EP0575309A1 - Schwenkkolben-Verbrennungsmotor - Google Patents

Schwenkkolben-Verbrennungsmotor Download PDF

Info

Publication number
EP0575309A1
EP0575309A1 EP93890121A EP93890121A EP0575309A1 EP 0575309 A1 EP0575309 A1 EP 0575309A1 EP 93890121 A EP93890121 A EP 93890121A EP 93890121 A EP93890121 A EP 93890121A EP 0575309 A1 EP0575309 A1 EP 0575309A1
Authority
EP
European Patent Office
Prior art keywords
piston
crankshaft
transverse slot
internal combustion
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93890121A
Other languages
English (en)
French (fr)
Other versions
EP0575309B1 (de
Inventor
Johann Geiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0575309A1 publication Critical patent/EP0575309A1/de
Application granted granted Critical
Publication of EP0575309B1 publication Critical patent/EP0575309B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/02Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees

Definitions

  • the present invention relates to a swinging piston internal combustion engine which has a swinging shaft on which at least one double-acting piston is mounted, so that it can carry out a swinging movement together with the swinging shaft, the piston being guided tightly in a multi-part housing during this swinging movement, wherein Furthermore, the piston has a transverse slot in which a sliding block is slidably arranged, in which a pin of a crankshaft engages, so that the crankshaft is set into a rotary movement by the pivoting movement of the piston.
  • Such a swing piston internal combustion engine is known from FR-A-447 632.
  • the transverse slot is perpendicular to the swivel shaft, so the slider moves towards or away from the swivel shaft.
  • the crankshaft is parallel to and offset from the swivel shaft.
  • crankshaft parallel to and offset from the swivel shaft is sometimes unfavorable for reasons of space, e.g. when the swing piston internal combustion engine is to be used to drive the compressor group of a jet engine. It would be cheaper here if the crankshaft (drive shaft) were coaxial with the swivel shaft or at least had an intersection with it.
  • the output direction of the crankshaft could of course be deflected by means of a pair of bevel gears, and a parallel displacement by means of two pairs of bevel gears. Apart from the additional effort in the production, this is associated with additional friction losses.
  • crankshaft is at right angles to the pivot shaft, that the sliding block is guided in the transverse slot along an arc, the center of the arc being on the pivot shaft, and that Cross slot and the pivot shaft are in a common plane.
  • the transverse slot must be essentially parallel to the swivel shaft. It is problematic, however, that due to the pivoting movement of the piston in which the transverse slot is present, the transverse slot also moves somewhat towards and away from the crankshaft; in the middle position it is closest to the crankshaft. In order to compensate for this movement without making the length of the crankshaft changeable (which would in turn be associated with friction losses), it is provided according to the invention that the slider is guided in the transverse slot along an arc, the center of the arc being on the pivot shaft.
  • the pin of the crankshaft is designed as a ball pin which engages in a corresponding spherical cup of the sliding block. Since the sliding block rotates to a certain extent (on the one hand due to the pivoting movement of the piston, on the other hand due to the curvature of the slot) while it is reciprocating, the connection between the journal of the crankshaft and the sliding block must allow a rotating movement to this extent ; this can be achieved by means of a ball pin which engages in a spherical cup. Alternatively, oblique pins could be used instead of ball pins.
  • the use of a ball stud has the advantage that it automatically guides the sliding block along the circular arc.
  • the side of the piston opposite the pivot shaft and where the transverse slot is located is the shape of a spherical cap.
  • the sliding block always plunges into the piston to the same extent or is always in alignment with it, regardless of the position of the sliding block.
  • the oscillating-piston internal combustion engine is a two-stroke engine and if two opposing, double-acting pistons are provided on the pivoting shaft, between which two projections are provided on the housing, which are opposite one another with respect to the pivoting shaft, and which extend as far as the sealing shaft and close to it if the suction chambers are connected to the pistons with a transverse slot and if the combustion chambers are connected to the other pistons.
  • a swivel piston internal combustion engine is designed as a two-stroke engine, two opposite double-acting pistons being provided on the swivel shaft, between which two projections opposite one another with respect to the swivel shaft are provided on the housing that extend to the swivel shaft and lie close to it.
  • this engine consists of two independent, conventional two-stroke engines: an intake chamber and a combustion chamber are adjacent to each movable piston.
  • a compressor can be provided instead of a motor (see page 7, last full paragraph of DE-A-22 28 083).
  • the present invention takes a different approach: the suction chambers border on one piston and the brine chambers border on the other pistons.
  • only a double-acting piston is provided and the housing is closed off from the central position of the piston by an essentially flat cylinder head.
  • This embodiment is particularly compact.
  • FIG. 1 shows schematically the arrangement of an engine according to the invention in a jet engine
  • FIG. 2 shows the motor from FIG. 1 on an enlarged scale
  • 3 shows a section along the line III-III in Fig. 2.
  • Fig. 4 shows another embodiment of the invention
  • Fig. 5 shows yet another embodiment of the invention
  • FIG. 6 shows a section along the line VI-VI in FIG. 5.
  • the motor according to the invention can be used universally per se; 1, using the example of a jet engine, explains why its geometry is particularly favorable.
  • the motor can of course also be used to drive propellers or for any other purpose.
  • Fig. 1 the motor according to the invention is shown as it is used to drive the axial compressor of a jet engine.
  • the motor has a housing 1 in which a pivot shaft 4 is mounted.
  • the housing 1 is coaxial with the swivel shaft 4.
  • the output takes place via a crankshaft 16, the axis of rotation of which intersects the swivel shaft 4, i.e. in Fig. 1, the crankshaft 16 and the pivot shaft 4 are at the same height.
  • the crankshaft 16 is rotatably mounted on the housing 1 in bearings 17, 17 '.
  • the shaft 18 of the axial compressor is fastened in a rotationally fixed manner; this carries impellers 10, 10 ', which compress the inflowing air in a known manner to a pressure which is higher than the pressure in the combustion chamber 20.
  • the wall of the combustion chamber 20 has openings 21 through which the compressed Air and the exhaust gases of the engine according to the invention flow into the combustion chamber 20.
  • the fuel is injected into the combustion chamber 20 via injection nozzles 19, 19 '.
  • crankshaft 16 and the pivot shaft 4 are at the same height. Since the engine is to be in the center of the jet engine for reasons of space and for fluidic reasons, and on the other hand the shaft 18 of the axial compressor is also in the center of the jet engine, the shaft 18 would otherwise have to be connected to the crankshaft 16 via additional gears.
  • the housing 1 is spherical; of course, other shapes would also be conceivable, e.g. ellipsoidal or cylindrical; it is only important that there is rotational symmetry about the pivot shaft 4.
  • the housing 1 is drawn in one piece for simplification; in practice, of course, it must consist of at least two parts so that the engine can be assembled.
  • Two projections 11, 12 are attached to the housing 1, e.g. screwed on. These extend up to the pivot shaft 4 and lie tightly against it by means of sealing strips.
  • Two pistons are attached to the swivel shaft 4 (e.g. screwed on): an intake piston 6 and a working piston 5. This creates a total of four chambers: two intake chambers that adjoin the intake piston 6 and two combustion chambers that adjoin the working piston 5. Spark plugs 22 project into the combustion chambers.
  • the pivot shaft 4 has cutouts 23; as a result, overflow channels are formed between the intake chambers and combustion chambers at certain rotational positions of the pivot shaft 4, as is customary in two-stroke engines.
  • the intake piston 6 has a transverse slot 7, which extends approximately normal to the plane of the drawing in FIG. 2. It is curved in a circular arc in accordance with the spherical surface of the intake piston 6, so it approaches at its ends (in FIG. 2 above and below the Plane) something of the pivot shaft 4 (dotted line in Fig. 2).
  • a sliding block 8 in which a ball pin 9 of the crankshaft 16 is mounted.
  • it has a spherical cup which merges outwards into a conical extension 26, so that the sliding block 8 can also rotate to a certain extent with respect to the crankshaft 16.
  • the sliding block 8 must consist of two parts so that the ball pin 9 can be inserted into the dome-shaped pan.
  • the ball pin 9 is seated on a disk-shaped widening 25 of the crankshaft 16 which has a recess 24 in the area of the ball pin in order to keep the unbalance as small as possible.
  • the housing is spherical, the piston running surfaces 3 and the pistons 5, 6 are also spherical.
  • the surface of the piston 6, where the transverse slot 7 is arranged, is therefore not only rotationally symmetrical with respect to the pivot shaft 4, but also with respect to the crankshaft 16.
  • the disk-shaped widening 26 could therefore be hollow-spherical on its side facing the engine and adapted to the piston 6 so that it would also be protected against contamination in the housing opening 27 required for the crankshaft 16.
  • Intake lines 28; 2 they open for space reasons below and / or above the plane of the drawing (ie laterally offset against the crankshaft 16). In principle, however, they can also open directly above and below the crankshaft 16, as is shown in FIG. 1.
  • Carburettors 14, 14 '(see FIG. 1) are provided at the other end of the intake lines.
  • the engine according to the invention functions as follows: In the position shown in FIG. 2, a negative pressure has arisen in the upper intake chamber, through the intake line 28 the fuel / air mixture is drawn in by the carburetor 14.
  • the pivot shaft 4 together with the pistons 5, 6 is pivoted clockwise and the mixture is compressed, which is the case in the lower suction chamber in FIG. 2 is just the case.
  • the mixture can flow into the combustion chamber through the recess 23.
  • the mixture is compressed by the next pivoting movement of the pivot shaft 4; this is the case with the upper combustion chamber in FIG. 2.
  • the mixture is ignited by means of the spark plug 22.
  • the working piston 5 is pressed down and the pivot shaft 4 is pivoted clockwise until the exhaust opening 29 is released by the working piston 5 and the exhaust gas can flow out.
  • fresh mixture flows through the recess 23 into the combustion chamber.
  • the output takes place via the crankshaft 16.
  • the sliding block 8 is located exactly in the middle of the transverse slot 7.
  • the crankshaft 16 rotates by a quarter turn, and the sliding block reaches one end of the transverse slot 7.
  • the transverse slot 7 moves somewhat towards the crankshaft 16; the movement of the sliding block 8 in the curved transverse slot 7 compensates for this so that the crank pin 9 can rotate in one and the same plane about the axis of the crankshaft 16 and nevertheless the sliding block 8 always dips into the transverse slot 7 to the same depth.
  • FIGS. 4 is very similar to that of FIGS. 2 and 3. The only difference is that here four combustion chambers (and not two intake and two combustion chambers) are provided. Accordingly, there are two double-acting working pistons 5, 6 '.
  • the pivot shaft 4 ' is hollow; the cavity is connected via slots 13, 13 '- depending on the swivel position - to two combustion chambers, to be precise, those with a current volume that is just maximum. At this moment, a certain amount of mixture is supplied via the hollow pivot shaft 4 '.
  • the combusted mixture is ejected in the combustion chambers on the right in FIG. 4, as in FIGS. 2 and 3 (through the exhaust opening 29), in the combustion chambers on the left in FIG. 4 by exhaust pipes 15, which are provided instead of the intake pipes 28.
  • the embodiment according to FIGS. 5 and 6 is essentially the left half of the embodiment according to FIG. 4.
  • the housing 1 is approximately hemispherical and is closed off by an essentially flat cylinder head 2. This takes over the function of the projections 11, 12; it is therefore tight (e.g. by means of sealing strips) on the swivel shaft 4 '.
  • It is provided with cooling fins 30.
  • cooling fins can also be attached to the spherically curved housing 1; this applies to all embodiments.
  • Fig. 6 it can be seen how the fuel / air mixture is supplied through the hollow pivot shaft 4 '.
  • the pivot shaft 4 ' is sealed at its ends by plugs 31, 31'. Just next to it, it has slots 32, 32 'through which the cavity in the pivot shaft 4' is in constant communication with feed channels 33, 33 '. This allows the fuel / air mixture to pass from the feed channels 33, 33 'into the cavity of the pivot shaft 4' and from there via the slots 13, 13 'into the corresponding combustion chambers.
  • this type of fuel supply is not the only one.
  • a full pivot shaft could also be used and a feed line could be provided in the direction of the axis of the pivot shaft next to the exhaust pipe 15, 15 '(see FIGS. 4, 5).
  • the exhaust pipe 15, 15 'in FIGS. 4, 5 could be in the drawing plane and a supply pipe could be provided above and below the drawing plane in order to achieve particularly good filling of the combustion chambers.
  • the engine can also be designed as a four-stroke engine or as an injection engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Der Schwenkkolben-Verbrennungsmotor weist eine Schwenkwelle (4) mit zumindest einem doppelseitig wirkenden Kolben (6) auf. Der Kolben (6) ist dicht in einem Gehäuse (1) geführt. Außerdem weist der Kolben (6) einen Querschlitz (7) auf, in dem ein Gleitst ein(8) verschiebbar angeordnet ist, in welchen ein Zapfen (9) einer Kurbelwelle (16) eingreift. Dadurch wird die Kurbelwelle (16) durch eine Schwenkbewegung des Kolbens (6) in eine Drehbewegung versetzt. Erfindungsgemäß liegt die Kurbelwelle (16) im rechten Winkel zur Schwenkwelle (4). Der Gleitstein (8) ist im Querschlitz (7) entlang eines Kreisbogens geführt, wobei der Mittelpunkt des Kreisbogens auf der Schwenkwelle (4) liegt. Der Querschlitz (7) und die Schwenkwelle (4) liegen in einer gemeinsamen Ebene. Auf diese Weise schneidet die Achse der Kurbelwelle (16) die Schwenkwelle (4), was aus Platzgründen oft vorteilhaft ist. Es ist zweckmäßig, wenn der Schwenkkolben-Verbrennungsmotor ein Zweitaktmotor mit vier Kammern ist, wobei an den Kolben (6) mit Querschlitz (7) die Ansaugkammern anschließen und an den anderen Kolben (5) die Verbrennungskammern anschließen. Der Motor kann aber auch vier Brennkammern aufweisen. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft einen Schwenkkolben-Verbrennungsmotor, der eine Schwenkwelle aufweist, auf der zumindest ein doppelseitig wirkender Kolben angebracht ist, sodaß dieser gemeinsam mit der Schwenkwelle eine Schwenkbewegung ausführen kann, wobei der Kolben bei dieser Schwenkbewegung dicht in einem mehrteiligen Gehäuse geführt ist, wobei weiters der Kolben einen Querschlitz aufweist, in dem ein Gleitstein verschiebbar angeordnet ist, in welchen ein Zapfen einer Kurbelwelle eingreift, sodaß die Kurbelwelle durch die Schwenkbewegung des Kolbens in eine Drehbewegung versetzt wird.
  • Ein derartiger Schwenkkolben-Verbrennungsmotor ist aus der FR-A-447 632 bekannt. Hier steht der Querschlitz senkrecht zur Schwenkwelle, das Gleitstück bewegt sich also zur Schwenkwelle hin oder von ihr weg. Demzufolge liegt die Kurbelwelle parallel zur Schwenkwelle und zu dieser versetzt.
  • Wie im Rahmen der vorliegenden Erfindung gefunden wurde, ist diese Anordnung (Kurbelwelle parallel zur Schwenkwelle und zu dieser versetzt) jedoch manchmal aus Platzgründen ungünstig, z.B. dann, wenn der Schwenkkolben-Verbrennungsmotor als Antrieb der Verdichtergruppe eines Strahltriebwerkes eingesetzt werden soll. Hier wäre es günstiger, wenn die Kurbelwelle (Antriebswelle) koaxial zur Schwenkwelle wäre oder zumindest einen Schnittpunkt mit dieser hätte.
  • Eine Umlenkung der Abtriebtsrichtung der Kurbelwelle könnte natürlich mittels eines Kegelradpaares erfolgen, eine parallele Versetzung mittels zweier Kegelradpaare. Abgesehen vom zusätzlichen Aufwand bei der Herstellung ist dies aber mit zusätzlichen Reibungsverlusten verbunden.
  • Es ist Aufgabe der vorliegenden Erfindung, einen Schwenkkolben-Verbrennungsmotor der eingangs genannten Art so abzuändern, daß ohne Verwendung zusätzlicher Bauteile (z.B. Kegelräder) die verlängerte Achse der Kurbelwelle die Schwenkwelle schneidet.
  • Diese Aufgabe wird durch einen Schwenkkolben-Verbrennungsmotor der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die Kurbelwelle im rechten Winkel zur Schwenkwelle liegt, daß der Gleitstein im Querschlitz entlang eines Kreisbogens geführt ist, wobei der Mittelpunkt des Kreisbogens auf der Schwenkwelle liegt, und daß der Querschlitz und die Schwenkwelle in einer gemeinsamen Ebene liegen.
  • Wenn die Kurbelwelle im rechten Winkel zur Schwenkwelle liegt, muß der Querschlitz im wesentlichen parallel zur Schwenkwelle liegen. Dabei ist aber problematisch, daß sich durch die Schwenkbewegung des Kolbens, in dem der Querschlitz vorhanden ist, der Querschlitz auch etwas in Richtung zur Kurbelwelle und von dieser weg bewegt; in Mittelstellung ist er der Kurbelwelle am nächsten. Um nun diese Bewegung auszugleichen, ohne die Länge der Kurbelwelle veränderbar zu machen (was wiederum mit Reibungsverlusten verbunden wäre), ist erfindungsgemäß vorgesehen, daß das Gleitstück im Querschlitz entlang eines Kreisbogens geführt ist, wobei der Mittelpunkt des Kreisbogens auf der Schwenkwelle liegt.
  • Es ist zweckmäßig, wenn der Zapfen der Kurbelwelle als Kugelzapfen ausgebildet ist, der in eine entsprechende kalottenförmige Pfanne des Gleitsteins eingreift. Da sich der Gleitstein (einerseits infolge der Schwenkbewegung des Kolbens, anderseits wegen der Krümmung des Schlitzes) in einem gewissen Ausmaß dreht, während er sich hin- und herbewegt, muß die Verbindung zwischen dem Zapfen der Kurbelwelle und dem Gleitstein eine Drehbewegung in diesem Ausmaß zulassen; dies kann durch einen Kugelzapfen, der in eine kalottenförmige Pfanne eingreift, erreicht werden. Alternativ könnten statt Kugelzapfen schräge Zapfen verwendet werden. Die Verwendung eines Kugelzapfens hat den Vorteil, daß dieser automatisch den Gleitstein entlang des Kreisbogens führt.
  • Vorzugsweise weist die Seite des Kolbens, die der Schwenkwelle gegenüberliegt und wo der Querschlitz angebracht ist, die Form einer Kugelkalotte auf. Dies hat den Vorteil, daß das dem Kolben zugewandte Ende der Kurbelwelle komplementär ausgebildet werden kann, sodaß es - infolge der Rotationssymmetrie der Kugelkalotte - unabhängig von der Drehstellung den Kolben abdeckt. Außerdem taucht dann der Gleitstein immer gleich weit in den Kolben ein oder er fluchtet immer mit diesem, unabhängig von der Lage des Gleitsteins.
  • Es ist zweckmäßig, wenn der Schwenkkolben-Verbrennungsmotor ein Zweitaktmotor ist und wenn an der Schwenkwelle zwei einander gegenüberliegende, doppelseitig wirkende Kolben vorgesehen sind, zwischen denen am Gehäuse zwei bezüglich der Schwenkwelle einander gegenüberliegenden Vorsprünge vorgesehen sind, die bis zur Schwenkwelle reichen und an dieser dicht anliegen, wenn an den Kolben mit Querschlitz die Ansaugkammern anschließen und wenn an den anderen Kolben die Verbrennungskammern anschließen.
  • Aus der DE-A-22 28 083 ist bereits bekannt, daß ein Schwenkolben-Verbrennungsmotor als Zweitaktmotor ausgebildet ist, wobei an der Schwenkwelle zwei einander gegenüberliegende, doppelseitig wirkende Kolben vorgesehen sind, zwischen denen am Gehäuse zwei bezüglich der Schwenkwelle einander gegenüberliegende Vorsprünge vorgesehen sind, die bis zur Schwenkwelle reichen und an dieser dicht anliegen. Dieser Motor besteht jedoch aus zwei unabhängigen, herkömmlichen Zweitaktmotoren: an jeden beweglichen Kolben grenzt eine Ansaugkammer und eine Brennkammer an. Aus diesem Grund kann z.B. anstatt eines Motors ein Kompressor vorgesehen werden (siehe Seite 7, letzter vollständiger Absatz der DE-A-22 28 083). Demgegenüber geht die vorliegende Erfindung einen anderen Weg: an einen Kolben grenzen die Ansaugkammern, und an den anderen Kolben grenzen die Brenkammern. Dies hat den Vorteil, daß der eine Kolben relativ kühl bleibt und daher der Abtrieb hier problemlos auch ohne Kühlung erfolgen kann. Der andere Kolben wird zwar heiß und muß gegebenenfalls gekühlt werden, er ist aber vom Abtrieb entsprechend weit entfernt. Diese Art, wie die Ansaugkammern und die Brennkammern angeordnet sind, ist unabhängig von der Lage der Kurbelwelle besonders günstig.
  • Bei einer anderen zweckmäßigen Ausführungsform ist nur ein doppelseitig wirkender Kolben vorgesehen und es ist das Gehäuse gegenüber der Mittelstellung des Kolbens durch einen im wesentlichen ebenen Zylinderkopf abgeschlossen. Diese Ausführungsform ist besonders kompakt.
  • Anhand der beiligenden Zeichnung wird die Erfindung näher erläutert. Es zeigt: Fig. 1 schematisch die Anordnung eines erfindungsgemäßen Motors in einem Strahltriebwerk; Fig. 2 den Motor aus Fig. 1 in vergrößertem Maßstab; Fig. 3 einen Schnitt entlang der Linie III-III in Fig. 2; Fig. 4 eine andere Ausführungsform der Erfindung; Fig. 5 noch eine andere Ausführungsform der Erfindung; und Fig. 6 einen Schnitt entlang der Linie VI-VI in Fig. 5.
  • Der erfindungsgemäße Motor kann an sich universell eingesetzt werden; anhand von Fig. 1 wird am Beispiel eines Strahltriebwerkes erklärt, warum seine Geometrie besonders günstig ist. Der Motor kann aber natürlich ebenso für den Antrieb von Propellern oder für beliebige andere Zwecke verwendet werden.
  • In Fig. 1 ist der erfindungsgemäße Motor dargestellt, wie er zum Antrieb des Axialverdichters eines Strahltriebwerkes verwendet wird. Der Motor weist ein Gehäuse 1 auf, in dem eine Schwenkwelle 4 gelagert ist. Im Querschnitt ist das Gehäuse 1 koaxial zur Schwenkwelle 4. Wie im folgenden noch genauer erläutert wird, erfolgt der Abtrieb über eine Kurbelwelle 16, deren Drehachse die Schwenkwelle 4 schneidet, d.h. in Fig. 1 liegen die Kurbelwelle 16 und die Schwenkwelle 4 auf der gleichen Höhe.
  • Die Kurbelwelle 16 ist am Gehäuse 1 in Lagern 17, 17' drehbar gelagert. Am in Fig. 1 linken Ende der Kurbelwelle 16 ist die Welle 18 des Axialverdichters drehfest befestigt; diese trägt Laufräder 10, 10', die in bekannter Weise die einströmende Luft auf einen Druck komprimieren, der höher ist als der Druck in der Brennkammer 20. Die Wand der Brennkammer 20 hat Öffnungen 21, durch die die komprimierte Luft und die Abgase des erfindungsgemäßen Motors in die Brennkammer 20 einströmen. Der Brennstoff wird über Einspritzdüsen 19, 19' in die Brennkammer 20 eingespritzt.
  • Aus Fig. 1 sieht man deutlich, wie günstig es ist, wenn die Kurbelwelle 16 und die Schwenkwelle 4 auf gleicher Höhe liegen. Da der Motor aus Platzgründen und aus strömungstechnischen Gründen in der Mitte des Strahltriebwerkes liegen soll und anderseits die Welle 18 des Axialverdichters ebenfalls in der Mitte des Strahltriebwerkes liegt, müßte sonst die Welle 18 mit der Kurbelwelle 16 über zusätzliche Getriebe verbunden werden.
  • Anhand der Fig. 2 und 3 wird nun ein Ausführungsbeispiel der Erfindung näher erläutert. Bei diesem Ausführungsbeispiel ist das Gehäuse 1 kugelförmig; es wären aber natürlich auch andere Formen denkbar, z.B. ellipsoidförmig oder zylindrich; wichtig ist nur, daß eine Rotationssymmetrie um die Schwenkwelle 4 besteht.
  • Das Gehäuse 1 ist zwar zur Vereinfachung einteilig gezeichnet; in der Praxis muß es aber natürlich aus zumindest zwei Teilen bestehen, damit der Motor zusammengebaut werden kann. Am Gehäuse 1 sind zwei Vorsprünge 11, 12 befestigt, z.B. angeschraubt. Diese reichen bis zur Schwenkwelle 4 und liegen mittels Dichtleisten dicht an dieser an. An der Schwenkwelle 4 sind zwei Kolben befestigt (z.B. angeschraubt): ein Ansaugkolben 6 und ein Arbeitskolben 5. Dadurch werden insgesamt vier Kammern gebildet: zwei Ansaugkammern, die an den Ansaugkolben 6 angrenzen, und zwei Brennkammern, die an den Arbeitskolben 5 angrenzen. In die Brennkammern ragen Zündkerzen 22. Die Schwenkwelle 4 weist Aussparungen 23 auf; dadurch werden Überströmkanäle zwischen Ansaugkammern und Brennkammern bei bestimmten Drehstellungen der Schwenkwelle 4 gebildet, wie dies bei Zweitaktmotoren üblich ist.
  • Der Ansaugkolben 6 weist einen Querschlitz 7 auf, der sich bei Fig. 2 etwa normal zur Zeichenebene erstreckt. Er ist entsprechend der kugelförmigen Oberfläche des Ansaugkolbens 6 kreisbogenförmig gekrümmt, nähert sich also an seinen Enden (bei Fig. 2 oberhalb und unterhalb der Zeichenebene) etwas der Schwenkwelle 4 (punktierte Linie in Fig. 2). In dem Querschlitz 7 befindet sich ein Gleitstein 8, in welchem ein Kugelzapfen 9 der Kurbelwelle 16 gelagert ist. Zu diesem Zweck weist er eine kalottenförmige Pfanne auf, die nach außen in eine kegelförmige Erweiterung 26 übergeht, sodaß sich der Gleitstein 8 gegenüber der Kurbelwelle 16 auch in gewissem Maß verdrehen kann. Selbstverständlich muß der Gleitstein 8 aus zwei Teilen bestehen, damit der Kugelzapfen 9 in die kalottenförmige Pfanne eingesetzt werden kann.
  • Der Kugelzapfen 9 sitzt an einer scheibenförmigen Verbreiterung 25 der Kurbelwelle 16, die im Bereich des Kugelzapfens eine Aussparung 24 aufweist, um die Unwucht möglichst klein zu halten. Da bei diesem Ausführungsbeispiel das Gehäuse kugelförmig ist, sind auch die Kolbenlaufflächen 3 bzw. die Kolben 5, 6 kugelförmig. Die Oberfläche des Kolbens 6, wo der Querschlitz 7 angeordnet ist, ist daher nicht nur bezüglich der Schwenkwelle 4, sondern auch bezüglich der Kurbelwelle 16 rotationssyemmetrisch. Die scheibenförmige Verbreiterung 26 könnte daher an ihrer dem Motor zugewandten Seite hohlkugelförmig ausgebildet und dem Kolben 6 angepaßt sein, sodaß dieser auch in der für die Kurbelwelle 16 notwendigen Gehäuseöffnung 27 gegen Verschmutzung geschützt wäre.
  • In die Ansaugkammern münden Ansaugleitungen 28; gemäß Fig. 2 münden sie aus Platzgründen unter und/oder über der Zeichenebene (also seitlich gegen die Kurbelwelle 16 versetzt). Prinzipiell können sie aber auch direkt ober und unter der Kurbelwelle 16 einmünden, wie dies in Fig. 1 dargestellt ist. Am anderen Ende der Ansaugleitungen sind Vergaser 14, 14' (siehe Fig. 1) vorgesehen.
  • Der erfindungsgemäße Motor funktioniert wie folgt: In der in Fig. 2 gezeigten Stellung ist in der oberen Ansaugkammer ein Unterdruck entstanden, durch die Ansaugleileitung 28 wird vom Vergaser 14 Brennstoff/Luftgemisch angesaugt. Im nächsten Schritt wird die Schwenkwelle 4 samt Kolben 5, 6 im Uhrzeigersinn verschwenkt und das Gemisch verdichtet, was bei der in Fig. 2 unteren Ansaugkammer gerade der Fall ist. Durch die Aussparung 23 kann das Gemisch in die Brennkammer überströmen. Durch die nächste Schwenkbewegung der Schwenkwelle 4 wird das Gemisch komprimiert; dies ist bei der in Fig. 2 oberen Brennkammer gerade der Fall. Dann wird das Gemisch mittels der Zündkerze 22 gezündet. Dadurch wird der Arbeitskolben 5 nach unten gedrückt und die Schwenkwelle 4 im Uhrzeigersinn verschwenkt, bis die Auspufföffnung 29 vom Arbeitskolben 5 freigegeben wird und das Abgas ausströmen kann. Inmittelbar danach strömt frisches Gemisch über die Aussparung 23 in die Brennkammer.
  • Der Abtrieb erfolgt über die Kurbelwelle 16. In der in Fig. 2 gezeigten Stellung befindet sich der Gleitstein 8 genau in der Mitte des Querschlitzes 7. Wenn der Ansaugkolben 6 in Mittelstellung gelangt, dreht sich die Kurbelwelle 16 um eine viertel Umdrehung, und der Gleitstein gelangt zu einem Ende des Querschlitzes 7. Bei der Schwenkbewegung des Ansaugkolbens 6 bewegt sich zwar der Querschlitz 7 etwas zur Kurbelwelle 16 hin; durch die Bewegung des Gleitstein 8 im gekrümmten Querschlitz 7 wird dies aber gerade ausgeglichen, sodaß der Kurbelzapfen 9 in ein- und derselben Ebene um die Achse der Kurbelwelle 16 rotieren kann und trotzdem der Gleitstein 8 immer gleich tief in den Querschlitz 7 eintaucht.
  • Der Motor gemäß Fig. 4 ist ganz ähnlich aufgebaut wie der gemäß Fig. 2 und 3. Unterschiedlich ist lediglich, daß hier vier Brennkammern (und nicht zwei Ansaug- und zwei Brennkammern) vorgesehen sind. Demgemäß gibt es hier zwei doppelseitig wirkende Arbeitskolben 5, 6'. Zur Zuführung des Brennstoff/Luftgemisches ist die Schwenkwelle 4' hohl ausgebildet; der Hohlraum ist über Schlitze 13, 13' - je nach Schwenkstellung - mit jeweils zwei Brennkammer verbunden, und zwar mit denen, deren momentanes Volumen gerade maximal ist. In diesem Augenblick wird eine bestimmte Menge Gemisch über die hohle Schwenkwelle 4' zugeführt. Der Ausstoß des verbrannten Gemisches erfolgt bei den in Fig. 4 rechten Brennkammern wie gemäß Fig. 2 und 3 (durch die Auspufföffnung 29), bei den in Fig. 4 linken Brennkammern durch Auspuffleitungen 15, die anstelle der Ansaugleitungen 28 vorgesehen sind.
  • Die Ausführung gemäß den Fig. 5 und 6 ist im wesentlichen die linke Hälfte der Ausführung gemäß Fig. 4. Hier ist das Gehäuse 1 etwa halbkugelförmig und durch einen im wesentlichen ebenen Zylinderkopf 2 abgeschlossen. Dieser übernimmt die Funktion der Vorsprünge 11, 12; er liegt also dicht (z.B. mittels Dichtleisten) an der Schwenkwelle 4' an. Er ist mit Kühlrippen 30 versehen. Selbstverständlich können auch am kugelförmig gekrümmten Gehäuse 1 Kühlrippen angebracht sein; dies gilt für alle Ausführungsformen.
  • In Fig. 6 ist zu sehen, wie die Zufuhr des Brennstoff/ Luftgemisches durch die hohle Schwenkwelle 4' erfolgt. Die Schwenkwelle 4' ist an ihren Enden durch Stopfen 31, 31' dicht abgeschlossen. Knapp daneben weist sie Schlitze 32, 32' auf, durch die der Hohlraum in der Schwenkwelle 4' mit Zufuhrkanälen 33, 33' in ständiger Verbindung steht. Damit kann Brennstoff/Luftgemisch von den Zufuhrkanälen 33, 33' in den Hohlraum der Schwenkwelle 4' gelangen und von dort über die Schlitze 13, 13' in die entsprechenden Brennkammern.
  • Diese Art derBrennstoffzufuhr ist natürlich nicht die einzige. Es könnte ebenso eine volle Schwenkwelle verwendet werden und in Richtung der Achse der Schwenkwelle versetzt neben der Auspuffleitung 15, 15' (siehe Fig. 4, 5) eine Zufuhrleitung vorgesehen werden. Ebenso könnte auch die Auspuffleitung 15, 15' bei Fig. 4, 5 in der Zeichenebene liegen und oberhalb und unterhalb der Zeichenebene eine Zufuhrleitung vorgesehen sein, um eine besonders gute Füllung der Brennkammern zu erreichen.
  • Die Erfindung ist nicht auf die dargestellten Ausführungsformen beschränkt. Insbesondere kann der Motor auch als Viertaktmotor oder als Einspritzmotor ausgebildet sein.

Claims (5)

  1. Schwenkkolben-Verbrennungsmotor, der eine Schwenkwelle (4, 4') aufweist, auf der zumindest ein doppelseitig wirkender Kolben (6, 6') angebracht ist, sodaß dieser gemeinsam mit der Schwenkwelle (4, 4') eine Schwenkbewegung ausführen kann, wobei der Kolben (6, 6') bei dieser Schwenkbewegung dicht in einem mehrteiligen Gehäuse (1) geführt ist, wobei weiters der Kolben (6, 6') einen Querschlitz (7) aufweist, in dem ein Gleitstein (8) verschiebbar angeordnet ist, in welches ein Zapfen (9) einer Kurbelwelle (16) eingreift, sodaß die Kurbelwelle (16) durch die Schwenkbewegung des Kolbens (6, 6') in eine Drehbewegung versetzt wird, dadurch gekennzeichnet, daß die Kurbelwelle (16) im rechten Winkel zur Schwenkwelle (4, 4') liegt, daß der Gleitstein (8) im Querschlitz (7) entlang eines Kreisbogens geführt ist, wobei der Mittelpunkt des Kreisbogens auf der Schwenkwelle (4, 4') liegt, und daß der Querschlitz (7) und die Schwenkwelle (4, 4') in einer gemeinsamen Ebene liegen.
  2. Schwenkkolben-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß der Zapfen (9) der Kurbelwelle (16) als Kugelzapfen (9) ausgebildet ist, der in eine entsprechende kalottenförmige Pfanne des Gleitsteins (8) eingreift.
  3. Schwenkkolben-Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Seite des Kolbens (6, 6'), die der Schwenkwelle (4, 4') gegenüberliegt und wo der Querschlitz (7) angebracht ist, die Form einer Kugelkalotte aufweist.
  4. Schwenkkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß dieser ein Zweitaktmotor ist und daß an der Schwenkwelle (4) zwei einander gegenüberliegende, doppelseitig wirkende Kolben (5, 6) vorgesehen sind, zwischen denen am Gehäuse (1) zwei bezüglich der Schwenkwelle (4) einander gegenüberliegenden Vorsprünge (11, 12) vorgesehen sind, die bis zur Schwenkwelle (4) reichen und an dieser dicht anliegen, daß an den Kolben (6) mit Querschlitz (7) die Ansaugkammern anschließen und daß an den anderen Kolben (5) die Verbrennungskammern anschließen. (Fig. 2, 3)
  5. Schwenkkolben-Verbrennungsmotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß nur ein doppelseitig wirkender Kolben (6') vorgesehen ist und daß das Gehäuse (1) gegenüber der Mittelstellung des Kolbens (6') durch einen im wesentlichen ebenen Zylinderkopf (2) abgeschlossen ist. (Fig. 5, 6)
EP19930890121 1992-06-16 1993-06-16 Schwenkkolben-Verbrennungsmotor Expired - Lifetime EP0575309B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1220/92 1992-06-16
AT122092A AT402320B (de) 1992-06-16 1992-06-16 Schwenkkolbenmotor

Publications (2)

Publication Number Publication Date
EP0575309A1 true EP0575309A1 (de) 1993-12-22
EP0575309B1 EP0575309B1 (de) 1996-02-14

Family

ID=3509205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930890121 Expired - Lifetime EP0575309B1 (de) 1992-06-16 1993-06-16 Schwenkkolben-Verbrennungsmotor

Country Status (3)

Country Link
EP (1) EP0575309B1 (de)
AT (1) AT402320B (de)
DE (1) DE59301620D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222601B1 (en) * 2005-07-08 2007-05-29 Kamen George Kamenov Rotary valveless internal combustion engine
JP2011501032A (ja) * 2007-10-31 2011-01-06 ヒュットリン,ヘルベルト ピストン機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR447632A (fr) * 1911-10-31 1913-01-10 Leon Pernot Moteur cylindrique à secteurs équilibrés sur un axe fixe
AU6087169A (en) * 1969-09-15 1971-03-18 Henry Tg. Bedford Rotary piston pump or motor or internal combustion engine
DE2228083A1 (de) * 1972-06-09 1973-12-20 Bornemann Hubert Verbrennungsmotor mit fluegelkolben
WO1988003986A1 (en) * 1986-11-24 1988-06-02 3 D International A/S Power conversion machine having pistons which are moved in a turning movement in a spherical housing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE274668C (de) *
FR317902A (fr) * 1902-01-18 1902-10-01 Primat Un système de moteur rotatif
US1645959A (en) * 1926-06-25 1927-10-18 William V B Marquette Internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR447632A (fr) * 1911-10-31 1913-01-10 Leon Pernot Moteur cylindrique à secteurs équilibrés sur un axe fixe
AU6087169A (en) * 1969-09-15 1971-03-18 Henry Tg. Bedford Rotary piston pump or motor or internal combustion engine
DE2228083A1 (de) * 1972-06-09 1973-12-20 Bornemann Hubert Verbrennungsmotor mit fluegelkolben
WO1988003986A1 (en) * 1986-11-24 1988-06-02 3 D International A/S Power conversion machine having pistons which are moved in a turning movement in a spherical housing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222601B1 (en) * 2005-07-08 2007-05-29 Kamen George Kamenov Rotary valveless internal combustion engine
US7931006B1 (en) * 2005-07-08 2011-04-26 Kamen George Kamenov Valveless rotary internal combustion engine
JP2011501032A (ja) * 2007-10-31 2011-01-06 ヒュットリン,ヘルベルト ピストン機械
US8141475B2 (en) 2007-10-31 2012-03-27 Herbert Huettlin Piston machine

Also Published As

Publication number Publication date
DE59301620D1 (de) 1996-03-28
EP0575309B1 (de) 1996-02-14
AT402320B (de) 1997-04-25
ATA122092A (de) 1996-08-15

Similar Documents

Publication Publication Date Title
DE60009266T2 (de) Zylinder für eine brennkraftmaschine
DE102009007344A1 (de) Luftfilter für einen Zweitakt-Verbrennungsmotor mit Schichtspülung
DE102007051171B4 (de) Zweitakt-Verbrennungsmotor
DE2914489C2 (de) Zweitakt-Otto-Brennkraftmaschine
EP3699418B1 (de) Kolben für einen mit spülvorlage arbeitenden zweitaktmotor und zweitaktmotor
EP3284938B1 (de) Kolben für einen mit spülvorlage arbeitenden zweitaktmotor und zweitaktmotor
DE10321571B4 (de) Zweitaktmotor mit Spülvorlage
DE7339122U (de) Zweitakt-brennkraftmaschine
DE19751392A1 (de) Zweitakt-Verbrennungsmotor
EP0575309B1 (de) Schwenkkolben-Verbrennungsmotor
DE20020655U1 (de) Zweitaktmotor mit Frischgasvorlage und Flansch für einen Zweitaktmotor
DE3150654A1 (de) Vrbrennungsmotor mit einer rotierenden kolbenanordnung
DE3447004C2 (de) Schwenkkolben-Brennkraftmaschine
DE2433942B2 (de) Luftansaugende rotationskolben- brennkraftmaschine mit brennstoffeinspritzung
DE4417309A1 (de) Hubkolben-Brennkraftmaschine mit Verdichtungssteuerung
DE3018638C2 (de) Drehkolben-Brennkraftmaschine
DE10319216B4 (de) Zweitaktmotor
DE3811760C1 (de)
DE69200532T2 (de) Zweitaktmotor mit selektiver Steuerung für die in der Brennkammer eingeführte Ladung.
DE2454813A1 (de) Fackelgezuendeter hubkolbenverbrennungsmotor
DE3715279C2 (de)
EP4293210A1 (de) Zweitaktmotor
DE3820033A1 (de) Verbrennungskraftmaschine
DE2234077A1 (de) Kombinierte viertakt-brennkraftmaschine
DE2354623C3 (de) Zweitakt-Brennkraftmaschine mit Querstromspülung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19940113

17Q First examination report despatched

Effective date: 19950406

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960212

REF Corresponds to:

Ref document number: 59301620

Country of ref document: DE

Date of ref document: 19960328

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980511

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980514

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980707

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990608

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990616

EUG Se: european patent has lapsed

Ref document number: 93890121.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050616