in the solvent, they will be removed during the solvent-washing step (Fig. 6 (a) to (d)). On the other hand, if the insolubilizer-depleted areas of the patterned second layer 115 are insoluble in the solvent, they will remain after the solvent-washing step (Fig. 7 (a) to (d)).
  • After removal of the solvent, the unpatterned layer 113 comprising an organic polymer or the patterned layer 115 comprising a polymer insoluble in the solvent and the corresponding organic polymer layer 113 are left on the substrate to form a matrix-like ridge 10 defining pixel areas in the plasma display and forming a discharge space. The remaining steps for producing the plasma display are similar to those of the aforementioned process.
  • A plurality of positive-acting diffusion patterning steps may be used to build up partition wall thickness. Figs. 6 and 7 illustrate schematically the steps involved to apply up to 3 DP steps.
  • Alternatively, one may also reduce the number of developing step by using the process illustrated in Figs. 8 and 9. Fig. 8 represents the case that the DP layers are insoluble in the developing solvent. If the DP layer became soluble after being depleted of the insolubilizing agent, only top of the built became insoluble since the lower DP layers remain insoluble after receiving supply of desolubilizing agent from the DP layer immediately above the said layer. This is illustrated in Fig. 9 (f) to (i).
  • The above method can also be applied to both substrates 1 and 2, if desirable.
  • Although some embodiments of the present invention have been described as to ridges 10 usable as partition walls for parting display pixels, the partition walls are formed on the display side of glass substrates 2 separately of the ridge 10 formed on the first substrate 1.
  • The following example illustrates the formulation of dielectric and patterning pastes.
  • Example 1
  • Two pastes were formulated: One a dielectric paste, and one a patterning paste as follows:
    Dielectric Paste
    Glass A 15.78 grams
    Glass B 0.83
    Alumina A 7.89
    Alumina B 3.24
    Cobalt Aluminate 0.08
    Polymethyl methacrylate 5.36
    Wetting Agent 1.25
    t-Butylanthraquinone 0.50
    Shell Ionol® 0.03
    Butyl Carbitol®, Acetate 14.10
    Butyl Benzyl Phthalate 0.75
    Glass A
    SiO₂ 56.2% wt.
    PbO 18.0
    Al₂O₃ 8.6
    CaO 7.4
    B₂O₃ 4.5
    Na₂O 2.7
    K₂O 1.6
    MgO 0.8
    ZrO₂ 0.2
  • Glass A has a D₅₀ of ca. 4 to 4.5 microns; it is milled and classified to remove coarse and fine fractions. Its D₁₀ is about 1.6 microns; and D₉₀ is 10-12 microns. Surface area is 1.5 to 1.8 m²/g.
  • Glass B is a barium borosilicate glass used to lower the sintering temperature of the dielectric composite, due to the large particle size of glass A. Its formula follows:
    BaO 37.5% wt.
    B₂O₃ 38.3
    SiO₂ 16.5
    MgO 4.3
    ZrO₂ 3.0
  • Alumina A is a 1 micron powder with a narrow particle size distribution: D₁₀, D₅₀, and D₉₀ are, respectively, ca. 0.5, 1.1, and 2.7 microns. It is classified by settling to remove coarses and fines. Surface area is about 2.7-2.8 m²/g.
  • Alumina B is a 0.4 micron average particle size powder with surface area of about 5 m²/g.
    Patterning Paste
    Alumina A 60.0 grams
    Hydrogenated Castor Oil 1.4
    Mineral Spirits 4.0
    Colorant 2.2
    Ethyl Cellulose T-200 4.3
    Terpineol 11.9
    Butyl Benzyl Phthalate 16.2
  • The above paste compositions were prepared in the manner familiar to those skilled in formulation of thick film materials and were prepared for printing as follows:
       The materials were processed by printing the dielectric optionally one, two, or three prints, with each print followed by drying 10 to 15 minutes at 80 to 90 degrees Celsius. The patterning layer was then printed by using a via fill screen with several sizes of via openings. The patterning paste was then dried at 80 to 100 degrees C for 5 to 10 minutes.
  • The pattern was then generated in the dielectric by immersing the overpinted layers in 1.1.1-trichloroethane with ultrasonic agitation until the overprinted areas were removed and the areas under the overprinted patterning paste were dissolved away.
  • Vias as small as 5-7 mils were resolved in dielectric films as thick as 85 microns, with good edge definition. This is far superior both in resolution and in thickness achievable with a single patterning step with screen printing.
  • Alternative Material Systems
  • There are many ways to use the selective solubilization principle to generate thick film patterns. The pattern may be positive or negative working, i.e. the area under the overprint may either be solubilized, as in Examples 2-3 or it may be insolubilized, for example by overprinting an aqueously developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.
  • The following Table illustrates a number of acrylic polymer/plasticizer/solvent systems which have been demonstrated for use in the method of the invention.
  • Alternative Acrylic Material Systems
  • Underprint Resin Overprint Patterning Solvent
    Solubilizer (Negative) Desolubilizer (Positive)
    Polymethylmethacrylate Phthalate Methyl Chloroform Dibutyl
    Polymethylacrylate Butyl Benzyl-Phthalate
    Ethylhydroxyethyl cellulose
    Polymethyl methacrylate Ethanol/water/ammonia
    Carboset® XPD-1234 Triethanolamine Water
    Dibutyl phthalate K₂CO₃/Water
  • The above resins may be combined. For example, methyl and ethyl methacrylate may be combined to allow positive or negative working resists. In the case of methyl methacrylate/ethyl methacrylate combinations, plasticizers such as triethylene glycol would produce a negative working resist in ethanol pattern generating solvent.
  • The following examples illustrate the paste formulation which have been demonstrated for use in the method for fabricating the plasma display according to the invention.
  • Examples 2 and 3 Aqueous Diffusion Patterning
  • A calcium zinc silicate glass was formulated with a cellulosic vehicle and 3% butyl benzyl phthalate. A film of each paste was screen printed onto an alumina substrate and dried at 95°-100°C. A patterning paste containing 7 g alumina, 3.5 g Tergitol® TMN-6, 3.15 g of terpineol isomers and 0.35 g ethyl cellulose was screen printed onto the dried dielectric paste layers and heated at 95°-100°C to dry the overprinted paste and to effect diffusion of the Tergitol detergent into the underlying dielectric layer. When the dried layer was washed under tap water, six mil vias were clearly resolved. In subsequent tests, it was shown that the use of additional plasticizer in the underlying polymer layer improved resolution still further.
  • It is preferred to carry out the diffusion patterning process to fabricate a partition wall in the plasma display apparatus as described in Examples 2-3. Nevertheless, it can be carried out by other methods, for example by overprinting an aqueous developable polymer with a water incompatible plasticizer to protect the areas underneath, then removing the unplasticized material by aqueous solubilization.

Claims (2)

  1. A plasma display apparatus which comprises a first dielectric substrate; a plurality of first electrodes extending in one direction on the first substrate; a second dielectric substrate; a plurality of second electrodes extending in another direction perpendicular to said one direction on the second substrate; a ridge defining a plurality of pixel areas and being adapted to provide a partition wall and fluorescent materials provided in said pixel areas,
       the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
  2. A process of making a plasma display apparatus, comprising the steps of providing dielectric substrates; forming a plurality of first electrodes on one of said substrates to extend in one direction; forming a plurality of second electrodes on the other substrate to extend in another direction perpendicular to said one direction; forming a ridge on at least one of said substrates to define a plurality of pixel areas; and providing fluorescent materials in said pixel areas, the improvement in which the ridge is fabricated by a diffusion patterning process by which a patterned layer of dielectric and an underlying unpatterned layer of dielectric are applied onto at least one of the substrates and the patterned layer formed with an image of said ridge is diffused into said unpatterned layer.
EP93113249A 1992-08-21 1993-08-19 Process of making a plasma display apparatus Expired - Lifetime EP0586943B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP222413/92 1992-08-21
JP4222413A JPH06267439A (en) 1992-08-21 1992-08-21 Plasma display device and its manufacture

Publications (2)

Publication Number Publication Date
EP0586943A1 true EP0586943A1 (en) 1994-03-16
EP0586943B1 EP0586943B1 (en) 1998-11-04

Family

ID=16781999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93113249A Expired - Lifetime EP0586943B1 (en) 1992-08-21 1993-08-19 Process of making a plasma display apparatus

Country Status (6)

Country Link
EP (1) EP0586943B1 (en)
JP (1) JPH06267439A (en)
KR (1) KR0123793B1 (en)
CN (1) CN1088023A (en)
DE (1) DE69321912T2 (en)
TW (1) TW239208B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613166A1 (en) * 1993-02-26 1994-08-31 E.I. Du Pont De Nemours And Company Method of making plasma display apparatus
EP0730289A2 (en) * 1995-03-01 1996-09-04 E.I. Du Pont De Nemours And Company Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics
US6967352B2 (en) * 1998-03-18 2005-11-22 Seiko Epson Corporation Thin film formation method, display, and color filter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW320732B (en) * 1995-04-20 1997-11-21 Matsushita Electron Co Ltd
KR100320328B1 (en) * 1995-08-25 2002-06-22 아끼구사 나오유끼 Surface Discharge Plasma Display Panel
JP3885246B2 (en) * 1996-01-12 2007-02-21 松下電器産業株式会社 Plasma display panel
KR100197131B1 (en) * 1996-05-22 1999-06-15 김영환 Plasma display panel and manufacturing method thereof
JP2000133197A (en) 1998-10-30 2000-05-12 Applied Materials Inc Ion implanting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382260A2 (en) * 1989-02-10 1990-08-16 Dai Nippon Insatsu Kabushiki Kaisha Plasma display panel and method of manufacturing same
WO1991006118A1 (en) * 1989-10-20 1991-05-02 E.I. Du Pont De Nemours And Company Non-photographic method for patterning organic polymer films
US5037723A (en) * 1988-09-14 1991-08-06 Samsung Electron Device Co., Ltd. Method of manufacturing a plasma display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037723A (en) * 1988-09-14 1991-08-06 Samsung Electron Device Co., Ltd. Method of manufacturing a plasma display panel
EP0382260A2 (en) * 1989-02-10 1990-08-16 Dai Nippon Insatsu Kabushiki Kaisha Plasma display panel and method of manufacturing same
WO1991006118A1 (en) * 1989-10-20 1991-05-02 E.I. Du Pont De Nemours And Company Non-photographic method for patterning organic polymer films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613166A1 (en) * 1993-02-26 1994-08-31 E.I. Du Pont De Nemours And Company Method of making plasma display apparatus
US5385631A (en) * 1993-02-26 1995-01-31 E. I. Du Pont De Nemours And Company Method of making plasma display apparatus
EP0730289A2 (en) * 1995-03-01 1996-09-04 E.I. Du Pont De Nemours And Company Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics
EP0730289A3 (en) * 1995-03-01 1998-09-02 E.I. Du Pont De Nemours And Company Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics
US6967352B2 (en) * 1998-03-18 2005-11-22 Seiko Epson Corporation Thin film formation method, display, and color filter

Also Published As

Publication number Publication date
KR940005195A (en) 1994-03-16
DE69321912D1 (en) 1998-12-10
DE69321912T2 (en) 1999-03-25
TW239208B (en) 1995-01-21
JPH06267439A (en) 1994-09-22
EP0586943B1 (en) 1998-11-04
KR0123793B1 (en) 1997-12-01
CN1088023A (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US5674634A (en) Insulator composition, green tape, and method for forming plasma display apparatus barrier-rib
EP0497896B1 (en) Non-photographic method for patterning organic polymer films
EP0613166B1 (en) Method of making plasma display apparatus
EP0830705A1 (en) Flat-panel display
EP0784333B1 (en) Gas discharging type display panel and manufacturing method thereof
EP0586943B1 (en) Process of making a plasma display apparatus
US5906527A (en) Method of making plasma display panels
EP1295518B1 (en) Process for thick film circuit patterning
EP0722179A2 (en) Insulator composition, green tape, and method for forming plasma display apparatus barrier-rib
US5635334A (en) Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics
JPH0745200A (en) Plasma display panel
EP0742572A2 (en) Method of making plasma display apparatus
EP1045420B1 (en) Process for the manufacture of a plasma panel
EP0893813A2 (en) Composite and method for forming plasma display apparatus barrier rib
JPH0721916A (en) Manufacture of plasma display device or multilayer thick film circuit
JP3619605B2 (en) Pattern forming material, thick film pattern forming method, and plasma display panel
DE602005004708T2 (en) Process for the preparation of plasma display panels
US6890232B2 (en) Method of fabricating rear plate in plasma display panel
Kim et al. 32.2: Development of PDP Rear Panel by Etching Technology
JPH03263731A (en) Manufacture of color display device
CN1153958A (en) Process for making plasma display apparatus with pixel ridges made of diffusion patterned dielectrics
KR100526697B1 (en) Partition Wall of Plasma Display Device and Formation Method
JPH11195375A (en) Manufacture of plasma display panel
JPH10162724A (en) Manufacture of plasma display panel
JPH09161676A (en) Manufacture of gas discharge panel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940506

17Q First examination report despatched

Effective date: 19950714

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APBJ Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOS IRAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69321912

Country of ref document: DE

Date of ref document: 19981210

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060817

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080818

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080827

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090819

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090819