EP0583326B1 - Plant for incinerating explosive substances - Google Patents

Plant for incinerating explosive substances Download PDF

Info

Publication number
EP0583326B1
EP0583326B1 EP92909866A EP92909866A EP0583326B1 EP 0583326 B1 EP0583326 B1 EP 0583326B1 EP 92909866 A EP92909866 A EP 92909866A EP 92909866 A EP92909866 A EP 92909866A EP 0583326 B1 EP0583326 B1 EP 0583326B1
Authority
EP
European Patent Office
Prior art keywords
reactor
deflagration
installation
explosives
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92909866A
Other languages
German (de)
French (fr)
Other versions
EP0583326A1 (en
Inventor
Walter Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bowas Induplan Chemie GmbH
Original Assignee
Bowas Induplan Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowas Induplan Chemie GmbH filed Critical Bowas Induplan Chemie GmbH
Publication of EP0583326A1 publication Critical patent/EP0583326A1/en
Application granted granted Critical
Publication of EP0583326B1 publication Critical patent/EP0583326B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/448Waste feed arrangements in which the waste is fed in containers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/06Dismantling fuzes, cartridges, projectiles, missiles, rockets or bombs
    • F42B33/067Dismantling fuzes, cartridges, projectiles, missiles, rockets or bombs by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • F23G2201/101Drying by heat using indirect heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/105Combustion in two or more stages with waste supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/16Warfare materials, e.g. ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/54001Hearths or supports movable into and from the furnace, e.g. by a conveyor

Definitions

  • the present invention relates to a plant for burning off explosives, with a burn-up reactor, with a cleaning device downstream of the burn-up reactor for the reaction products formed during the burn-up, and with a conveyor device running inside and outside the reactor with a multiplicity of burn-off carriers which loaded with the explosives outside the reactor, then transported through an entrance area into the reactor to an ignition device for the explosives and from there through a burning area inside the reactor and then leaving the reactor again through an exit area.
  • Such systems are known and are used for the disposal of objects with explosive or explosive substances, e.g. Ammunition, missiles, pyrotechnic kits, etc., especially from the military sector.
  • the reasons for disposal lie either in the fact that the objects mentioned have reached a certain age, from which the guaranteed properties guaranteed in the manufacture of the explosive or explosive substances and required for their use can no longer be guaranteed, or because, for example, weapon systems have further developed and the ammunition already produced and stored for these weapon systems can no longer be used for their intended use.
  • explosives are referred to as "explosives". These are generally understood to mean solid, liquid and gelatinous substances and mixtures of substances which are produced for the purpose of blowing up or blowing up. However, in the present case, the term explosives also includes those substances that have not been produced for the purpose of detonating or shooting, for example, organic peroxides as catalysts, gas release agents for today's foam and plastic technology, some pesticides and much more
  • Thermit which is understood to mean mixtures of aluminum and iron oxide, which convert to aluminum oxide and iron with strong heat development. This heat development is used, for example, for rail welding.
  • Explosives can be present in the form of bulk goods of any grain size, buildup, in the form of bodies with defined dimensions (e.g. compacts) or as filler in hollow bodies.
  • bodies with defined dimensions e.g. compacts
  • Explosives can serve as a guide for the substance groups to be understood under the term "explosives”.
  • GB-A 1 376 763 describes a device with which objects are connected or hardened by means of an explosion. It is proposed to design the device in the form of a container made of metal, in which the blasting manufacture or processing takes place, and to cover it with earth and / or concrete. This is intended to protect the environment in particular from the noise that occurs, but also from other consequences of the explosions. This known device is neither designed for burning off explosives nor for continuous operation. Devices to ensure emission protection are not provided in this previously known device.
  • the known systems for burning off explosives mentioned at the outset provide - mostly - in a traditionally known manner completely in the open, or else - such as that in EP-A-0 349 865 (corresponds to DE-OS 38 22 648 ) described system - in a security building, which receives the character of an open fire place due to its construction with a partially open discharge wall.
  • Personal security is at the known systems of the first type guaranteed by simple earth protection walls, which surround the burning line or at least shield in the direction of personnel present, or in a system according to EP-A-0 349 865 by a fixed wall of a security building, for example, the burning area of the Separates the loading area.
  • the burning reactor has a substantially closed body and the entrance area and the exit area of the burning reactor each have a passage for the means of conveyance into the burning area -Reactor on or have emerging Abbrandisme, and that the burn-up reactor is arranged entirely within a substantially splinter and explosion-proof and accessible at two ends tunnel.
  • the advantages of this invention are, in particular, that the combustion reactor and the splinter and explosion-proof tunnel form a closed combustion system in which the gaseous components of the reaction products formed during the combustion are collected and released into the ambient air after reduction of the pollutants and the liquid and / or solid reaction products are processed into environmentally compatible materials that can be landfilled, while at the same time a personal safety that complies with the legal regulations is guaranteed when the combustion is carried out. It is particularly advantageous here that the requirements of the 17th BImSchV and the emission limit values of the TA-Luft can be complied with while at the same time ensuring personal safety in accordance with the statutory and professional association regulations.
  • the tunnel is preferably formed from a pipe and a sand covering of the pipe, a further development which primarily concerns personal safety in the event of an (unwanted) detonation of the explosive when it burns.
  • the burn-off reactor - starting from the detonation source - is broken down into fragments which penetrate the tunnel tube at a very high speed before the detonation shock wave and, depending on the intensity of the detonation, also break it down.
  • the sand covering surrounding the tunnel pipe has two tasks: on the one hand, the sand covering serves to collect the splinters of the burning reactor and, if necessary, the splinters of the tunnel pipe.
  • the sand cover will collapse and cover the source of the burn if the tunnel tube also disassembles. Due to the sand covering and encompassing the tunnel tube, on the one hand an extremely flexible, since not rigidly insulating, and on the other hand, an extremely safe and effective protective jacket that simultaneously extinguishes a fire that arises during the detonation is formed.
  • the tunnel tube is preferably composed of oval steel tube profiles.
  • the advantages of this oval shape are, in particular, that these profiles are generally commercially available and that walk-through inspection passages are formed on the two long sides of the burn-up reactor.
  • the burn-up reactor has a substantially rectangular shape, elongated in the direction of transport of the conveyor, and according to the other preferred development it is provided that the fuselage of the burning reactor consists of metal profiles.
  • metal profiles it is advantageous that when the explosives detonate, they break down into defined fragments in a relatively defined manner, which require less sand covering for braking than would be required with a heavier construction of the combustion reactor.
  • the fuselage of the burn-up reactor can be made from profiles of other materials, e.g. Plastic.
  • Another advantage of the construction of metal profiles is that the burn-up reactor can thus be prefabricated inexpensively outside the tunnel tube and built inside the tunnel tube.
  • the inside walls of the fuselage reactor are preferably lined with temperature-resistant fiber material.
  • the fiber material primarily serves to collect the very large temperature difference that occurs when explosives are burned off in the burning reactor.
  • the temperature in the combustion reactor rises - starting from the combustion source - in its surroundings and especially above the combustion range within a few seconds to 2000 to 3000 ° C, since the chemical decomposition reaction of explosives is a highly exothermic process acts.
  • the temperature-resistant fiber material is arranged to intercept the heat radiation which arises and in particular to keep it away from the metal profiles of the burn-up reactor. Rock wool is preferably used here.
  • the burn-off reactor preferably has an air suction device with at least one feed nozzle arranged in the inlet area of the burn-up reactor and at least one suction nozzle arranged in the outlet area.
  • the entrance area is separated from the burning area by a lockable blind, the slats of which are in particular individually, i.e. are independently adjustable.
  • the venetian blind achieves several important advantages in connection with the air flow passing through the burn-up reactor: On the one hand, the venetian blind can be used to set an advantageous direction of flow through the burn-up reactor, which should be designed so that the fresh air supplied is on the one hand as quick as possible mixed with the resulting hot exhaust gases and thereby cooling the exhaust gases and oxidizing the reaction products which have not yet been completely burnt, but on the other hand avoiding whirling up of the explosives located in the combustion carriers.
  • the level of the main air flow through the burning reactor can be varied from an upper region to a middle region to a lower region.
  • a certain vacuum can be set in the burn-up reactor with the help of the blind at a certain volume flow. This negative pressure ensures that the gaseous reaction products only leave the burn-off reactor via the air suction device. This results in the economically significant advantage that the burn-up reactor may generally be leaky, which enables less expensive production.
  • the entrance area and the exit area each have a passage for those entering or leaving the combustion reactor by means of the conveying device Abbrandani, these passages are designed according to a development such that they are sealed off essentially airtight by the Abbrandani passing in the transport direction. These measures thus have an advantageous effect on the generation of a continuous and controllable air flow from the input area via the burn-off area to the output area of the burn-off reactor.
  • a spark flap is arranged in the area of the transition from the entrance area to the burning area at the end of the entrance passage. This is preferably designed to be rebound-damped and prevents sparks from being transported from the explosives currently burning in the burning area to the explosives still located on the burning supports in the area of the entrance passage.
  • a particularly preferred embodiment of the conveying device and the associated plurality of erosion carriers is that the erosion carriers are designed as mobile carriages which have a trough for receiving the explosives to be burned off.
  • the erosion carriers can be designed in the manner of "lorries" which - in accordance with a preferred development of the invention which has already been explained above - the entrance or exit passages during their passage essentially, i.e. Seal airtight except for a defined residual air flow. This residual air flow passes through the undercarriage area of the combustion carrier into the combustion reactor and, on the one hand, cools the troughs containing the explosives and, on the other hand, cleans the roadway on which the combustion carriers roll through the combustion reactor.
  • the sand covering covering the tunnel tube is preferably supported laterally by solid walls, one of these fixed walls being separated from a loading area parallel to the tunnel for loading the erosion carriers with explosives.
  • the conveyor device can thus include a rotating rail for the mobile wagons, which runs through the loading area, leads to the burn-up reactor and subsequently reconnects the end of the exit passage with the loading area.
  • a cleaning device for the gaseous reaction products formed during the burning is connected downstream of the burning reactor or the suction port of the air suction device.
  • the cleaning device particularly preferably contains washing stages which separate the pollutants occurring in all aggregate states from the exhaust gas.
  • the cleaning device can also contain thermal pollutant reduction stages or, alternatively or cumulatively, biological pollutant reduction stages.
  • Figure 1 shows a burn-off reactor 1 of a plant for burning off explosives, which is arranged within an essentially splinter and explosion-proof tunnel 2.
  • This tunnel 2 consists of an oval tubular steel profile Compound tube 4 and a tube cover 4 covering the sand 4, which in turn is supported laterally by solid walls 12, 13 and is covered by an upper cover 25.
  • the burn-up reactor 1 stands inside the tunnel pipe 4 on a concrete floor 23 and has a height of approximately 3 m, while the tunnel pipe 4 above the concrete floor 23 has a clear height of approximately 4 m.
  • a charging area 14 for charging burn-off carriers 16 with explosives to be burned off, which is separated from the tunnel 2 by a fixed wall 13.
  • the tunnel tube 4, the sand cover 6 and the fixed wall 13 ensure the personal safety required when operating a plant for burning off explosives.
  • the processes taking place in this regard in the event of an (unwanted) detonation of the explosives which are actually to be burned off will be explained below.
  • the loading area 14 is connected by means of a conveyor 11 (only partially shown in this figure) to the tunnel 2 or the combustion reactor 1 arranged therein and forms an endless transport route, in particular oval, on which the combustion carriers 16 belonging to the conveyor 11 emulate
  • the feed area 14 first passes through the input area 3 of the burn-up reactor 1, then through the burn-off area 7 and then through the output area 5 of the burn-off reactor 1 and is then fed back to the feed area 14 (FIGS. 2, 4).
  • the reactor 1 has a substantially rectangular shape which is elongated in the transport direction of the conveying device 11 (FIG. 4) and the body of the reactor 1 is constructed from metal profiles 8.
  • the fuselage inner walls of the combustion reactor 1 are lined with rock wool 10 to protect the metal profiles 8 against the very high temperatures (up to 3000 ° C.) that occur when explosives are burned off.
  • the burn-off reactor 1 also has an inlet 26, the inlet area 3 already mentioned above, the burn-off area 7 and also the outlet area 5 and an outlet 27 (FIG. 4).
  • the burn-up reactor 1 rests on the concrete floor 23 within the tunnel tube 4.
  • Fig. 2 and Fig. 5 show a plan and a side view of the tunnel 2 with the sand cover 6, wherein the burn-up reactor 1 is not shown here.
  • the illustration shows the essentially rectangular and elongated shape of the tunnel 2 as a whole.
  • the input area 3, the burn-off area 7 and the output area 5 of the burn-off reactor 1, not shown, are indicated by the reference numerals in brackets.
  • FIG. 3 shows a cross section of the burn-up reactor 1, enlarged compared to FIG. 1, at the level of an ignition device.
  • a combustion carrier in the form of a mobile carriage 16 is shown within the combustion reactor 1 and has a chassis 15 which can be moved on wheels 28 and a trough 21 arranged thereon for receiving the explosives to be burned off.
  • a partition 24 can also be seen behind the tub 21, which is arranged vertically behind the tub 21 on the chassis 15 of the cart when looking in the transport direction of the cart 16.
  • a burner 22 of the igniter by means of which the explosives are ignited, are arranged to the right and left of the carriage 16.
  • the combustion carriers or carriages 16 are guided by a guide device 29 belonging to the conveying device 11 and corresponding guide rails 33, or else are driven by these components.
  • a suction nozzle 19 of an air suction device which is arranged in the exit region 5 of the burning reactor 1, can be seen, the function of which will be explained in more detail with reference to FIG. 4.
  • FIG. 4 shows a longitudinal section through the burn-up reactor 1, which is traversed by a large number of burn-up carriers or carriages 16, which have already been described above and which carry the explosives to be burned off from the charging area 14 to the burn-up reactor 1 or the residues generated during the burn-up Transport out for further disposal.
  • the wagons 16 loaded with explosives move through the entrance passage 9 of the entrance area 3 into the burning reactor 1 and are fed to the burning area 7 one after the other.
  • a spark flap 17 is arranged in the area of the transition from the entrance area 3 to the burning area 7 at the end of the entrance passage 9, which is damped to prevent further spark formation.
  • further air flaps can be provided in the side walls of the burning reactor 1, which allow the temperature of the air flow to be regulated.
  • the carriages 16 are slowly transported from the position of the burner 22 in the direction of transport with the burning explosives, so that the explosives are burnt completely within the burning reactor 1.
  • the duration of such a burn is on average in the range of seconds to minutes.
  • the carriages 16 leave the burn-up reactor 1 through the exit passage 9 'belonging to the exit area, which - like the entrance passage 9 - is sealed off essentially airtight by the construction of the carriages 16 (in particular partition wall 24). Similar to the entrance passage 9, only a small but wanted portion of fresh air reaches the burning area 7 in the direction of the arrows 31 through the exit passage 9 '.
  • the above-mentioned air suction device of the burning reactor 1 contains in the input area 3 of the reactor 1 supply ports 18 arranged on both sides (of which the intake grille of the one supply port is shown here) and a suction port arranged centrally in the output area 5 of the reactor 1 19.
  • This suction connection 19 is followed - not shown here - by a cleaning device for the reaction products formed during the combustion.
  • this cleaning device contains washing stages for the elimination of the pollutants occurring in all aggregate states from the exhaust gas and, alternatively or cumulatively, thermal or biological pollutant reduction stages.
  • the air sucked in through the feed pipe 18 and sucked out through the suction pipe 19 in the direction of the arrows 32 has essentially three functions. On the one hand, it ensures the quantitative transport of the gaseous reaction products and the aerosols contained therein into the scrubbing stage for flue gas scrubbing. On the other hand, the air is required to limit the inlet temperature in the washing stage, which preferably contains a venturi scrubber, to a maximum value of approximately 300 ° C. This is particularly important, particularly in view of the background already described at the beginning in connection with the lining of the burning reactor 1, that the explosives burn off at temperatures of up to 3000 ° C.
  • the third function of the air sucked in or out within the reactor 1 is that it should set oxidizing conditions within the burn-up reactor 1 so that the proportion of non-oxidized substances which arise during the burn-up is kept as low as possible. This air thus serves to supplement the combustion by residual combustion of the inadequately or insufficiently oxidized substances and thus an increase in emissions reduction.
  • the air flow (arrows 32) directed from the feed connector 18 to the suction connector 19 can be adjusted to a defined value in the flow direction and air volume by the adjustable blind 20, which can be locked with respect to its slat position.
  • the washing stages of the cleaning device can also include one or more wet washers in addition to the venturi washer already mentioned.
  • the venturi scrubber has the task of reducing the exhaust gases, which are around 300 ° C, to a cooling limit temperature to cool and separate most of the aerosols, such as soot, metal compounds, phosphorus pentoxide, etc. (depending on the exhaust gas composition, other pollutants such as HCL, HF and, due to the then low pH value, also alkaline pollutants such as eg ammonia, separated).
  • One of the wet scrubbers can be provided for the acidic portions of the exhaust gases (in particular HCL, HF and NH 3 ) and one for the basic portions of the exhaust gases. While the acid scrubber is designed as a spray scrubber in the countercurrent principle, the basic scrubber works in the cocurrent principle at a pH of approx. 9. Weaker acids such as SO 2 , H 2 S and HCN are absorbed in the basic scrubber.
  • the protective function of the combustion system to maintain personal safety in the event of an (unwanted) detonation of the explosive is described below with reference to FIG. 1.
  • the burn-up reactor 1 is broken down into fragments which fly through the tunnel steel tube 4 at a very high speed and, if appropriate, also break it down.
  • the splinters of the burn-up reactor 1 and the tunnel steel tube 4 are caught by the sand cover 6, the sand cover 6 covering the detonation hearth when the tunnel steel tube 4 is dismantled and extinguishing a fire to be expected with the sand.
  • the above-described plant for burning off explosives makes a significant contribution to environmentally friendly emission reduction with simultaneous full maintenance of personal safety at a processing volume of 1000 to 1500 kg per hour.
  • the expected contaminants hydrogen chloride, phosphorus, sulfur oxides, hydrocyanic acid and nitrogen oxides are bound and disposed of in the system described.
  • the design of the system basically enables the disposal of all accruing pollutants for which cleaning systems or methods are or will be economically and technically feasible in the future or in the future.
  • the presented combustion system enables all of them to be connected Cleaning devices without changing the core of the combustion plant, namely the combustion reactor 1 arranged within the essentially splinter and explosion-proof tunnel 2.

Abstract

A plant for incerating explosive substances has an incineration reactor (1) and a conveyor device (11) with a plurality of incineration trays (16) which travels, preferably circulates, inside and outside the reactor. The incineration trays (16) are charged outside the incineration reactor (1) with the explosive substances to be burned, conveyed into the reactor to an ignition device (burner (22)) for igniting the explosive substances and conveyed further inside the reactor, together with the explosive substances being burned, and finally emerge from the reactor when combustion is complete. The emission from the incineration of explosive substances can be substantially reduced under conditions of complete personal safety by installing the incineration reactor (1) inside a shatterproof, explosion-proof tunnel (2).

Description

Die vorliegende Erfindung betrifft eine Anlage zum Abbrennen von Explosivstoffen, mit einem Abbrenn-Reaktor, mit einer dem Abbrenn-Reaktor nachgeschalteten Reinigungsvorrichtung für die beim Abbrand entstehenden Reaktionsprodukte, und mit einer inner- und außerhalb des Reaktors verlaufenden Fördereinrichtung mit einer Vielzahl von Abbrandträgern, die außerhalb des Reaktors mit den Explosivstoffen beladen, sodann durch einen Eingangsbereich in den Reaktor hinein zu einer Anzündvorrichtung für die Explosivstoffe und von dieser durch einen Abbrennbereich innerhalb des Reaktors hindurch transportiert werden und danach den Reaktor durch einen Ausgangsbereich wieder verlassen.The present invention relates to a plant for burning off explosives, with a burn-up reactor, with a cleaning device downstream of the burn-up reactor for the reaction products formed during the burn-up, and with a conveyor device running inside and outside the reactor with a multiplicity of burn-off carriers which loaded with the explosives outside the reactor, then transported through an entrance area into the reactor to an ignition device for the explosives and from there through a burning area inside the reactor and then leaving the reactor again through an exit area.

Derartige Anlagen sind bekannt und dienen der Entsorgung von Gegenständen mit explosionsgefährlichen oder explosionsfähigen Stoffen, z.B. Munition, Raketen, pyrotechnische Sätze u.s.w., insbesondere aus dem militärischen Bereich. Die Gründe für eine Entsorgung liegen entweder darin, daß die genannten Gegenstände ein bestimmtes Alter erreicht haben, ab dem die bei der Herstellung der explosionsgefählichen bzw. explosionsfähigen Stoffe zugesicherten und bei deren Verwendung erforderlichen definierten Eigenschaften nicht mehr garantiert werden können oder aber weil sich beispielsweise Waffensysteme fortentwickelt haben und die für diese Waffensysteme bereits produzierte und eingelagerte Munition ihrer bestimmungsgemäßen Verwendung nicht mehr zugeführt werden kann.Such systems are known and are used for the disposal of objects with explosive or explosive substances, e.g. Ammunition, missiles, pyrotechnic kits, etc., especially from the military sector. The reasons for disposal lie either in the fact that the objects mentioned have reached a certain age, from which the guaranteed properties guaranteed in the manufacture of the explosive or explosive substances and required for their use can no longer be guaranteed, or because, for example, weapon systems have further developed and the ammunition already produced and stored for these weapon systems can no longer be used for their intended use.

Im folgenden werden die genannten explosionsgefährlichen bzw. explosionsfähigen Stoffe mit dem Begriff "Explosivstoffe" bezeichnet. Hierunter versteht man im allgemeinen feste, flüssige und gelatinöse Stoffe und Stoffgemische, die zum Zweck des Sprengens oder Treibens hergestellt werden. Jedoch werden vorliegend unter dem Begriff der Explosivstoffe auch solche Stoffe zusemmengefaßt, die nicht zum Zweck des Sprengens oder Schießens hergestellt worden sind, z.B, organische Peroxide als Katalysatoren, Gasentbindungsmittel für die heutige Schaum- und Kunststofftechnik, manche Schädlingsbekämpfungsmittel u.v.m.In the following, the explosive or explosive substances mentioned are referred to as "explosives". These are generally understood to mean solid, liquid and gelatinous substances and mixtures of substances which are produced for the purpose of blowing up or blowing up. However, in the present case, the term explosives also includes those substances that have not been produced for the purpose of detonating or shooting, for example, organic peroxides as catalysts, gas release agents for today's foam and plastic technology, some pesticides and much more

Dazu gehört z.B. auch das allgemein bekannte Gemisch "Thermit", worunter Mischungen aus Aluminium und Eisenoxid verstanden werden, die sich unter starker Wärmeentwicklung zu Aluminiumoxid und zu Eisen umsetzen. Diese Wärmeentwicklung wird beispielsweise zum Schienenschweißen verwendet.This includes e.g. also the generally known mixture "Thermit", which is understood to mean mixtures of aluminum and iron oxide, which convert to aluminum oxide and iron with strong heat development. This heat development is used, for example, for rail welding.

Explosivstoffe können sowohl in Form von Schüttgütern beliebiger Korngrößen, Anhaftungen, in Form von Körpern mit definierten Abmessungen (z.B. Preßlinge) oder aber auch als Füllmasse in Hohlkörpern vorliegen. Als Anhalt der unter dem Begriff "Explosivstoffe" zu verstehenden Stoffgruppen kann die Auflistung in Rudolf Meyer "Explosivstoffe", 6. Auflage, Seite 127 ff. dienen.Explosives can be present in the form of bulk goods of any grain size, buildup, in the form of bodies with defined dimensions (e.g. compacts) or as filler in hollow bodies. The list in Rudolf Meyer "Explosivstoffe", 6th edition, page 127 ff. Can serve as a guide for the substance groups to be understood under the term "explosives".

Die Entsorgung von Explosivstoffen erfolgt aufgrund der mit ihrer Handhabung verbundenen Unsicherheiten für Personal und umgebendes Material weltweit durch sogenanntes Abbrennen oder durch Sprengung jener Stoffe. Von "Abbrennen" wird gesprochen, da praktisch alle Explosivstoffe, die in größeren Massen vorhanden sind, nach Einleitung der chemischen Zerfallreaktionen ohne Zugabe eines weiteren Reakzionspartners, insbesondere ohne den sonst bei einer "Verbrennung" üblichen Luftsauerstoff, weiterreagieren. Während das Abbrennen von Explosivstoffen die verhältnismäßig langsam verlaufende "Deflagration" der Explosivstoffe bei einer Abbrandgeschwindigkeit von unter 100 m pro Sekunde zum Ziel hat, wird ein Sprengen von Explosivstoffen in aller Regel eine mit einer relativ hohen Abbrandgeschwindigkeit von 1000 bis 9000 m pro Sekunde ablaufende und von einer Stoßwelle begleitete "Detonation" der Explosivstoffe zur Folge haben. Beide Begriffe, Deflagration und Detonation werden nachfolgend auch unter dem Begriff "Explosion" zusammengefaßt.Due to the uncertainties associated with their handling for personnel and surrounding material, explosives are disposed of worldwide by so-called burning or by explosion of those substances. The term "burning off" is used because practically all explosives which are present in large quantities continue to react after the chemical decomposition reactions have been initiated without the addition of a further reaction partner, in particular without the atmospheric oxygen which is otherwise customary in the case of "combustion". While the burning off of explosives is aimed at the relatively slow "deflagration" of the explosives at a burning rate of less than 100 m per second, an explosive detonation is usually one with a relatively high burning rate of 1000 to 9000 m per second and "Detonation" of the explosives accompanied by a shock wave. Both terms, deflagration and detonation are also summarized below under the term "explosion".

In der GB-A 1 376 763 ist eine Vorrichtung beschrieben, mit der Gegenstände mittels einer Explosion verbunden oder gehärtet werden. Es wird vorgeschlagen, die Vorrichtung in Form eines Behälters aus Metall, in welchem die Spreng-Herstellung bzw. -Bearbeitung stattfindet, auszubilden und mit Erde und/ oder Beton zu bedecken. Dadurch soll insbesondere die Umgebung vor dem auftretenden Krach aber auch vor sonstigen Folgen der Explosionen geschützt werden. Diese bekannte Vorrichtung ist weder zum Abbrennen von Explosivstoffen noch für einen kontinuierlichen Durchlaufbetrieb ausgelegt. Einrichtungen zur Gewährleistung eines Emissionsschutzes sind bei dieser vorbekannten Vorrichtung nicht vorgesehen.GB-A 1 376 763 describes a device with which objects are connected or hardened by means of an explosion. It is proposed to design the device in the form of a container made of metal, in which the blasting manufacture or processing takes place, and to cover it with earth and / or concrete. This is intended to protect the environment in particular from the noise that occurs, but also from other consequences of the explosions. This known device is neither designed for burning off explosives nor for continuous operation. Devices to ensure emission protection are not provided in this previously known device.

Erdüberdeckte Gebäude sind ebenfalls aus der Unfallverhütungsvorschrift 55a "Explosivstoffe und Gegenstände mit Explosivstoff - Allgemeine Vorschrift" bekannt. Besondere Maßnahmen zum Emissionsschutz sind auch hier nicht erwähnt.Buildings covered by the ground are also known from the accident prevention regulation 55a "Explosives and objects with explosives - General regulation". Special measures for emission protection are not mentioned here either.

Die eingangs genannten bekannten Anlagen zum Abbrennen von Explosivstoffen sehen - überwiegend - in traditionell bekannter Art und Weise ein Abbrennen völlig im Freien vor, oder aber - wie beispielsweise die in der EP-A-0 349 865 (entspricht der DE-OS 38 22 648) beschriebene Anlage - in einem Sicherheits-Gebäude, welches durch seine Bauweise mit einer teiloffenen Ausblasewand den Charakter eines offenen Brandplatzes erhält. Die Personensicherheit wird bei den bekannten Anlagen ersterer Art durch einfache Erdschutzwälle gewährleistet, welche die Abbrennszeile umgeben oder zumindest in Richtung auf anwesendes Personal abschirmt, oder aber bei einer Anlage gemäß der EP-A-0 349 865 durch eine feste Wand eines Sicherheitsgebäudes, die beispielsweise den Abbrennbereich von dem Beschickungsbereich trennt.The known systems for burning off explosives mentioned at the outset provide - mostly - in a traditionally known manner completely in the open, or else - such as that in EP-A-0 349 865 (corresponds to DE-OS 38 22 648 ) described system - in a security building, which receives the character of an open fire place due to its construction with a partially open discharge wall. Personal security is at the known systems of the first type guaranteed by simple earth protection walls, which surround the burning line or at least shield in the direction of personnel present, or in a system according to EP-A-0 349 865 by a fixed wall of a security building, for example, the burning area of the Separates the loading area.

Der Nachteil der bekannten Anlagen zum Abbrennen von Explosivstoffen der eingangs genannten Art besteht insbesondere darin, daß zwar die Personensicherheit gewährleistet ist jedoch aufgrund der offenen bzw. - im Falle der EP-A-0 349 865 - teiloffenen Bauweise eine Emissionsminderung gar nicht oder nur in unzureichendem Maße stattfindet. Explosivstoffe reagieren nämlich bei ihrer Zerfallreaktion zu einem großen Anteil zu gasförmigen Reaktionsprodukren oder auch zu festen Stoffen, die als Abbrandrückstände (Asche) und/oder als Aerosole in den entstehenden gasförmigen Stoffen enthalten sind. Diese Stoffe werden bei den bekannten Anlagen der eingangs genannten Art entweder gar nicht oder nur in ungenügender Weise aufgefangen, da die Voraussetzung für ein derartiges Erfassen der freiwerdenden Schadstoffe, nämlich ein geschlossener Raum mit einer entsprechenden Auffangvorrichtung aufgrund der mit einem derartigen geschlossenen Raum verbundenen Gefahren bei einer (ungewollten) Detonation der Explosivstoffe gemäß dem bisher zur Verfügung stehenden Fachwissem ausgeschlossen scheint.The disadvantage of the known systems for burning off explosives of the type mentioned at the outset is, in particular, that personal safety is guaranteed, however, due to the open or - in the case of EP-A-0 349 865 - partially open construction, emission reduction is not possible at all or only insufficiently takes place. In their decay reaction, explosives react to a large extent to gaseous reaction products or also to solid substances which are contained in the resulting gaseous substances as combustion residues (ashes) and / or as aerosols. These substances are either not at all or only insufficiently collected in the known systems of the type mentioned at the outset, since the prerequisite for such a detection of the released pollutants, namely a closed room with a corresponding collecting device due to the dangers associated with such a closed room an (unwanted) detonation of the explosives seems impossible according to the previously available specialist knowledge.

Aufgebe der vorliegenden Erfindung ist es, eine Anlage zum Abbrennen von Explosivstoffen der eingangs genannten Art derart auszubilden, daß ein im wesentlichen vollständiger Emissionsschutz unter gleichzeitigem Erhalt voller Personensicherheit gewährleistet ist. Dieser Aufgabe liegen die durch die vierte Bundes-Immissionsschutzverordnung (4. BImSchV), die Explosivstoff-Vernichte-Richtlinien der Berufsgenossenschaft der chemischen Industrie sowie durch die Unfallverhütungsvorschrift "46a Explosivstoffe und Gegenstände mit Explosivstoff - Allgemeine Vorschrift - (VBG 55a)" getroffenen Richtlinien bzw. Vorschriften zugrunde.It is the object of the present invention to design a plant for burning off explosives of the type mentioned at the outset in such a way that essentially complete emission protection is ensured while at the same time maintaining full personal safety. This task is the responsibility of the fourth federal immission control ordinance (4th BImSchV), the explosive destruction guidelines of the professional association of the chemical industry as well as the accident prevention regulation "46a explosives and objects with explosives - general regulation - (VBG 55a)" Based on regulations.

Diese Aufgabe wird bei einer Anlage zum Abbrennen von Explosivstoffen der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Abbrenn-Reaktor einen im wesentlichen geschlossenen Rumpf aufweist und der Eingangsbereich und der Ausgangsbereich des Abbrenn-Reaktors jeweils eine Passage für die mittels der Fördereinrichtung in den Abbrenn-Reaktor einbzw. austretenden Abbrandträger besitzen, und daß der Abbrenn-Reaktor vollständig innerhalb eines im wesentlichen splitter- und explosionsfesten und an zwei Enden zugänglichen Tunnels angeordnet ist.This object is achieved according to the invention in a system for burning off explosives of the type mentioned at the outset in that the burning reactor has a substantially closed body and the entrance area and the exit area of the burning reactor each have a passage for the means of conveyance into the burning area -Reactor on or have emerging Abbrandträger, and that the burn-up reactor is arranged entirely within a substantially splinter and explosion-proof and accessible at two ends tunnel.

Die Vorteile dieser Erfindung liegen insbesondere darin, daß der Abbrenn-Reaktor und der splitter- und explosionsfeste Tunnel eine geschlossene Abbrenn-Anlage bilden, in der die beim Abbrand entstehenden gasförmigen Komponenten der Reaktionsprodukte aufgefangen und nach Minderung der Schadstoffe in die Umgebungsluft abgegeben und die flüssigen und/oder festen Reaktionsprodukte in umweltverträgliche deponiefähige Stoffe aufbereitet werden, während bei Durchführung des Abbrands gleichzeizig ständig eine den gesetzlichen Regelungen entsprechende Personensicherheit gewährleistet ist. Hierbei ist es von besonderem Vorteil, daß die Auflagen der 17. BImSchV bzw. die Emissionsgrenzwerte der TA-Luft bei gleichzeitiger Personensicherheit entsprechend den gesetzlichen und berufsgenossenschaftlichen Regelungen eingehalten werden können.The advantages of this invention are, in particular, that the combustion reactor and the splinter and explosion-proof tunnel form a closed combustion system in which the gaseous components of the reaction products formed during the combustion are collected and released into the ambient air after reduction of the pollutants and the liquid and / or solid reaction products are processed into environmentally compatible materials that can be landfilled, while at the same time a personal safety that complies with the legal regulations is guaranteed when the combustion is carried out. It is particularly advantageous here that the requirements of the 17th BImSchV and the emission limit values of the TA-Luft can be complied with while at the same time ensuring personal safety in accordance with the statutory and professional association regulations.

Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Preferred developments of the invention are specified in the subclaims.

So ist der Tunnel vorzugsweise aus einem Rohr und einer Sandüberdeckung des Rohres gebildet, eine Weiterbildung, die in erster Linie der Personensicherheit bei einer (ungewollten) Detonation des Explosivstoffes beim Abbrennen betrifft. Bei einer derartigen Detonation wird der Abbrenn-Reaktor - ausgehend von dem Detonationsherd - in Splitter zerlegt, die mit sehr hoher Geschwindigkeit vor der Detonations-Stoßwelle durch das Tunnelrohr dringen und dieses - je nach Intensität der Detonation - auch zerlegen. Die das Tunnelrohr umgebende Sandüberdeckung hat hierbei zwei Aufgaben: zum einen dient die Sandüberdeckung dazu, die Splitter des Abbrenn-Reaktors und ggf. die Splitter des Tunnelrohres aufzufangen. Zum anderen wird die Sandüberdeckung in sich zusammenfallen und den Abbrandherd abdecken, falls sich auch das Tunnelrohr zerlegt. Durch die das Tunnelrohr um- und übergreifende Sandüberdeckung wird somit ein einerseits äußerst flexibler, da nicht starr verdämmender, und andererseits ein äußerst sicherer und wirksamer und gleich-zeitig ein bei der Detonation entstehendes Feuer löschender Schutzmantel gebildet.For example, the tunnel is preferably formed from a pipe and a sand covering of the pipe, a further development which primarily concerns personal safety in the event of an (unwanted) detonation of the explosive when it burns. In the case of such a detonation, the burn-off reactor - starting from the detonation source - is broken down into fragments which penetrate the tunnel tube at a very high speed before the detonation shock wave and, depending on the intensity of the detonation, also break it down. The sand covering surrounding the tunnel pipe has two tasks: on the one hand, the sand covering serves to collect the splinters of the burning reactor and, if necessary, the splinters of the tunnel pipe. On the other hand, the sand cover will collapse and cover the source of the burn if the tunnel tube also disassembles. Due to the sand covering and encompassing the tunnel tube, on the one hand an extremely flexible, since not rigidly insulating, and on the other hand, an extremely safe and effective protective jacket that simultaneously extinguishes a fire that arises during the detonation is formed.

Einer möglichst einfach zu realisierenden Konstruktion des Tunnelrohres dient eine Weiterbildung, nach der das Rohr bevorzugterweise aus ovalen Stahlrohr-Profilen zusammengesetzt ist. Die Vorteile dieser ovalen Form liegen insbesondere darin, daß diese Profile allgemein im Handel erhältlich sind und daß sich an den beiden Längsseiten des Abbrenn-Reaktors begehbare Inspektionsgänge ausbilden.A construction of the tunnel tube that is as easy to implement as possible is provided by a further development, according to which the tube is preferably composed of oval steel tube profiles. The advantages of this oval shape are, in particular, that these profiles are generally commercially available and that walk-through inspection passages are formed on the two long sides of the burn-up reactor.

Zwei weitere bevorzugte Weiterbildungen betreffen die Ausbildung des Abbrenn-Reaktors. Nach der einen ist vorgesehen, daß dieser eine im wesentlichen rechteckige, in Transportrichtung der Fördereinrichtung langgestreckte Form aufweist, und nach der anderen bevorzugten Weiterbildung ist vorgesehen, daß der Rumpf des Abbrenn-Reaktors aus Metall-Profilen besteht. Insbesondere bei der Konstruktion aus Metall-Profilen ist es von Vorteil, daß diese sich bei einer Detonation der Explosivstoffe verhältnismäßig definiert in leichte Splitter zerlegen, die eine geringere Sandüberdeckung zum Abbremsen benötigen, als dies bei einer schwereren Konstruktion des Abbrenn-Reaktors erforderlich wäre. Grundsätzlich kann der Rumpf des Abbrenn-Reaktors jedoch aus Profilen anderer Materialien, z.B. Kunststoff bestehen. Ein weiterer Vorteil des Aufbaues aus Metall-Profilen besteht darin, daß der Abbrenn-Reaktor somit kostengünstig außerhalb des Tunnelrohres vorfabriziert und innerhalb des Tunnelrohres aufgebaut werden kann.Two further preferred developments relate to the design of the burn-up reactor. According to one, it is provided that it has a substantially rectangular shape, elongated in the direction of transport of the conveyor, and according to the other preferred development it is provided that the fuselage of the burning reactor consists of metal profiles. In particular with the construction of metal profiles, it is advantageous that when the explosives detonate, they break down into defined fragments in a relatively defined manner, which require less sand covering for braking than would be required with a heavier construction of the combustion reactor. In principle, however, the fuselage of the burn-up reactor can be made from profiles of other materials, e.g. Plastic. Another advantage of the construction of metal profiles is that the burn-up reactor can thus be prefabricated inexpensively outside the tunnel tube and built inside the tunnel tube.

Vorzugsweise sind die Rumpf-Innenwände des Abbrenn-Reaktors mit temperaturfestem Fasermaterial ausgekleidet. Das Fasermaterial dient in erster Linie zum Auffangen des sehr großen Temperaturunterschiedes, der beim Abbrand von Explosivstoffen in dem Abbrenn-Reaktor auftritt. Die Temperatur in dem Abbrenn-Reaktor steigt - ausgehend von dem Abbrandherd -in dessen Umgebung und insbesondere oberhalb des Abbrandherdes innerhalb von Sekunden auf 2000 bis 3000° C an, da es sich bei der chemischen Zerfallreaktion von Explosivstoffen um einen stark exothermen Vorgang handelt. Um die entstehende Wärmestrahlung abzufangen und insbesondere von den Metall-Profilen des Abbrenn-Reaktors fernzuhalten, ist das temperaturfeste Fasermaterial angeordnet. Bevorzugt kommt hier Steinwolle zur Anwendung.The inside walls of the fuselage reactor are preferably lined with temperature-resistant fiber material. The fiber material primarily serves to collect the very large temperature difference that occurs when explosives are burned off in the burning reactor. The temperature in the combustion reactor rises - starting from the combustion source - in its surroundings and especially above the combustion range within a few seconds to 2000 to 3000 ° C, since the chemical decomposition reaction of explosives is a highly exothermic process acts. The temperature-resistant fiber material is arranged to intercept the heat radiation which arises and in particular to keep it away from the metal profiles of the burn-up reactor. Rock wool is preferably used here.

Vorzugsweise besitzt der Abbrenn-Reaktor eine Luft-Absaugvorrichtung mit wenigstens einem im Eingangsbereich des Abbrenn-Reaktors angeordneten Zuführstutzen und wenigstens einem im Ausgangsbereich angeordneten Absaugstutzen.The burn-off reactor preferably has an air suction device with at least one feed nozzle arranged in the inlet area of the burn-up reactor and at least one suction nozzle arranged in the outlet area.

Gemäß einer weiteren vorteilhaften Weiterbildung ist der Eingangsbereich vom Abbrennbereich durch eine arretierbare Jalousie abgetrennt, deren Lamellen insbesondere einzeln, d.h. unabhängig voneinander einstellbar sind. Durch die Jalousie werden mehrere wesentliche Vorteile im Zusammenhang mit der den Abbrenn-Reaktor durchsetzenden Luftströmung erzielt: Zum einen ist mittels der Jalousie eine vorteilhafte Strömungsrichtung durch den Abbrenn-Reaktor einstellbar, die so ausgebildet sein sollte, daß sich die zugeführte Frischluft zwar einerseits möglichst rasch mit den entstehenden heißen Abgasen vermischt und dadurch eine Abkühlung der Abgase sowie eine Oxidation der noch nicht vollständig verbrannten Reaktionsprodukte bewirkt, andererseits jedoch ein Aufwirbeln der in den Abbrandträgern befindlichen Explosivstoffe vermieden wird. Durch die Einstellbarkeit der Lamellen unabhängig voneinander kann die Ebene der Hauptluftströmung durch den Abbrenn-Reaktor von einem oberen über einen mittleren zu einem unteren Bereich variiert werden. Schließlich kann mit Hilfe der Jalousie bei einem bestimmten Volumenstrom ein gewisser Unterdruck im Abbrenn-Reaktor eingestellt werden. Durch diesen Unterdruck ist gewährleistet, daß die gasförmigen Reaktionsprodukte den Abbrenn-Reaktor nur über die Luft-Absaugvorrichtung verlassen. Hieraus ergibt sich der wirtschaftlich bedeutende Vorteil, daß der Abbrenn-Reaktor generell undicht sein darf, was eine kostengünstigere Herstellung ermöglicht.According to a further advantageous development, the entrance area is separated from the burning area by a lockable blind, the slats of which are in particular individually, i.e. are independently adjustable. The venetian blind achieves several important advantages in connection with the air flow passing through the burn-up reactor: On the one hand, the venetian blind can be used to set an advantageous direction of flow through the burn-up reactor, which should be designed so that the fresh air supplied is on the one hand as quick as possible mixed with the resulting hot exhaust gases and thereby cooling the exhaust gases and oxidizing the reaction products which have not yet been completely burnt, but on the other hand avoiding whirling up of the explosives located in the combustion carriers. Because the fins can be adjusted independently of one another, the level of the main air flow through the burning reactor can be varied from an upper region to a middle region to a lower region. Finally, a certain vacuum can be set in the burn-up reactor with the help of the blind at a certain volume flow. This negative pressure ensures that the gaseous reaction products only leave the burn-off reactor via the air suction device. This results in the economically significant advantage that the burn-up reactor may generally be leaky, which enables less expensive production.

Der Eingangsbereich und der Ausgangsbereich besitzen jeweils eine Passage für die mittels der Fördereinrichtung in den Abbrenn-Reaktor ein- bzw. austretenden Abbrandträger, wobei diese Passagen gemäß einer Weiterbildung derart ausgebildet sind, daß sie durch die in Transportrichtung hindurchlaufenden Abbrandträger im wesentlichen luftdicht abgeriegelt werden. Diese Maßnahmen wirken sich somit vorteilhaft auf die Erzeugung eines kontinuierlichen und steuerbaren Luftstroms von dem Eingangsbereich über den Abbrennbereich zum Ausgangsbereich des Abbrenn-Reaktors aus.The entrance area and the exit area each have a passage for those entering or leaving the combustion reactor by means of the conveying device Abbrandträger, these passages are designed according to a development such that they are sealed off essentially airtight by the Abbrandträger passing in the transport direction. These measures thus have an advantageous effect on the generation of a continuous and controllable air flow from the input area via the burn-off area to the output area of the burn-off reactor.

Ferner ist vorteilhafterweise vorgesehen, daß im Bereich des Übergangs vom Eingangsbereich in den Abbrennbereich am Ende der Eingangspassage eine Funkenklappe angeordnet ist. Diese ist vorzugsweise rückschlaggedämpft ausgeführt und verhindert einen Funkentransport von den gerade im Abbrennbereich abbrennenden Explosivstoffen zu den noch auf den Abbrandträgern im Bereich der Eingangspassage befindlichen Explosivstoffen.Furthermore, it is advantageously provided that a spark flap is arranged in the area of the transition from the entrance area to the burning area at the end of the entrance passage. This is preferably designed to be rebound-damped and prevents sparks from being transported from the explosives currently burning in the burning area to the explosives still located on the burning supports in the area of the entrance passage.

Eine besonders bevorzugte Ausbildung der Fördereinrichtung und der dazugehörigen Vielzahl von Abbrandträgern besteht darin, daß die Abbrandträger als fahrbare Wagen ausgebildet sind, die zur Aufnahme der abzubrennenden Explosivstoffe eine Wanne aufweisen. Somit können die Abbrandträger in der Art von "Loren" ausgebildet sein, die dann - gemäß einer bereits vorstehend erläuterten bevorzugten Weiterbildung der Erfindung - die Eingangs- bzw. Ausgangspassagen während ihres Durchlaufs im wesentlichen, d.h. bis auf eine definierte Rest-Luftströmung, luftdicht abriegeln. Diese Rest-Luftströmung gelangt durch den Fahrwerks bereich der Abbrandträger in den Abbrenn-Reaktor und bewirkt zum einen eine Kühlung der die Explosivstoffe enthaltenen Wannen und zum anderen eine Reinigung der Fahrbahn, auf der die Abbrandträger durch den Abbrenn-Reaktor rollen.A particularly preferred embodiment of the conveying device and the associated plurality of erosion carriers is that the erosion carriers are designed as mobile carriages which have a trough for receiving the explosives to be burned off. Thus, the erosion carriers can be designed in the manner of "lorries" which - in accordance with a preferred development of the invention which has already been explained above - the entrance or exit passages during their passage essentially, i.e. Seal airtight except for a defined residual air flow. This residual air flow passes through the undercarriage area of the combustion carrier into the combustion reactor and, on the one hand, cools the troughs containing the explosives and, on the other hand, cleans the roadway on which the combustion carriers roll through the combustion reactor.

Vorzugsweise ist die das Tunnelrohr überdeckende Sandüberdekkung seitlich durch feste Wände gestützt, wobei eine dieser festen Wände parallel zu dem Tunnel einen Beschickungsbereich zur Beschickung der Abbrandträger mit Explosivstoffen abgetrennt ist. Die Fördereinrichtung kann somit eine rundlaufende Schiene für die fahrbaren Wagen beinhalten, die durch den Beschickungsbereich verläuft, zu dem Abbrenn-Reaktor führt und nachfolgend das Ende der Ausgangspassage wieder mit dem Beschickungsbereich verbindet.The sand covering covering the tunnel tube is preferably supported laterally by solid walls, one of these fixed walls being separated from a loading area parallel to the tunnel for loading the erosion carriers with explosives. The conveyor device can thus include a rotating rail for the mobile wagons, which runs through the loading area, leads to the burn-up reactor and subsequently reconnects the end of the exit passage with the loading area.

Zur Steigerung des Emissionsschutzes ist vorzugsweise vorgesehen, daß dem Abbrenn-Reaktor bzw. dem Absaugstutzen der Luft-Absaugvorrichtung eine Reinigungsvorrichtung für die beim Abbrand entstehenden gasförmigen Reaktionsprodukte nachgeschaltet ist. Besonders bevorzugterweise enthält die Reinigungsvorrichtung Waschstufen, welche die in allen Aggregatzuständen anfallenden Schadstoffe aus dem Abgas ausscheiden.To increase the emission protection, it is preferably provided that a cleaning device for the gaseous reaction products formed during the burning is connected downstream of the burning reactor or the suction port of the air suction device. The cleaning device particularly preferably contains washing stages which separate the pollutants occurring in all aggregate states from the exhaust gas.

Für die nicht oder nur unvollständig durch die Waschstufen ausgeschiedenen Schadstoffe kann die Reinigungsvorrichtung ferner thermische Schadstoff-Reduzierstufen oder aber - alternativ oder kumulativ hierzu - biologische Schadstoff-Reduzierstufen enthalten.For the pollutants which are not or only incompletely eliminated by the washing stages, the cleaning device can also contain thermal pollutant reduction stages or, alternatively or cumulatively, biological pollutant reduction stages.

Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Es zeigen:

Fig. 1
einen Querschnitt durch den im wesentlichen splitter- und explosionsfesten Tunnel mit darin angeordneten Abbrenn-Reaktor;
Fig. 2
einen schematischen Grundriß des Tunnels mit Sandüberdeckung;
Fig. 3
einen Querschnitt durch den Abbrenn-Reaktor in Höhe der Anzündvorrichtung;
Fig. 4
einen Querschnitt des Abbrenn-Reaktors mit in Transportrichtung durchlaufenden Abbrandträgern, und
Fig. 5
einen schematischen Seitenriß des Tunnels gemäß Fig. 2.
A preferred exemplary embodiment of the invention is explained in more detail below with reference to a drawing. Show it:
Fig. 1
a cross section through the essentially splinter and explosion-proof tunnel with a burning reactor arranged therein;
Fig. 2
a schematic floor plan of the tunnel with sand cover;
Fig. 3
a cross section through the burning reactor at the level of the igniter;
Fig. 4
a cross-section of the burn-up reactor with burn-up carriers passing through in the transport direction, and
Fig. 5
3 shows a schematic side elevation of the tunnel according to FIG. 2.

Abbildung 1 zeigt einen Abbrenn-Reaktor 1 einer Anlage zum Abbrennen von Explosivstoffen, der innerhalb eines im wesentlichen splitter- und explosionsfesten Tunnels 2 angeordnet ist. Dieser Tunnel 2 besteht aus einem aus ovalen Stahlrohr-Profilen zusammengesetzten Rohr 4 und einer das Rohr 4 überdeckenden Sandüberdeckung 6, die ihrerseits seitlich durch feste Wände 12, 13 gestützt sowie von einer oberen Abdeckung 25 bedeckt ist. Der Abbrenn-Reaktor 1 steht innerhalb des Tunnelrohres 4 auf einem Betonboden 23 und besitzt etwa eine Höhe von 3 m, während das Tunnelrohr 4 oberhalb des Betonbodens 23 eine lichte Höhe von etwa 4 m besitzt. Parallel zu dem Tunnel 2 ist ein Beschickungsbereich 14 zur Beschickung von Abbrandträgern 16 mit abzubrennenden Explosivstoffen angeordnet, der von dem Tunnel 2 durch eine feste Wand 13 abgetrennt ist. Das Tunnelrohr 4, die Sandüberdeckung 6 sowie die feste Wand 13 gewährleisten die beim Betrieb einer Anlage zum Abbrennen von Explosivstoffen erforderliche Personensicherheit. Die diesbezüglich ablaufende Vorgänge bei einer (ungewollen) Detonation der eigentlich abzubrennenden Explosivstoffe werden nachstehend noch erläutert werden.Figure 1 shows a burn-off reactor 1 of a plant for burning off explosives, which is arranged within an essentially splinter and explosion-proof tunnel 2. This tunnel 2 consists of an oval tubular steel profile Compound tube 4 and a tube cover 4 covering the sand 4, which in turn is supported laterally by solid walls 12, 13 and is covered by an upper cover 25. The burn-up reactor 1 stands inside the tunnel pipe 4 on a concrete floor 23 and has a height of approximately 3 m, while the tunnel pipe 4 above the concrete floor 23 has a clear height of approximately 4 m. Arranged parallel to the tunnel 2 is a charging area 14 for charging burn-off carriers 16 with explosives to be burned off, which is separated from the tunnel 2 by a fixed wall 13. The tunnel tube 4, the sand cover 6 and the fixed wall 13 ensure the personal safety required when operating a plant for burning off explosives. The processes taking place in this regard in the event of an (unwanted) detonation of the explosives which are actually to be burned off will be explained below.

Der Beschickungsbereich 14 ist mittels einer (in dieser Figur nur teilweise dargestellten) Fördereinrichtung 11 mit dem Tunnel 2 bzw. dem darin angeordneten Abbrenn-Reaktor 1 verbunden und bildet eine insbesondere oval verlaufende endlose Transportstrecke, auf der die zu der Fördereinrichtung 11 gehörenden Abbrandträger 16 nach dem Beschickungsbereich 14 zunächst den Eingangsbereich 3 des Abbrenn-Reaktors 1, sodann den Abbrennbereich 7 und anschließend den Ausgangsbereich 5 des Abbrenn-Reaktors 1 durchlaufen und anschließend wieder dem Beschickungsbereich 14 zugeführt werden (Fig. 2, 4). Der Reaktor 1 hat eine im wesentlichen rechteckige und in Transportrichtung der Fördereinrichtung 11 (Fig. 4) langgestreckte Form und der Rumpf des Reaktors 1 ist aus Metall-Profilen 8 aufgebaut. Die Rumpf-Innenwände des Abbrenn-Reaktors 1 sind zum Schutz der Metall-Profile 8 gegen die sehr großen beim Abbrand von Explosivstoffen auftretenden Temperaturen (bis zu 3000° C) mit Steinwolle 10 ausgekleidet. Der Abbrenn-Reaktor 1 weist ferner im Verlauf der Transportrichtung einen Eingang 26, den bereits vorstehend erwähnten Eingangsbereich 3, den Abbrennbereich 7 sowie den Ausgangsbereich 5 und einen Ausgang 27 auf (Fig. 4). Innerhalb des Tunnelrohres 4 ruht der Abbrenn-Reaktor 1 auf dem Betonboden 23.The loading area 14 is connected by means of a conveyor 11 (only partially shown in this figure) to the tunnel 2 or the combustion reactor 1 arranged therein and forms an endless transport route, in particular oval, on which the combustion carriers 16 belonging to the conveyor 11 emulate The feed area 14 first passes through the input area 3 of the burn-up reactor 1, then through the burn-off area 7 and then through the output area 5 of the burn-off reactor 1 and is then fed back to the feed area 14 (FIGS. 2, 4). The reactor 1 has a substantially rectangular shape which is elongated in the transport direction of the conveying device 11 (FIG. 4) and the body of the reactor 1 is constructed from metal profiles 8. The fuselage inner walls of the combustion reactor 1 are lined with rock wool 10 to protect the metal profiles 8 against the very high temperatures (up to 3000 ° C.) that occur when explosives are burned off. In the course of the transport direction, the burn-off reactor 1 also has an inlet 26, the inlet area 3 already mentioned above, the burn-off area 7 and also the outlet area 5 and an outlet 27 (FIG. 4). The burn-up reactor 1 rests on the concrete floor 23 within the tunnel tube 4.

Fig. 2 und Fig. 5 zeigen einen Grundriß sowie einen Seitenriß des Tunnels 2 mit der Sandüberdeckung 6, wobei der Abbrenn-Reaktor 1 hier nicht eingezeichnet ist. Der Darstellung ist die im wesentlichen rechteckige und langgestreckte Form des Tunnels 2 insgesamt entnehmbar. Der Eingangsbereich 3, der Abbrennbereich 7 sowie der Ausgangsbereich 5 des nicht eingezeichneten Abbrenn-Reaktors 1 sind durch die eingeklammerten Bezugszeichen angedeutet.Fig. 2 and Fig. 5 show a plan and a side view of the tunnel 2 with the sand cover 6, wherein the burn-up reactor 1 is not shown here. The illustration shows the essentially rectangular and elongated shape of the tunnel 2 as a whole. The input area 3, the burn-off area 7 and the output area 5 of the burn-off reactor 1, not shown, are indicated by the reference numerals in brackets.

Fig. 3 zeigt einen gegenüber der Fig. 1 vergrößerten Querschnitt des Abbrenn-Reaktors 1 in Höhe einer Anzündvorrichtung. Innerhalb des Abbrenn-Reaktors 1 ist ein Abbrandträger in Form eines fahrbaren Wagens 16 dargestellt, der ein auf Rädern 28 fahrbares Fahrgestell 15 sowie eine darauf angeordnete Wanne 21 zur Aufnahme der abzubrennenden Explosivstoffe aufweist. Hinter der Wanne 21 ist noch eine Trennwand 24 erkennbar, die hier beim Blick in Transportrichtung des Wagens 16 senkrecht hinter der Wanne 21 auf dem Fahrgestell 15 des Wagens angeordnet ist. Rechts und links neben dem Wagen 16 sind je ein Brenner 22 der Anzündvorrichtung angeordnet, mittels derer die Explosivstoffe angezündet werden. Auf ihrem Weg durch den Abbrenn-Reaktor 1 werden die Abbrandträger oder Wagen 16 durch eine zu der Fördereinrichtung 11 gehörende Leitvorrichtung 29 und entsprechende Führungsschienen 33 geführt oder aber auch über diese Bauteile angetrieben. Oberhalb des Wagens 16 ist ein im Ausgangsbereich 5 des Abbrenn-Reaktors 1 angeordneter Absaugstutzen 19 einer Luft-Absaugvorrichtung erkennbar, auf dessen Funktion anhand der Fig. 4 näher eingegangen wird.FIG. 3 shows a cross section of the burn-up reactor 1, enlarged compared to FIG. 1, at the level of an ignition device. A combustion carrier in the form of a mobile carriage 16 is shown within the combustion reactor 1 and has a chassis 15 which can be moved on wheels 28 and a trough 21 arranged thereon for receiving the explosives to be burned off. A partition 24 can also be seen behind the tub 21, which is arranged vertically behind the tub 21 on the chassis 15 of the cart when looking in the transport direction of the cart 16. A burner 22 of the igniter, by means of which the explosives are ignited, are arranged to the right and left of the carriage 16. On their way through the combustion reactor 1, the combustion carriers or carriages 16 are guided by a guide device 29 belonging to the conveying device 11 and corresponding guide rails 33, or else are driven by these components. Above the carriage 16, a suction nozzle 19 of an air suction device, which is arranged in the exit region 5 of the burning reactor 1, can be seen, the function of which will be explained in more detail with reference to FIG. 4.

Fig. 4 zeigt einen Längsschnitt durch den Abbrenn-Reaktor 1, der von einer Vielzahl von bereits vorstehend beschriebenen Abbrandträgern oder Wagen 16 durchlaufen wird, die die abzubrennenden Explosivstoffe von dem Beschickungsbereich 14 zu dem Abbrenn-Reaktor 1 hintransportieren bzw. die beim Abbrand erzeugten Rückstände zur weiteren Entsorgung heraustransportieren. Die mit Explosivstoffen beladenen Wagen 16 fahren durch die Eingangspassage 9 des Eingangsbereichs 3 in den Abbrenn-Reaktor 1 ein und werden nacheinander dem Abbrennbereich 7 zugeführt. Dort ist die Anzündvorrichtung mit den beidseitig vorgesehenen Brennern 22 angeordnet, wo das Anzünden des Explosivstoffes in der Wanne 21 des betreffenden Wagens 16 erfolgt. Um ein Übergreifen von Funken auf die nachfolgenden, noch mit Explosivstoffen beladenen Wagen 16 zu verhindern, ist im Bereich des Übergangs vom Eingangsbereich 3 in den Abbrennbereich 7 am Ende der Eingangspassage 9 eine Funkenklappe 17 angeordnet, die zur Vermeidung weiterer Funkenbildung rückschlaggedämpft ist. Diese Funkenklappe 17 schließt im Zusammenwirken mit der Trennwand 24 des nachfolgenden Wagens 16 die Eingangspassage 9 weitestgehend luftdicht ab. Lediglich ein geringer Restanteil Frischluft wird in Richtung der Pfeile 30 unterhalb der Wagen 16 durch die Eingangspassage 9 in den Abbrennbereich 7 geleitet und dient zum einen der Kühlung der Abbrandträger von unten und bildet ferner in dem Abbrenn-Reaktor eine nach oben gerichtete Luftströmung aus, die verhindert, daß Explosivstoffe oder deren Reaktionsprodukte auf die Fahrbahn fallen. Insbesondere können in den Seitenwänden des Abbrenn-Reaktors 1 auch weitere Luftklappen vorgesehen sein, die eine Regulierung der Temperatur der Luftströmung ermöglichen.FIG. 4 shows a longitudinal section through the burn-up reactor 1, which is traversed by a large number of burn-up carriers or carriages 16, which have already been described above and which carry the explosives to be burned off from the charging area 14 to the burn-up reactor 1 or the residues generated during the burn-up Transport out for further disposal. The wagons 16 loaded with explosives move through the entrance passage 9 of the entrance area 3 into the burning reactor 1 and are fed to the burning area 7 one after the other. There is the igniter with those provided on both sides Burners 22 arranged where the ignition of the explosive takes place in the trough 21 of the car 16 concerned. In order to prevent sparks from spreading to the subsequent wagons 16 still loaded with explosives, a spark flap 17 is arranged in the area of the transition from the entrance area 3 to the burning area 7 at the end of the entrance passage 9, which is damped to prevent further spark formation. This spark flap 17, in cooperation with the partition 24 of the following carriage 16, closes the entrance passage 9 largely airtight. Only a small amount of fresh air is directed in the direction of arrows 30 below the carriage 16 through the entrance passage 9 into the combustion area 7 and serves on the one hand to cool the combustion carrier from below and also forms an upward air flow in the combustion reactor, which prevents explosives or their reaction products from falling onto the road. In particular, further air flaps can be provided in the side walls of the burning reactor 1, which allow the temperature of the air flow to be regulated.

Die Wagen 16 werden von der Position des Brenners 22 in Transportrichtung mit den brennenden Explosivstoffen langsam weitertransportiert, so daß der Abbrand der Explosivstoffe vollständig innerhalb des Abbrenn-Reaktors 1 erfolgt. Die Dauer eines derartigen Abbrandes liegt durchschnittlich im Sekunden- bis Minutenbereich. Nach Beendigung des Abbrands verlassen die Wagen 16 den Abbrenn-Reaktor 1 durch die zum Ausgangsbereich gehörende Ausgangspassage 9', die - wie die Eingangspassage 9 - durch die Konstruktion der Wagen 16 (insbesondere Trennwand 24) im wesentlichen luftdicht abgeriegelt wird. Ähnlich wie bei der Eingangspassage 9 gelangt lediglich ein geringer, aber gewollter Anteil Frischluft in Richtung der Pfeile 31 durch die Ausgangspassage 9' in den Abbrennbereich 7.The carriages 16 are slowly transported from the position of the burner 22 in the direction of transport with the burning explosives, so that the explosives are burnt completely within the burning reactor 1. The duration of such a burn is on average in the range of seconds to minutes. After the end of the burn-up, the carriages 16 leave the burn-up reactor 1 through the exit passage 9 'belonging to the exit area, which - like the entrance passage 9 - is sealed off essentially airtight by the construction of the carriages 16 (in particular partition wall 24). Similar to the entrance passage 9, only a small but wanted portion of fresh air reaches the burning area 7 in the direction of the arrows 31 through the exit passage 9 '.

Die bereits vorstehend erwähnte Luft-Absaugvorrichtung des Abbrenn-Reaktors 1 enthält im Eingangsbereich 3 des Reaktors 1 beidseitig angeordnete Zuführstutzen 18 (von denen hier das Ansauggitter des einen Zuführstutzens dargestellt ist) und einen zentral im Ausgangsbereich 5 des Reaktors 1 angeordneten Absaugstutzen 19. An diesen Absaugstutzen 19 schließt sich - hier nicht dargestellt - eine Reinigungsvorrichtung für die beim Abbrand entstehenden Reaktionsprodukte an. Diese Reinigungsvorrichtung enthält zum einen Waschstufen zur Ausscheidung der in allen Aggregatzuständen anfallenden Schadstoffe aus dem Abgas sowie - alternativ oder kumulativ - thermische oder biologische Schadstoff-Reduzierstufen.The above-mentioned air suction device of the burning reactor 1 contains in the input area 3 of the reactor 1 supply ports 18 arranged on both sides (of which the intake grille of the one supply port is shown here) and a suction port arranged centrally in the output area 5 of the reactor 1 19. This suction connection 19 is followed - not shown here - by a cleaning device for the reaction products formed during the combustion. On the one hand, this cleaning device contains washing stages for the elimination of the pollutants occurring in all aggregate states from the exhaust gas and, alternatively or cumulatively, thermal or biological pollutant reduction stages.

Die durch die Zuführstutzen 18 angesaugte und durch den Absaugstutzen 19 in Richtung der Pfeile 32 abgesaugte Luft hat im wesentlichen drei Funktionen. Einerseits stellt sie den quantitativen Transport der gasförmigen Reaktionsprodukte und der darin enthaltenen Aerosole in die Waschstufe zur Rauchgaswäsche sicher. Zum anderen aber wird die Luft benötigt, um die Eingangstemperatur in der Waschstufe, die vorzugsweise einen Venturiwäscher enthält, auf einen Maximalwert von etwa 300° C zu begrenzen. Dies ist insbesondere vor dem eingangs bereits im Zusammenhang mit der Auskleidung des Abbrenn-Reaktors 1 geschilderten Hintergrund von besonderer Bedeutung, daß die Explosivstoffe mit Temperaturen von bis zu 3000° C Abbrennen. Die dritte Funktion der an- bzw. abgesaugten Luft innerhalb des Reaktors 1 ist darin zu sehen, daß sie oxidierende Bedingungen innerhalb des Abbrenn-Reaktors 1 einstellen soll, damit der Anteil an nicht oxidierten Stoffen, die beim Abbrand entstehen, möglichst gering gehalten wird. Somit dient diese Luft einer Ergänzung des Abbrands durch eine Restverbrennung der nicht oder nicht ausreichend oxidierten Stoffe und damit einer Steigerung der Emissionsminderung.The air sucked in through the feed pipe 18 and sucked out through the suction pipe 19 in the direction of the arrows 32 has essentially three functions. On the one hand, it ensures the quantitative transport of the gaseous reaction products and the aerosols contained therein into the scrubbing stage for flue gas scrubbing. On the other hand, the air is required to limit the inlet temperature in the washing stage, which preferably contains a venturi scrubber, to a maximum value of approximately 300 ° C. This is particularly important, particularly in view of the background already described at the beginning in connection with the lining of the burning reactor 1, that the explosives burn off at temperatures of up to 3000 ° C. The third function of the air sucked in or out within the reactor 1 is that it should set oxidizing conditions within the burn-up reactor 1 so that the proportion of non-oxidized substances which arise during the burn-up is kept as low as possible. This air thus serves to supplement the combustion by residual combustion of the inadequately or insufficiently oxidized substances and thus an increase in emissions reduction.

Der von dem Zuführstutzen 18 zu dem Absaugstutzen 19 gerichtete Luftstrom (Pfeile 32) ist durch die einstellbare und hinsichtlich ihrer Lamellenstellung arretierbare Jalousie 20 in Strömungsrichtung und Luftmenge auf einen definierten Wert einstellbar.The air flow (arrows 32) directed from the feed connector 18 to the suction connector 19 can be adjusted to a defined value in the flow direction and air volume by the adjustable blind 20, which can be locked with respect to its slat position.

Die Waschstufen der Reinigungsvorrichtung können neben dem bereits erwähnten Venturiwäscher auch einen oder mehrere Naßwäscher beinhalten. Während der Venturiwäscher die Aufgabe hat, die etwa 300° C heißen Abgase auf eine Kühlgrenztemperatur herunter zu kühlen und den größten Teil der Aerosole, wie z.B. Ruß, Metallverbindungen, Phosphorpentoxid u.s.w. abzuscheiden (je nach Abgaszusammensetzung werden im Venturiwäscher auch noch weitere Schadstoffe wie z.B. HCL, HF und infolge des sich dann einstellenden kleinen pH-Wertes auch alkalisch wirkende Schadstoffe, wie z.B. Ammoniak, abgeschieden).The washing stages of the cleaning device can also include one or more wet washers in addition to the venturi washer already mentioned. While the venturi scrubber has the task of reducing the exhaust gases, which are around 300 ° C, to a cooling limit temperature to cool and separate most of the aerosols, such as soot, metal compounds, phosphorus pentoxide, etc. (depending on the exhaust gas composition, other pollutants such as HCL, HF and, due to the then low pH value, also alkaline pollutants such as eg ammonia, separated).

Von den Naßwäschern kann sowohl einer für die saueren Anteile der Abgase (insbesondere HCL, HF und NH3) als auch einer für die basischen Anteile der Abgase vorgesehen sein. Während der saure Wäscher als Sprühwäscher im Gegenstromprinzip ausgeführt ist, arbeitet der basische Wäscher im Gleichstromprinzip bei einem pH-Wert von ca. 9. Im basischen Wäscher werden schwächere Säuren wie SO2, H2S und HCN absorbiert.One of the wet scrubbers can be provided for the acidic portions of the exhaust gases (in particular HCL, HF and NH 3 ) and one for the basic portions of the exhaust gases. While the acid scrubber is designed as a spray scrubber in the countercurrent principle, the basic scrubber works in the cocurrent principle at a pH of approx. 9. Weaker acids such as SO 2 , H 2 S and HCN are absorbed in the basic scrubber.

Die Schutzfunktion der Abbrenn-Anlage zum Erhalt der Personensicherheit bei einer (ungewollten) Detonation des Explosivstoffes wird im folgenden anhand Fig. 1 beschrieben. Bei einer Detonation wird der Abbrenn-Reaktor 1 in Splitter zerlegt, die mit einer sehr hohen Geschwindigkeit durch das Tunnelstahlrohr 4 fliegen und dieses ggf. ebenfalls zerlegen. Die Splitter des Abbrenn-Reaktors 1 und des Tunnelstahlrohrs 4 werden durch die Sandüberdeckung 6 aufgefangen, wobei sich die Sandüberdeckung 6 im Falle eines Zerlegens des Tunnelstahlrohrs 4 über den Detonationsherd deckt und mit dem Sand ein zu erwartendes Feuer löscht.The protective function of the combustion system to maintain personal safety in the event of an (unwanted) detonation of the explosive is described below with reference to FIG. 1. In the event of a detonation, the burn-up reactor 1 is broken down into fragments which fly through the tunnel steel tube 4 at a very high speed and, if appropriate, also break it down. The splinters of the burn-up reactor 1 and the tunnel steel tube 4 are caught by the sand cover 6, the sand cover 6 covering the detonation hearth when the tunnel steel tube 4 is dismantled and extinguishing a fire to be expected with the sand.

Die vorstehend beschriebene Anlage zum Abbrennen von Explosivstoffen leistet bei einer Verarbeitungsmenge von 1000 bis 1500 kg pro Stunde einen erheblichen Beitrag zur umweltgerechten Immissionsminderung bei gleichzeitiger voller Wahrung der Personensicherheit. Insbesondere werden in der beschriebenen Anlage die zu erwartenden Schadstoffe Chlorwasserstoff, Phosphor, Schwefeloxide, Blausäure sowie Stickstoffoxide gebunden und entsorgt. Jedoch ermöglicht die Auslegung der Anlage grundsätzlich die Entsorgung aller anfallenden Schadstoffe, für die z.Z. oder in Zukunft Reinigungsanlagen bzw. -methoden wirtschaftlich und technisch realisierbar sind oder sein werden. Die vorgestellte Abbrenn-Anlage ermöglicht die Nachschaltung all jener Reinigungsvorrichtungen, ohne den Kern der Abbrenn-Anlage, nämlich den innerhalb des im wesentlichen splitter- und explosionsfesten Tunnels 2 angeordneten Abbrenn-Reaktor 1 zu verändern.The above-described plant for burning off explosives makes a significant contribution to environmentally friendly emission reduction with simultaneous full maintenance of personal safety at a processing volume of 1000 to 1500 kg per hour. In particular, the expected contaminants hydrogen chloride, phosphorus, sulfur oxides, hydrocyanic acid and nitrogen oxides are bound and disposed of in the system described. However, the design of the system basically enables the disposal of all accruing pollutants for which cleaning systems or methods are or will be economically and technically feasible in the future or in the future. The presented combustion system enables all of them to be connected Cleaning devices without changing the core of the combustion plant, namely the combustion reactor 1 arranged within the essentially splinter and explosion-proof tunnel 2.

Claims (11)

  1. An installation for the deflagration of explosives, comprising a deflagration reactor (1) and a scrubbing means for the reaction products resulting from the deflagration, being connected downstream of the deflagration reactor (1), and a conveyor means (11) extending inside and outside the reactor (1) and including a plurality of carrier means (16) which are loaded with the explosives outside of the reactor (1), then transported through an entry zone (3) into the reactor to an ignition device (22) for the explosives and on from the same through a deflagration zone (7) inside the reactor, to leave the reactor thereafter again through an exit zone (5), characterized in that the deflagration reactor (1) comprises an essentially closed body and in that the entry zone (3) and the exit zone (5) of the deflagration reactor (1) each have a passage (9, 9') for the carrier means (16) entering or leaving the deflagration reactor (1) by the conveyor means (11), and in that the deflagration reactor (1) is completely arranged inside a tunnel (2) which is substantially splinter- and explosion-proof and accessible at two ends.
  2. The installation for deflagration as claimed in claim 1, characterized in that the tunnel (2) is formed by a tube (4) and a sand cover (6) of the tube (4).
  3. The installation for deflagration as claimed in claim 2, characterized in that the sand cover (6) is supported laterally by solid walls (12, 13).
  4. The installation for deflagration as claimed in claim 1, 2 or 3, characterized in that the body of the deflagration reactor (1) consists of metal sections (8) and in that its inner walls are lined with temperature-proof fibrous material (10).
  5. The installation for deflagration as claimed in any one of the preceding claims, characterized in that the deflagration reactor (1) comprises an air suction means having at least one supply connection (18) in an entry zone (3) of the deflagration reactor (1) and at least one suck-off connection (19) in the exit zone (5).
  6. The installation for deflagration as claimed in claim 5 characterized in that the entry zone (3) is separated from the deflagration zone (7) by a lockable shutter (20) comprising adjustable louvers.
  7. The installation for deflagration as claimed in any one of claims 1 to 6, characterized in that the passages (9, 9') are closed in substantially air-tight manner in the direction of transportation by the carrier means (16) moving through.
  8. The installation for deflagration as claimed in claim 7, characterized in that a spark flap (17) is disposed at the transition from the entry zone (3) to the deflagration zone (7).
  9. The installation for deflagration as claimed in any one of claims 1 to 8, characterized in that the scrubbing means includes washing stages which separate the noxious components produced in all states of aggregation from the exhaust gas.
  10. The installation for deflagration as claimed in claim 9, characterized in that the scrubbing means includes thermal reducing stages for noxious components.
  11. The installation for deflagration as claimed in claim 9, characterized in that the scrubbing means includes biological reducing stages for noxious components.
EP92909866A 1991-05-10 1992-05-05 Plant for incinerating explosive substances Expired - Lifetime EP0583326B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4115234A DE4115234C1 (en) 1991-05-10 1991-05-10
DE4115234 1991-05-10
PCT/EP1992/000973 WO1992020969A1 (en) 1991-05-10 1992-05-05 Plant for incinerating explosive substances

Publications (2)

Publication Number Publication Date
EP0583326A1 EP0583326A1 (en) 1994-02-23
EP0583326B1 true EP0583326B1 (en) 1996-12-11

Family

ID=6431357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92909866A Expired - Lifetime EP0583326B1 (en) 1991-05-10 1992-05-05 Plant for incinerating explosive substances

Country Status (11)

Country Link
US (1) US5495812A (en)
EP (1) EP0583326B1 (en)
CN (1) CN1066727A (en)
AU (1) AU658627B2 (en)
DE (2) DE4115234C1 (en)
FI (1) FI934971A0 (en)
PT (1) PT100467A (en)
TR (1) TR26432A (en)
WO (1) WO1992020969A1 (en)
YU (1) YU48492A (en)
ZA (1) ZA923230B (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411655C1 (en) * 1994-04-02 1995-06-01 Daimler Benz Aerospace Ag Disposal appts. for explosives with(out) metallic components
DE69628356T2 (en) * 1995-01-25 2004-04-29 I.T.B. S.R.L. Method and device for the pyrolytic treatment of waste containing organic material, in particular the treatment of household waste
US5582119A (en) * 1995-03-30 1996-12-10 International Technology Corporation Treatment of explosive waste
US5727481A (en) * 1995-07-20 1998-03-17 Voorhees; Randall Paul Portable armored incinerator for dangerous substances
KR0184541B1 (en) * 1995-10-30 1999-04-01 박주탁 Gold schmidt rock fragmentation device
US5884569A (en) * 1995-12-29 1999-03-23 Donovan; John L. Method and apparatus for containing and suppressing explosive detonations
US6354181B1 (en) 1995-12-29 2002-03-12 John L. Donovan Method and apparatus for the destruction of suspected terrorist weapons by detonation in a contained environment
US6173662B1 (en) 1995-12-29 2001-01-16 John L. Donovan Method and apparatus for containing and suppressing explosive detonations
US5613453A (en) * 1995-12-29 1997-03-25 Donovan; John L. Method and apparatus for containing and suppressing explosive detonations
US5967062A (en) * 1996-11-19 1999-10-19 Atlantic Pacific Energy Systems, Inc. Rotating tire combuster
US6006682A (en) * 1998-02-09 1999-12-28 Hung; Ming-Chin Garbage incinerator with tunnel furnace combustion
US6834597B2 (en) * 2001-09-10 2004-12-28 Terry Northcutt Small caliber munitions detonation furnace and process of using it
CA2402939C (en) 2001-09-14 2008-10-14 Tom W. Braithwaite Remotely activated armored incinerator with gas emission control
DE10204551B4 (en) * 2002-02-05 2008-08-07 GFE GmbH & Co. KG Gesellschaft für Entsorgung Device for disposal of hazardous or high-energy materials
CA2418362C (en) * 2002-02-05 2008-04-01 Walker's Holdings Inc. Perforating gun loading bay and method
US20050192472A1 (en) * 2003-05-06 2005-09-01 Ch2M Hill, Inc. System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance
CN100439800C (en) * 2005-03-29 2008-12-03 陈凤仪 Continuous self combustion garbage incinerator to make garbage become fuel
US20160138803A1 (en) * 2005-06-21 2016-05-19 Pyrogenesis Inc. Three step ultra- compact plasma system for the high temperature treatment of waste onboard ships
US9121605B2 (en) * 2005-06-21 2015-09-01 Pyrogenesis Canada, Inc. Three step ultra-compact plasma system for the high temperature treatment of waste onboard ships
SE530045C2 (en) * 2006-03-16 2008-02-12 Olcon Engineering Ab Methods and apparatus for the destruction of explosive-filled objects
CA2602996C (en) 2006-09-19 2015-12-29 Walker's Holdings Inc. Perforating gun loading bay, table and method
CN100430650C (en) * 2006-11-21 2008-11-05 中国原子能科学研究院 Method for destroying waste sodium, potassium and sodium-potassium alloy
CA2639091A1 (en) * 2007-08-15 2009-02-15 Nabco, Inc. Discharge control system
US20090100994A1 (en) * 2007-10-19 2009-04-23 Morris Thaine M Fireworks treatment and disposal unit
CN102747855A (en) * 2012-06-19 2012-10-24 李亚军 Blast resistant chamber
ITVI20130081A1 (en) * 2013-03-22 2014-09-23 Renato Bonora PLANT FOR THERMODYSTEM OF EXPLOSIVE SUBSTANCES
CN103343974B (en) * 2013-06-19 2015-09-09 郝俊修 TNT melts atomizing combustion method and equipment
EP2910891B1 (en) * 2014-02-21 2017-04-05 Dynasafe Demil Systems AB Loading arrangement for a destruction system
JP2019173973A (en) * 2016-08-25 2019-10-10 日曹金属化学株式会社 Inflator processing method and processing device
CA3035525A1 (en) 2016-09-02 2018-03-08 Regents Of The University Of Minnesota Systems and methods for body-proximate recoverable capture of mercury vapor during cremation
US10344973B1 (en) 2017-11-17 2019-07-09 The United States Of America As Represented By The Secretary Of The Navy Apparatus for incinerating explosive devices and biological agents
CN108613604B (en) * 2018-05-10 2019-04-23 西安交通大学 One kind scrapping ammunition thermal energy recovery process
CN109654513B (en) * 2018-11-22 2020-06-23 西安近代化学研究所 Intermittent fixed explosive incineration treatment device
CN110631443B (en) * 2019-07-08 2022-02-22 中国人民解放军陆军工程大学 Method for destroying multiple explosives by mixing and matching in field combustion
CN110487118B (en) * 2019-08-30 2023-08-01 清华大学 Armored weapons vehicle capable of preventing confidential data from being leaked
CN111981924A (en) * 2020-09-02 2020-11-24 雅化集团绵阳实业有限公司 Safe detonation method and device for NHN (polyethylene glycol N) initiating explosive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2354747A (en) * 1943-03-29 1944-08-01 Epstein Milton Incinerator
DE1131132B (en) * 1960-12-01 1962-06-07 Ludwig Riedhammer G M B H Indu Tunnel furnace in gas-tight design for firing electro-ceramic materials in a protective gas atmosphere
US3793101A (en) * 1971-06-16 1974-02-19 Thermal Reduction Corp Method for ammunition disposal
GB1376763A (en) * 1972-09-29 1974-12-11 Asahi Chemical Ind Silencer structure for use with explosives
DE3822648A1 (en) * 1988-07-05 1990-01-11 Meissner Gmbh & Co Kg Josef METHOD AND DEVICE FOR THE COMBUSTION AND BURNING OF EXPLOSIVE SUBSTANCES AND ITEMS CONTAINED WITH SUCH

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Unfallverhütungsvorschrift 55a, 1 April 1991 *

Also Published As

Publication number Publication date
WO1992020969A1 (en) 1992-11-26
TR26432A (en) 1995-03-15
YU48492A (en) 1994-06-10
DE4115234C1 (en) 1992-10-01
AU1680392A (en) 1992-12-30
US5495812A (en) 1996-03-05
DE59207681D1 (en) 1997-01-23
FI934971A (en) 1993-11-10
PT100467A (en) 1994-04-29
AU658627B2 (en) 1995-04-27
ZA923230B (en) 1992-12-30
FI934971A0 (en) 1993-11-10
EP0583326A1 (en) 1994-02-23
CN1066727A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
EP0583326B1 (en) Plant for incinerating explosive substances
DE19636725C2 (en) Method and device for extinguishing room fires
DE3326884A1 (en) METHOD FOR HIDDEN VISIBLE AND INFRARED RADIATION AND FOG AMMUNITION FOR CARRYING OUT THIS METHOD
DE2440543A1 (en) METHODS OF INCINERATION OF WASTE FUEL AND EXPLOSIVES
EP0108939A2 (en) Fume generating charge and process for generating a fume impervious to visible and infrared radiation
EP0600891B1 (en) Incineration trays for burning away explosive substances
EP0349865B1 (en) Installation for burning and incinerating explosive substances and objects affected by such substances and process for operating the installation
DE3312890A1 (en) METHOD AND DEVICE FOR PURIFYING COMBUSTION GASES FROM EXAMPLE HOUSEHOLD HEATERS, COMBUSTION ENGINES OR THE LIKE. FIREPLACES
EP0569025B1 (en) Automatic fire-fighting device
DE4121133C1 (en)
DE4221344C1 (en) Safe disposal of pyrotechnic material without environmental pollution - by controlled combustion of materials giving alkaline and acid reaction prods., cooling combined gas and purificn.
DE19606945C1 (en) Blasting, incineration and pyrolysis equipment for the environmentally friendly disposal of dangerous goods
DE4041746C2 (en) Process for the combustion of explosives
DE19617617C2 (en) Process for the disposal of explosives active compositions and apparatus therefor
DE4115232C1 (en)
DE4306165C1 (en) method of disposing of explosives - ignites charges at base of combustion reactors linked to common exhaust gas system with control to give optimum gas cleaning
EP0577046B1 (en) Process and device for treatment of pyrotechnic material
DE3134499C2 (en)
DE19936054A1 (en) Smoke- and/or fog-screen generator and generation process, used for mobile and static protection, has smoke or fog generator connected to distributor
DE19509196C1 (en) Incinerator for burning time=expired pyrotechnical devices
DE3317507C2 (en) Process for reducing the NO ↓ X ↓ content in flue gases from a smelting furnace
DE4317031C1 (en) Explosive disposal combustion reactor - has vertical combustion chamber with upper exhaust and material feed and lower burner for continuous operation with consistent exhaust gas flow
DE2234827A1 (en) METHOD AND DEVICE FOR RECYCLING COMBUSTIBLE COMPONENTS IN A CARRIER GAS, IN PARTICULAR AIR
DE2360187A1 (en) Burning out noxious gases from process off-gases - by passing through gas-turbine combustion chamber
DE2116729A1 (en) Device for avoiding emissions when operating Horizon talkammerofen on coking plants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19950123

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

ITF It: translation for a ep patent filed

Owner name: DR. ING. AUSSERER ANTON

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961211

REF Corresponds to:

Ref document number: 59207681

Country of ref document: DE

Date of ref document: 19970123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980511

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980518

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980528

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 92909866.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050505