EP0578696B1 - Verfahren zum laserumschmelzen metallischer oberflächen - Google Patents

Verfahren zum laserumschmelzen metallischer oberflächen Download PDF

Info

Publication number
EP0578696B1
EP0578696B1 EP92907656A EP92907656A EP0578696B1 EP 0578696 B1 EP0578696 B1 EP 0578696B1 EP 92907656 A EP92907656 A EP 92907656A EP 92907656 A EP92907656 A EP 92907656A EP 0578696 B1 EP0578696 B1 EP 0578696B1
Authority
EP
European Patent Office
Prior art keywords
remelting
laser
laser beam
rectangle
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92907656A
Other languages
English (en)
French (fr)
Other versions
EP0578696A1 (de
Inventor
Barry Leslie Prof. Dr. Mordike
Lasers Mli (1992) Ltd.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MLI LASERS (1992) Ltd
MORDIKE, BARRY LESLIE, PROF. DR.
Original Assignee
Mordike Barry Leslie Prof Dr
MLI LASERS (1992) Ltd
MLI Lasers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mordike Barry Leslie Prof Dr, MLI LASERS (1992) Ltd, MLI Lasers filed Critical Mordike Barry Leslie Prof Dr
Publication of EP0578696A1 publication Critical patent/EP0578696A1/de
Application granted granted Critical
Publication of EP0578696B1 publication Critical patent/EP0578696B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Definitions

  • the invention relates to a method for laser remelting according to the preamble of claim 1. It is about increasing the wear resistance of metallic surfaces. This is of particular importance in the case of camshafts which are used for valve control in internal combustion engines.
  • the individual cams arranged on the camshaft cause an adjustment of corresponding tappets, rocking levers or the like due to their rotary movement.
  • the wear resistance of the cam running surfaces is usually increased by remelting.
  • TIG process tungsten inert gas process
  • a disadvantage of this method is in particular the relatively high expenditure of time and the associated long cycle times.
  • the object of the present invention is to provide a particularly economical method for laser remelting.
  • the object is achieved by the characterizing features of patent claim 1. It has been shown that, given a certain parameter setting, it is possible to remelt the entire surface width in one operation without causing undesirable phenomena in the area edge areas. Accordingly, in the method according to the invention, the length of the laser beam rectangle is set approximately as wide as the width of the workpiece surface, with a rectangle width of approximately 1 to 3 mm.
  • the laser beam has a power density of 5 x 104 to 1 x 105 W / cm2 directly above the metallic surface.
  • the metallic surface moves relatively and approximately transversely to the laser beam at a speed of 2 to 6.5 cm / sec, preferably 4 to 4.5 cm / sec. With the method according to the invention, wear-resistant surfaces in particular can be achieved economically, that is to say with a relatively short machining time.
  • the workpiece having the metallic surface, in particular the camshaft is advantageously preheated to 360 to 420 ° C., preferably to about 400 ° C., before the laser remelting.
  • the remelting time is thereby further reduced and the overall wear resistance is improved after the process has ended.
  • the quality of the surface edge areas corresponds strongly to the remelting depth. Remelting the surface to a depth of 350 ⁇ m is particularly advantageous. A tolerance of preferably 200 .mu.m for a grinding of the surface which may have to be carried out after remelting is added to the stated dimension.
  • FIG. 1 shows one of several cams 11 arranged on a camshaft 10.
  • the running surface of the cam is designated by the number 12.
  • a laser beam is focused via an optic (not shown) into a rectangle 13 directed towards the tread 12.
  • the latter is only hatched for better understanding.
  • the camshaft 10 is rotated. Due to the non-circular shape of the cam 11, the distance between the optics and the camshaft 10 is adjustable, so that there is a constant or adjustable distance to the tread 12. In this way there is an adjustable power density in the area of the rectangle 13 and the cam 11 passing underneath guaranteed from about 5 x 104 to 1 x 105 W / cm2.
  • the length of the rectangle 13 corresponds to the width of the tread 12.
  • the width of the rectangle 13 is approximately 1 to 3 mm.
  • the camshaft 10 rotates for remelting at a certain speed, so that a speed of 2 to 6.5 cm / sec, preferably 4 to 4.5 cm / sec, relative to the rectangle 13 of the laser beam results on the tread 12.
  • the speed of the metallic surface relative to the laser beam is in the range specified above, but the camshaft 10 does not rotate uniformly, but rather in sections at different angular speeds depending on the cam shape.
  • the non-circular shape of the cam 11 results in poorer heat dissipation in the area of the cam tip 14 and the adjacent tread areas, because here the surfaces to be remelted lie closer together than, for example, at the blunt end 15 Camshaft rotation speed required.
  • the camshaft 10 Before the actual remelting process, the camshaft 10 is preheated to approximately 400 ° C. After remelting, a specially controlled cooling process is not necessary. A deterrent effect results solely from the heat dissipation from the tread 12 in the direction of the camshaft 10.
  • treads 12 are ground after the remelting, this must be taken into account when setting the remelting depth via the rotational speed of the camshaft 10 and possibly the power density of the laser beam. If a maximum of 200 ⁇ m is ground, a remelting depth of 550 ⁇ m must be set.
  • the camshaft 10 is made of cast iron.
  • the above parameters apply in particular to cast iron with the designations GG 25 to GG 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Laser Beam Processing (AREA)

Abstract

Verfahren zum Laserumschmelzen metallischer Oberflächen, insbesondere von Nockenwellen. Bekannt sind WIG-Umschmelzverfahren sowie in der Zwischenzeit auch Laserumschmelzverfahren mit einem Rechteckfokus. Bei letzterem wird jedoch in mehreren Schritten umgeschmolzen. Die Erfindung soll die Taktzeiten verkürzen und die Wirtschaftlichkeit weiter erhöhen. Das erfindungsgemäße Verfahren arbeitet ebenfalls mit einem zu einem Rechteck fokussierten Laserstrahl, dessen Länge sich jedoch über die gesamte Breite der Werkstückoberfläche und damit der Nocke (11) erstreckt. Leistungsdichte und Relativgeschwindigkeit sind zur Erzielung einer bestimmten Umschmelztiefe eingestellt. Fertigung von Nockenwellen für Hubkolbenmotoren.

Description

  • Die Erfindung betrifft ein Verfahren zum Laserumschmelzen gemäß dem Oberbegriff des Patentanspruchs 1. Dabei geht es um die Steigerung der Verschleißfestigkeit metallischer Oberflächen. Von besonderer Bedeutung ist dies bei Nockenwellen, die zur Ventilsteuerung in Brennkraftmaschinen Verwendung finden. Die auf der Nockenwelle angeordneten einzelnen Nocken bewirken durch ihre Drehbewegung eine Verstellung korrespondierender Stößel, Schwinghebel oder dergleichen. Üblicherweise wird die Verschleißfestigkeit der Nocken-Laufflächen durch Umschmelzen erhöht. Hierfür ist das sogenannte WIG-Verfahren (Wolfram-Inert-Gas-Verfahren) schon seit längerem bekannt. Ein Nachteil dieses Verfahrens ist insbesondere der relativ hohe Zeitaufwand und die damit verbundenen langen Taktzeiten. Aus der DE 39 16 684 A1 ist es bekannt, das Umschmelzen von Schlepphebel-Laufflächen für die Ventilsteuerung von Verbrennungskraftmaschinen mit Hilfe eines rechteckigen Laserstrahls durchzuführen. Die Breite der umzuschmelzenden Flächen wird dort in mehrere Teilbereiche aufgeteilt, wobei ein großer mittlerer Teilbereich zeitlich getrennt von äußeren Randbereichen umgeschmolzen wird. Der Zeitaufwand ist auch hier noch relativ hoch.
  • Aufgabe der vorliegenden Erfindung ist es, ein besonders wirtschaftliches Verfahren zum Laserumschmelzen zu schaffen.
  • Erfindungsgemäß wird die Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Es hat sich gezeigt, daß bei einer bestimmten Parametereinstellung ein Umschmelzen der gesamten Oberflächenbreite in einem Arbeitsgang möglich ist, ohne daß es zu unerwünschten Erscheinigungen in den Flächenrandbereichen kommt. Entsprechend ist bei dem erfindungsgemäßen Verfahren die Länge des Laserstrahlrechtecks etwa so breit eingestellt wie die Breite der Werkstückoberfläche, mit einer Rechteckbreite von etwa 1 bis 3 mm. Der Laserstrahl weist unmittelbar über der metallischen Oberfläche eine Leistungsdichte von 5 x 10⁴ bis 1 x 10⁵ W/cm² auf. Außerdem bewegt sich die metallische Oberfläche relativ und in etwa quer zum Laserstrahl mit einer Geschwindigkeit von 2 bis 6,5 cm/sek, vorzugsweise 4 bis 4,5 cm/sek. Durch das erfindungsgemäße Verfahren lassen sich auf wirtschaftliche Weise, daß heißt mit relativ kurzer Bearbeitungszeit, insbesonders verschleißfeste Flächen erzielen.
  • Vorteilhafterweise wird das die metallische Oberfläche aufweisende Werkstück, insbesondere die Nockenwelle, vor dem Laserumschmelzen auf 360 bis 420° C, vorzugsweise auf etwa 400° C vorgewärmt. Die Umschmelzzeit wird dadurch weiter verringert und die Verschleißfestigkeit nach Beendigung des Verfahrens insgesamt verbessert.
  • Die Qualität der Flächenrandbereiche korrespondiert stark mit der Umschmelztiefe. Besonderes vorteilhaft ist ein Umschmelzen der Oberfläche bis zu einer Tiefe von 350 µm. Zu dem genannten Maß wird noch eine Toleranz von vorzugsweise 200 µm für ein nach dem Umschmelzen gegebenenfalls durchzuführendes Schleifen der Oberfläche addiert.
  • Ein Beispiel für das erfindungsgemäße Verfahren wird im folgenden anhand der einzigen Figur näher erläutert. Diese zeigt eine von mehreren auf einer Nockenwelle 10 angeordnete Nocke 11. Die Lauffläche der Nocke ist mit der Ziffer 12 bezeichnet. Zum Umschmelzen wird ein Laserstrahl über eine nicht gezeigte Optik zu einem auf die Lauffläche 12 gerichteten Rechteck 13 fokussiert. Letzteres ist lediglich zum besseren Verständnis schraffiert gezeichnet. Zum Umschmelzen der gesamten Lauffläche wird die Nockenwelle 10 gedreht. Aufgrund der nicht kreisrunden Form des Nockens 11 ist die Optik in ihrem Abstand zur Nockenwelle 10 verstellbar, so daß ein gleichbleibender oder kontrolliert einstellbarer Abstand zur Lauffläche 12 gegeben ist. Auf diese Weise ist im Bereich des Rechtecks 13 und des darunter durchlaufenden Nockens 11 eine einstellbare Leistungsdichte von etwa 5 x 10⁴ bis 1 x 10⁵ W/cm² gewährleistet. Die Länge des Rechtecks 13 entspricht der Breite der Lauffläche 12. Die Breite des Rechtecks 13 beträgt etwa 1 bis 3 mm. Die Nockenwelle 10 rotiert zum Umschmelzen mit einer bestimmten Geschwindigkeit, so daß sich an der Lauffläche 12 eine Geschwindigkeit relativ zum Rechteck 13 des Laserstrahls von 2 bis 6,5 cm/sek, vorzugsweise 4 bis 4,5 cm/sek ergibt.
  • In einer weiteren Ausführungsform liegt die Geschwindigkeit der metallischen Oberfläche relativ zum Laserstrahl zwar in dem oben angegebenen Bereich, jedoch rotiert die Nockenwelle 10 nicht gleichförmig, sondern in Abhängigkeit von der Nockenform abschnittsweise mit unterschiedlichen Winkelgeschwindigkeiten. Die ncht kreisrunde Form der Nocke 11 bedingt im Bereich der Nockenspitze 14 und der angrenzenden Laufflächenbereiche eine schlechtere Wärmeabfuhr, weil hier sich die umzuschmelzenden Oberflächen dichter gegenüberliegen als beispielsweise am stumpfen Ende 15. Zur Erzielung einer gewünschten Umschmelztiefe von etwa 350 µm ist deshalb eine Variation der Nockenwellenrotationsgeschwindigkeit erforderlich.
  • Vor dem eigentlichen Umschmelzvorgang wird die Nockenwelle 10 auf etwa 400° C vorgewärmt. Nach dem Umschmelzen ist ein besonders gesteuerter Abkühlvorgang nicht erforderlich. Ein Abschreckungseffekt ergibt sich allein durch die Wärmeabfuhr von der Lauffläche 12 in Richtung auf die Nockenwelle 10.
  • Sofern nach dem Umschmelzen ein Schleifen der Laufflächen 12 erfolgt, ist dies bei der Einstellung der Umschmelztiefe über die Rotationsgeschwindigkeit der Nockenwelle 10 und gegebenenfalls die Leistungsdichte des Laserstrahls zu berücksichtigen. Sofern maximal 200 µm abgeschliffen werden, ist eine Umschmelztiefe von 550 µm einzustellen.
  • Die Nockenwelle 10 besteht aus Gußeisen. Die oben genannten Parameter gelten insbesondere für Gußeisen mit der Bezeichnung GG 25 bis GG 30.
  • BEZUGSZEICHENLISTE
  • 10
    Nockenwelle
    11
    Nocke
    12
    Lauffläche
    13
    Rechteck
    14
    Nockenspitze
    15
    Ende

Claims (4)

  1. Verfahren zum Laserumschmelzen metallischer Oberflächen, insbesondere von Nocken-Laufflächen, mit einem zu einem Rechteck fokussierten Laserstrahl, gekennzeichnet durch folgende Merkmale:
    - die Rechtecklänge des Laserstrahls entspricht etwa der Breite der Werkstückoberfläche, die Rechteckbreite beträgt etwa 1 bis 3 mm;
    - der Laserstrahl weist unmittelbar über der metallischen Oberfläche eine Leistungsdichte von 5 x 10⁴ bis 1 x 10⁵ W/cm² auf;
    - die metallische Oberfläche bewegt sich relativ und in etwa quer zum Laserstrahl mit einer Geschwindigkeit von 2 bis 6,5 cm/sek.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß sich die metallische Oberfläche relativ und in etwa quer zum Laserstrahl mit einer Geschwindigkeit von 4 bis 4,5 cm/sek bewegt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das die metallische Oberfläche aufweisende Werkstück, insbesondere eine Nockenwelle (10) mit Nocken (11), vor dem Laserumschmelzen auf 360° bis 420° C, vorzugsweise auf etwa 400° C vorgewärmt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Oberfläche (Lauffläche 12) etwa 350 µm tief umgeschmolzen wird, gegebenenfalls zuzüglich einer Toleranz von vorzugsweise 200 µm für ein nach dem Umschmelzen durchzuführendes Schleifen der Oberfläche.
EP92907656A 1991-04-12 1992-04-07 Verfahren zum laserumschmelzen metallischer oberflächen Expired - Lifetime EP0578696B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4111989 1991-04-12
DE4111989 1991-04-12
PCT/DE1992/000295 WO1992018653A1 (de) 1991-04-12 1992-04-07 Verfahren zum laserumschmelzen metallischer oberflächen

Publications (2)

Publication Number Publication Date
EP0578696A1 EP0578696A1 (de) 1994-01-19
EP0578696B1 true EP0578696B1 (de) 1995-09-06

Family

ID=6429466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92907656A Expired - Lifetime EP0578696B1 (de) 1991-04-12 1992-04-07 Verfahren zum laserumschmelzen metallischer oberflächen

Country Status (7)

Country Link
US (1) US5446258A (de)
EP (1) EP0578696B1 (de)
JP (1) JPH07500632A (de)
AU (1) AU1537392A (de)
ES (1) ES2083164T3 (de)
RU (1) RU2074265C1 (de)
WO (1) WO1992018653A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241527A1 (de) * 1992-12-10 1994-06-16 Opel Adam Ag Verfahren zum Aufhärten und ggf. Glätten von Maschinenbauteilen sowie nach diesem Verfahren hergestellten Maschinenbauteilen
DE19514285C1 (de) * 1995-04-24 1996-06-20 Fraunhofer Ges Forschung Vorrichtung zum Umformen von Werkstücken mit Laserdiodenstrahlung
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
CZ215398A3 (cs) * 1996-01-15 1999-01-13 The University Of Tennessee Research Corporation Zlepšování povrchů pomocí laseru
US5906053A (en) * 1997-03-14 1999-05-25 Fisher Barton, Inc. Rotary cutting blade having a laser hardened cutting edge and a method for making the same with a laser
US6294225B1 (en) 1999-05-10 2001-09-25 The University Of Tennessee Research Corporation Method for improving the wear and corrosion resistance of material transport trailer surfaces
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US20030168132A1 (en) * 2001-03-06 2003-09-11 Nsk Ltd. Method for measuring particle size of inclusion in metal by emission spectrum intensity of element constituting inclusion in metal, and method for forming particle size distribution of inclusion in metal, and apparatus for executing that method
US6857255B1 (en) 2002-05-16 2005-02-22 Fisher-Barton Llc Reciprocating cutting blade having laser-hardened cutting edges and a method for making the same with a laser
DE102012212791B4 (de) * 2012-07-20 2014-02-27 Federal-Mogul Nürnberg GmbH Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
US10138528B2 (en) 2012-09-06 2018-11-27 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
CN103071931A (zh) * 2013-01-14 2013-05-01 温州大学 一种飞秒激光对凸轮表面微造型的方法
EP2862648A1 (de) * 2013-10-18 2015-04-22 Siemens Aktiengesellschaft Teilweises Umschmelzen von gegossenen Bauteilen und gegossene Komponente
BR112016020870B1 (pt) * 2014-03-11 2021-05-18 Etxe-Tar, S.A. método de endurecimento a laser de uma superfície de uma peça de trabalho; método de endurecimento a laser de superfícies de munhões de um virabrequim e método para endurecimento de áreas de superfície de pelo menos dois virabrequins
CN114592118A (zh) 2015-03-17 2022-06-07 爱科古恩A.I.E. 用于金属片材的热处理的方法和系统
US11047019B2 (en) * 2015-05-08 2021-06-29 Ikergune, A.I.E Method and apparatus for heat treatment of a ferrous material using an energy beam
RU2640516C1 (ru) * 2016-11-22 2018-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ лазерного упрочнения полой металлической заготовки
CN111230318A (zh) * 2020-02-19 2020-06-05 五邑大学 一种适合于曲面的均匀激光微造型方法
CN112775441A (zh) * 2020-12-25 2021-05-11 南京航空航天大学 光束定制模组及减少激光选区熔化孔隙缺陷的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304978A (en) * 1978-10-05 1981-12-08 Coherent, Inc. Heat treating using a laser
JPS56112415A (en) * 1980-02-13 1981-09-04 Toshiba Corp Production of cam
JPS619517A (ja) * 1984-06-22 1986-01-17 Mitsubishi Electric Corp 回転体機械部品の表面改質装置
JPS6237350A (ja) * 1985-08-12 1987-02-18 Toshiba Corp 表面熱処理装置
US4714809A (en) * 1986-08-15 1987-12-22 Tocco, Inc. Method and apparatus for shaping the surfaces of cams on a camshaft
JPS6389624A (ja) * 1986-10-03 1988-04-20 Nissan Motor Co Ltd カムシヤフトの表面硬化処理方法
JPS63134634A (ja) * 1986-11-26 1988-06-07 Nissan Motor Co Ltd カムシヤフトの表面硬化処理方法
JPS63293118A (ja) * 1987-05-26 1988-11-30 Mazda Motor Corp カムシャフトの製造方法
DE3910280A1 (de) * 1989-03-30 1990-10-11 Aeg Elotherm Gmbh Verfahren zum umschmelzhaerten metallischer werkstuecke
DE3916684A1 (de) * 1989-05-23 1990-11-29 Opel Adam Ag Verfahren zum umschmelzhaerten von oberflaechen

Also Published As

Publication number Publication date
ES2083164T3 (es) 1996-04-01
EP0578696A1 (de) 1994-01-19
US5446258A (en) 1995-08-29
RU2074265C1 (ru) 1997-02-27
AU1537392A (en) 1992-11-17
JPH07500632A (ja) 1995-01-19
WO1992018653A1 (de) 1992-10-29

Similar Documents

Publication Publication Date Title
EP0578696B1 (de) Verfahren zum laserumschmelzen metallischer oberflächen
EP0009563B1 (de) Verfahren zum Umschmelzhärten der Oberfläche eines um seine Drehachse rotierenden Werkstückes, welche Oberfläche unterschiedlichen Abstand von der Drehachse hat
EP0144817B1 (de) Verfahren zur Herstellung verschleissfester Zylinderlaufflächen von Brennkraftmaschinen
DE102005006489B4 (de) Nockenwellenanordnung
EP1041173A1 (de) Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
DE3431361C2 (de) Verfahren zum Herstellen einer gebauten Nockenwelle
EP0355360B1 (de) Verfahren zum Herstellen von Tassenstösseln für Hubkolbenmaschinen
EP0808228B2 (de) Verfahren zum bruchtrennen von werkstücken
DE602004011733T2 (de) Pleuel mit einem geteilten Pleuelstangenkopf und entsprechendes Herstellungsverfahren
EP0416296B1 (de) Verfahren zum Herstellen von im Gesenk geprägten oder geschmiedeten Werkstücken
DE2952290A1 (de) Nockenfolger
WO2006087074A1 (de) Verbindungeiner welle mit einem turbinenrad eines abgasturboladers
DE2741567C2 (de) Verfahren zum Herstellen von durch Umschmelzhärten gehärteten Oberflächen
EP0924440B1 (de) Geschmiedetes Pleuel für Hubkolbenmaschinen aus Kohlenstoffstahl mit bruchgetrenntem Lagerdeckel
DE19611929C1 (de) Schichtverbundwerkstoff und Verfahren zur Verbesserung der Oberflächenhärte von Schichtverbundwerkstoffen
EP0030042B1 (de) Verfahren zur Gestaltung des Randes einer Brennraummulde eines Leichtmetallkolbens
DE4210751A1 (de) Verfahren zum laserumschmelzen metallischer oberflaechen
DE3418555C1 (de) Verfahren zum Umschmelzhaerten der Oberflaeche von Zylindern aus kohlenstoffhaltigem Gusseisen
EP0601024B1 (de) Verfahren für die herstellung einer skikante
EP0459466A1 (de) Nockenwelle
DE19907258C1 (de) Verfahren zur Herstellung von Nockenwellen und danach hergestellte Nockenwelle
DE3405983C1 (de) Verschleißfeste Kolbenringnuten an einem aus Vergütungsstahl hergestellten Kolbenoberteil eines Brennkraftmaschinenkolbens
EP1161571B1 (de) Verfahren zum bearbeiten einer oberfläche eines bauteils
EP1785585B1 (de) Verfahren zum Herstellen einer Dampfturbinenwelle
WO1991018705A1 (de) Verfahren zur oberflächenbehandlung von werkstücken mit laserstrahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB IT SE

17Q First examination report despatched

Effective date: 19950223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT SE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MLI LASERS

Owner name: MORDIKE, BARRY LESLIE, PROF. DR.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950911

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2083164

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MLI LASERS (1992) LTD.

Owner name: MORDIKE, BARRY LESLIE, PROF. DR.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980406

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980423

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980424

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980430

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990408

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19990408

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

EUG Se: european patent has lapsed

Ref document number: 92907656.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050407