EP0567560B1 - Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en uvre du procede - Google Patents

Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en uvre du procede Download PDF

Info

Publication number
EP0567560B1
EP0567560B1 EP92904291A EP92904291A EP0567560B1 EP 0567560 B1 EP0567560 B1 EP 0567560B1 EP 92904291 A EP92904291 A EP 92904291A EP 92904291 A EP92904291 A EP 92904291A EP 0567560 B1 EP0567560 B1 EP 0567560B1
Authority
EP
European Patent Office
Prior art keywords
processing chamber
blade
gas
disintegration
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92904291A
Other languages
German (de)
English (en)
Other versions
EP0567560A1 (fr
Inventor
Sven Thorsen Aaen
Halvor Steen Staal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BONTECH ENGINEERING AS
Original Assignee
BONTECH ENG AS
BONTECH ENGINEERING AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BONTECH ENG AS, BONTECH ENGINEERING AS filed Critical BONTECH ENG AS
Publication of EP0567560A1 publication Critical patent/EP0567560A1/fr
Application granted granted Critical
Publication of EP0567560B1 publication Critical patent/EP0567560B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/092Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed agitating the fluidised bed, e.g. by vibrating or pulsating
    • F26B3/0923Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed agitating the fluidised bed, e.g. by vibrating or pulsating by mechanical means, e.g. vibrated plate, stirrer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B1/00Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids
    • F26B1/005Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids by means of disintegrating, e.g. crushing, shredding, milling the materials to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers

Definitions

  • the invention relates to a process for continuous disintegration and/or drying of materials, such as paste, sludge, press cake, filter cake, particularly fibrous materials in an apparatus comprising a processing chamber having a chamber wall, the main shape thereof being substantially like a surface of revolution, and having an essentially vertical axis and a subjacent blast box, and said process including a continuous :
  • Similar processes are known and frequently form part of - as in the present case - a process comprising pre-treatment and feeding of the gas flow in the quantity and composition required to the apparatus, a pre-treatment and feeding of the raw material to the apparatus and a finishing treatment of the processed material and the exhaust gas after the discharge thereof from the apparatus.
  • DK 149.583B thus discloses an apparatus for fluidization drying and disintegration of a paste-like material, wherein the apparatus comprises a cylindrical drying chamber provided with an upwardly tapering bottom, and wherein the fluidization and drying medium is fed to the chamber through a circumferential slit between the tapering bottom and the chamber wall from an annular distribution chamber surrounding the lower part of the drying chamber.
  • An agitator coaxially arranged in the drying chamber and having blades being parallel to the tapering bottom ensures that no partially dried particles accumulate on the tapering bottom and that an agitation and disintegration of the largest particles from the paste-like material take place.
  • US-A-4,623,098 discloses a machine for batchwise granulation, coating, mixing and drying of powdery or granular raw materials, in which a rotatable horizontal disc is arranged at the bottom of a casing coaxially therein, said disc leaving an annular slit at the casing wall, through which the drying gas is injected from a subjacent dispersing chamber. Furthermore, drying gas may be injected from another dispersing chamber through perforations in the rotary disc.
  • An agitator is arranged above the rotary disc and coaxially therewith, above which a locally functioning, fast rotating disintegrator is arranged near the chamber wall. The axial speed of gas flow in the drying chamber is so moderate that the material remains at the bottom of the chamber. Processed material is discharged through an discharge opening opposite the rotary disc, the exhaust gas is discharged out through an exhaust opening at the top of the machine.
  • This machine does thus not relate to any actual or particularly effective fluidization drying process and neither to a continuous process.
  • the average axial flow rates of up-currents are between 1 to 3 m/s in the processing chamber, as the use of higher flow rates at most materials easily results in an excess of the terminal rate of fluidization, whereby a discharge of the incompletely processed material with the exhaust gas will take place.
  • This phenomenon in connection with the limitation in the gas temperature required by materials to be processed has hitherto set an upper limit for the effect or efficiency of fluidization drying, which has been particularly limiting in case of highly heat-sensitive materials, as in this case a rise in the temperature could not be used to increase the production.
  • Such materials have therefore hitherto often been dried by means of contact-drying on heat rollers or in a fluidized bed, which so far has been more economical. However, usually this also results in incomplete disintegration and consequently, in a protracted and uneven drying, often with an unacceptably high degree of heat damage to the product as the result.
  • DE-A-32 13 250 discloses a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 4 for continuous drying of powdery or granular material and especially non-heat-sensitive material according to the Spin-Flash-method.
  • the material is fed through the wall of the processing chamber above a rotary disc at the bottom of the chamber and the material is deposited on said disc.
  • the disc is provided at its periphery with upstanding guide blades. No further disintegrating means has been disclosed in connection with this apparatus.
  • the drying gas is fed into the processing chamber through vertical extending slots in the chamber wall opposite the guide blades and tangentially to the wall.
  • the object of the invention is to provide a process of the type stated in the introduction enabling a faster, more uniform, efficient and at the same time lenient disintegration and drying processing of heat-sensitive materials in particular.
  • the material fed does not settle at the bottom of the processing chamber, but is led up along the chamber wall by means of the fast rotating gas current as a thin fluidized layer in the full height of the chamber, preferably at a slight distance from the chamber wall during rotation, fast disintegration and drying, whereupon a fraction of the processed material is discharged with the exhaust gas at the top of the apparatus, while the incompletely processed portion of the material containing partially dry lumps are led downwards along the chamber wall and in the interior of the chamber, respectively.
  • the portion carried downwards is caught again by the heavy up-current at the bottom of the chamber and thus subjected to a further disintegration, carring upwards and drying.
  • the axial extension of the fluidized layer above the disintegrator is preferably larger than that of the disintegrator, whereby the upper part of the chamber may function as an area uneffected by the disintegrator said area being used for grading the material according to the degree of drying and particle size.
  • the disintegration and drying gas in varying quantities and/or at varying temperatures and/or gas compositions at different distances from the chamber wall, whereby a most appropriate variation of the gas current is provided in the various areas of the proccessing chamber. It is thus possible, for instance close to the chamber wall, to provide a gas current, being more intensive and of a higher temperature than that further away from the wall, whereby the heavy, wet particles adjacent to the chamber wall, and particularly in the lower area thereof, are subjected to the most intense disintegration and drying effect, while the lighter, more dry fractions of the material further away from the chamber wall are subjected to a more gentle processing.
  • a further improved turbulence in the gas current may for instance be obtained by at least sporadically feeding the disintegration and drying gas from successive blade interspaces of the blade means at different distances from the chamber wall.
  • a blade means comprising a coaxially arranged, rotatable bladewheel or comprising several blade elements of which at least one is a coaxially arranged, rotatable blade element, and further, to adjust the rotational direction and speed of the rotatable blade means in accordance with the type and quantity of the material fed, whereby the effect of the blade means may be adjusted to the material to be processed, whereby the most advantageous combination of disintegration and drying is obtained.
  • the process according to the invention may also be carried out using a blade means being completely or almost stopped, in which case the drop of gas pressure across the chamber may be adjusted.
  • advantageous numbers of revolutions of the rotating blade means during processing for many purposes are the ones providing the outer periphery thereof with tangential rates of speed between 1 m/s and 50 m/s, preferably between 2 m/s and 25 m/s, in particular between 2.5 m/s and 20 m/s, and when emptying the processing chamber, stopping the blade means.
  • Advantageous numbers of revolutions of the disintegrator during processing are such providing the outer periphery thereof with tangential rates of speed between 5 m/s and 180 m/s, preferably between 10 m/s and 100 m/s, most preferred between 20 m/s and 50 m/s, and when emptying the processsing chamber, stopping or nearly stopping the disintegrator.
  • Applicable drying gas temperatures may be ranging up to approximately 800°C and at heat-sensitive materials preferably up to approximately 600°C, in particular up to approximately 500°C. In many instances, this temperature is considerably above the temperatures usable by the known processes.
  • the invention relates to an apparatus for carrying out the process according to the invention, said apparatus comprising a processing chamber having a chamber wall, the main shape thereof being substantially like a surface of revolution, and having an essentially vertical axis, and a subjacent blast box, and said apparatus comprises continuously acting means
  • a rotation of the speed profile of the gas current is furthermore obtained in addition to an extra rotation of the gas current, resulting from the rotation of the blade wheel, and finally, a possibility for intensifying the gas current provided that the blade wheel is shaped as a blower and the rotational speed is sufficiently high.
  • the blade wheel may then be connected pivotally with the disintegrator and rotated with or without a gear ratio thereto or advantageously rotated by means of a separate driven shaft, preferably a hollow shaft enclosing the disintegrator shaft and driven by means of a motor arranged outside of the blast box.
  • the rotational speed of the blade wheel is regulated independently of the rotational speed of the disintegrator.
  • the blade wheel may be driven by the gas current carried through the apparatus.
  • the outlets from the successive blade interspaces in the blade wheel may be arranged at varying distances from the chamber wall by means of coverings and openings variedly arranged at the blades for the provision of a more irregular and consequently, more turbulent gas current in the processing chamber.
  • the blade wheel may comprise blade interspaces, which together with the pertaining part of the inlet opening to the blade wheel each are divided into at least two flow channels by means of guide plates arranged therein and orientated in the flow direction.
  • the flow channels may have varying channel cross sections and the outlets at different distances from the chamber wall.
  • the gas flow from the same blade interspace is divided into currents flowing into the chamber at different distances from the chamber wall, and if so desired with varying intensity and direction and differing from those from other blade interspaces, whereby an additional turbulent current is produced in the processing chamber.
  • the differently shaped flow channels may advantageously be connected to a separate gas supply, whereby gas flows of varying compositions may be fed into the processing chamber at different places.
  • This is particularly advantageous for feeding gas in larger quantities and/or with a higher drying capacity at the places in the processing chamber, where the most intensive disintegration and drying are required, particularly close to the chamber wall, whereas gas in smaller quantities and/or with a lower drying capacity may be supplied further away from the chamber wall.
  • the different flow channels may also be used for differentiating other forms for gas compositions, such as gas compositions low in oxygen in order to decrease the oxidation of the processed materials or other forms of inactive gas compositions or various types of solvents, which may further the disintegration.
  • the blade wheel as a blower
  • a blade means fitted and employed as a blower it is preferable to use a blade means fitted and employed as a blower, as the resulting effect of a high gas flow rate and a subsequent intensive, turbulent flow generally is preferred.
  • a blower of the centrifugal type or a hybrid between a centrifugal and an axial blower in which the outlet openings from the blade interspaces are turned upwardly in an annular area defined by the chamber wall at the bottom of the chamber.
  • the structure of the disintegrator may be varied in many ways within the scope of the invention. However, it has preferably an essentially axially symmetrical, particularly conical or circular cylindrical upper part, on which the disintegrator means, such as arms or swingles, are arranged and cover a central part of the blade means.
  • the fast rotating disintegrator is throwing the material outside the central part of the blade means to the up-current at the chamber wall, in cases of larger and heavier particles into complete engagement with the chamber wall, at which they may be crushed.
  • the disintegrator may advantageously be mounted on one end of a vertical shaft extending down through the blast box and operated by means of a separate motor arranged outside the blast box, whereby the motor is advantageously arranged outside the drying channel and a processing chamber without impeding shafts is obtained.
  • the axial extension of the processing chamber is substantially larger and preferably more than twice as large as the axial extension of the disintegrator, as a satisfactory grading of particles prior to the extraction of the material may thereby be obtained together with a more efficient, uniform and lenient drying, as especially the processing at the top of the apparatus ensures a levelling of variation in the residual moisture of the material.
  • Fig. 1 is a diagrammatic view of a disintegration and drying system of the type for carrying out the process according to the invention.
  • the system comprises a disintegration and drying apparatus (10) according to the invention, a feeding means (2) for feeding the material (1) to be processed into the apparatus (10), a gas distribution means comprising a filter (3), a heat exchanger (4), a gas supply channel (5) leading to the apparatus (10), and a discharge channel (6), a bag filter (7) having a bucket wheel feeder (8) for removing the processed material and an exhaust fan (9) for exhaustion of the filtered exhaust gas.
  • the disintegration and drying apparatus comprises a processing chamber (12) having a chamber wall (14), the main shape thereof being substantially like a surface of revolution, and having a vertical axis, and a subjacent blast box (16).
  • a coaxially arranged blower (18) is arranged between the processing chamber (12) and the blast box (16), said blower having its central inlet opening (36) in flow connection with the blast box (16) and its outlet leading to the top surface of the blower (18) in an annular area (38) defined by the chamber wall (14).
  • the blower is separately driven from a motor (28) outside the blast box (16) through a hollow shaft (24).
  • the exhaust fan (9), the blower (18), the disintegrator (20) and the feeding means (2) are driven continuously.
  • the exhaust fan (9) causes a drop of gas pressure across the processing chamber (12) which produces a gas flow through the system from the filter (3) to the exhaust fan (9),
  • This gas flow is intensified by the blower (18) additionally concentrating the gas flow into a thin, annular, rotating layer of an up-current having an intensive turbulence close to the chamber wall (14).
  • this gas current ensures a fast disintegration of the material (1) which is continuously being fed by means of the feeding means (2) through an opening (40) in the chamber wall (14).
  • the heavily disintegrated material is placed by the gas current as a fluidized, thin layer continuously ascending and rotating, mainly along the chamber wall, whereby the smallest particles are dried quickly.
  • the predominant portion of a processed fraction is removed with the exhaust gas, while a minor portion of said fraction together with the incomplely processed fraction is led slowly downwards along the chamber wall (14) and further into the processing chamber (12), until the material comes into contact with the disintegrator (20) and the intense gas current at the bottom of the chamber (12), where it once again is subjected to a further disintegration and is carried upwards in the chamber (12) and dried, before another fraction is removed from the chamber.
  • FIG. 2 and 3 An apparatus (10) of a type similar to the one of Fig. 1 is thus shown in Figs. 2 and 3.
  • the blower (18) and the disintegrator (20) are arranged on separately driven shafts (24,26), respectively, which are driven in the same manner as previously by means of motors (not shown) outside the blast box (16).
  • the upper part (32) of the disintegrator (20) has, however, in this embodiment the form of an upwardly corbie-stepped cylinder and is provided with swingles (34) of various lengths corresponding thereto.
  • the lowermost part of the upper part (32) of the disintegrator thereby covers a larger section of the central part of the blower than the embodiment of Fig. 1.
  • the radial extension of the blower (18) has further been made relatively shorter, and the underside of the blower has a profile being outwardly tapering towards the chamber wall (14), resulting in more ideal flow conditions through the blower (18).
  • the division plate 22 under the blower (18) is downwardly and inwardly inclined from the the chamber wall (14), and thereby following the shape of the blower (18).
  • Fig. 3 further illustrates by examples the ascending and decending motions of the gas flow in the chamber (12) by means of the arrows (42, 44, and 46, 48 and 50), respectively.
  • This pattern of motion may vary depending upon the structural shape of the chamber and depending upon the ratio of the rotational to axial flow rate of the drying gas in the various cross sections of the chamber.
  • the reference numeral (52) At the transition between the lower cylindrical part and the upwards conically widening part of the processing chamber (12), it is moreover illustrated by the reference numeral (52), although in an exaggerated manner, how a distinctly viscous paste-like material may get lumpy above the disintegrator (20) and how the material is completely disintegrated and fluidized by means of the combined effect from the disintegrator (20) and the intense gas current from the blower (18), before it comes into contact with the blower (18). Under normal operating conditions there is no depositing of materials on either the disintegrator (20), which as a result of its high rotational speed is practically self-cleaning, or on the blower (18), which is self-cleaning due to the intense, up-current of gas.
  • Figs. 4 to 8 illustrate various embodiments of the disintegrator (20), the blade means (18) and the lower part of the chamber wall (14) in the area around these.
  • the disintegrator is shown as a conical disintegrator (20').
  • the disintegrator (20') is provided with four horizontally orientated, oblique, plate-shaped disintegrator arms (34) successively arranged displaced at an angle of 90° relative to each other.
  • Fig. 5 illustrates the disintegrator (20') without the disintegrator arms. Both in Fig. 4 and Fig.
  • the blade means is divided into two mutually independently acting, coaxial blade elements (18', 18''), that is a rotatable blade element (18') pivotally arranged with the upper part (32') of the disintegrator at the underside thereof and a subjacent likewise rotatable blade means (18''), rotatably mounted on its own hollow shaft (24), surrounding the shaft (26) of the disintegrator (20').
  • the blade element (18') on the disintegrator (20') is of the same outer diameter as the upper part (32) of the disintegrator (20') and has an annular outlet (38') placed above the blade element (18'').
  • the blade element (18) extends further towards the chamber wall (14) and is of principally the same shape as the blade wheel or the blower (18) of Figs. 2 and 3 with an underside having an outwardly tapering profile abutting a division plate (22) parallel thereto and extending from the chamber wall (14) and defining the inlet opening (36'') to the blade element (18''). Furthermore, the blade element (18'') has an inner annular element (36') situated in the same axial area as the innermost part of the blade element (18') on the disintegrator (20') and forming an inlet opening (36') for the blade element (18'). The element (36') is without flow connection to the rest of the blade element (18'').
  • the outlet from the blade element (18'') is as at the blower (18) of Figs. 2 and 3, situated on the top surface of the blade element (18'') in the annular area (38'') at the periphery thereof between the chamber wall (14) and the outlet (38') from the blade element (18').
  • Fig. 6 illustrates by example an annular blade wheel (18) attached to the chamber wall (14).
  • the wheel may be stationarily or rotatably attached and if so, it is driven by the disintegration and drying gas fed therethrough from the blast box (16).
  • the disintegrator (20') is in this Fig. shown with its upper part (32') arranged within the blade wheel (18) and projecting thereabove.
  • the disintegrator (20') has four sets of disintegrator arms (34'), the successive sets being arranged displaced at an angle of 90° relative to each other. Each set comprises four horizontal arms (34,34') arranged on top of each other.
  • the blade means is shaped as an annular blade wheel (18') attached pivotable to the disintegrator (20') at the underside of the upper part (32') thereof.
  • the blade wheel (18') is of the same outer diameter as the upper part (32') of the disintegrator and has its outlet (38') in the annular periphery thereof.
  • a circumferential, horizontal division plate (22) extends from the chamber wall (14) just under the underside of the blade wheel (18') defining the inlet opening (36') thereto.
  • the disintegrator (20') and the blade wheel (18') are in principle shaped as in Fig. 7, but have an upwardly tapering profile on the underside of the blade wheel (18'). Instead of having a division plate, the chamber wall (14) is brought in under the blade wheel (18') parallel with and just below the bevelled part of the blade wheel (18').
  • the disintegrator (20') of Figs. 7 and 8 is provided with four sets of disintegrator arms above each other, each set comprising four arms (34). The arms in Fig. 8 are projecting further out at the top corresponding to the upwards conically widening of the chamber (12).
  • the lower part of the processing chamber (12) opposite the blade means (18,18') and the disintegrator (20, 20') is cylindrically shaped.
  • the chamber (12) is shaped upwardly conically widening from the division plate (22).
  • the chamber (12) is shaped upwardly conically widening from the underside of the blade wheel (18') until being at level with the disintegrator (20'), then cylindrically shaped up to a level just above the disintegrator (20'), and thereabove upwards tapering.
  • FIGs. 9 to 12 illustrate Examples of various embodiments of a blade wheel (18) according to the invention to be arranged above a division plate (22), in all embodiments intended for mounting on a hollow shaft and provided with a through hole (42) for a disintegrator shaft.
  • blades (44) are used attached to a top plate (46) and if necessary also to the wheel hub (48).
  • Figs. 9a, b, and c illustrate a blade wheel (18), where the outlets from all of the blade interspaces are provided at the periphery of the blade wheel simply by extending the blades (44) radially slightly beyond the top plate (46). Every other blade is moreover shortened, so as not to extend completely into the wheel hub (48), whereby the flow resistance in the blade wheel (18) is decreased.
  • the blade interspaces (50) are furthermore downwardly and radially outwardly open.
  • a closure of these openings and thereby an increased effect of the blower are, however, obtained by placing the blade wheel (18) in a processing chamber (12) having an inner diameter only slightly larger than the diameter of the blade wheel and furthermore, having a division plate (22) extending parallel to the bevelled underside of the blades (44) shown in this Fig., as it also appears in principle in Fig. 2 and Fig. 12.
  • Figs. 10a, b, and c illustrate a similarly shaped blade wheel (18), wherein the top plate, however, every other blade interspace extends completely to the outermost end of the blades (44), whereby the outlets from successive blade interspaces (50) alternately are only found at the cylindrical end surface of said blade interspaces, and in the intermediate interspaces, at the corresponding end surfaces and at the outer part of the top surface of said interspaces.
  • the effect hereof is in practice that the successive outlets are found at varying distances from the chamber wall (14), under the proviso that the blade wheel (18) is placed in a processing chamber (12) having a slightly larger diameter than the diameter of the blade wheel and having a subjacent division plate (22).
  • Figs. 11a, b, and c illustrate another way to determine the placing of the blade outlets.
  • the outlets from successive blade interspaces are radially displaced relative to each other, however, by every other blade interspace (50) being closed by means of a transverse plate (54) at a distance from the outer periphery of the blade wheel, and in addition hereto an outlet opening (52) is provided in the top plate (46) radially within the plate (54).
  • the plate (54) may be L-shaped with an upper horizontal web flush with the top plate (46) as shown in Fig. 11b. All of the blades (44) extend somewhat beyond the outer periphery of the top plate (46), whereby the outlets from the intermediate interspaces (50) are in the area extending on the outside of the top plate (46).
  • Figs. 12a, b, c illustrate a blade wheel (18), wherein the outlets are arranged as in Figs. 11a, b, and c.
  • each blade interspace and the subjacent inlet area are divided into two flow channels (51, 53) by means of fixed guiding plates (56) in each of the blade interspaces and by a circumferential fixed guide plate (58) in the subjacent blast box, arranged in extension thereto.
  • Fig. 13a illustrates an Example of the distribution of the flow rate in various cross sections of a blade interspace and the outlet on the top surface thereof corresponding to a blade wheel as shown in principle in Fig. 9a, b, c, however, with a division plate (22) attached directly to the underside of the blade wheel and with slightly altered inlet conditions.
  • the distribution of the flow rate is illustrated by means of velocity vectors as shown at the inlet, in the middle of the blade interspace and at the outlet thereof.
  • the velocity vectors shown partly illustrate the increasing flow rate out through the blade interspace until the outlet thereof at the chamber wall (14), and partly the distribution of the axial flow rate in the radial direction at the outlet, said flow rate abruptly increasing from a value close to zero at the chamber wall to a maximum value at a short distance from the chamber wall and then slowly decreasing to a minimum value at the innermost edge of the outlet opening.
  • Fig. 13b illustrates the distribution of the axial flow rate in the tangential direction at the outlets for the successive blade interspaces seen in direction of the arrows A-A in Fig. 13a under the proviso that the blade wheel as seen in the direction mentioned rotates to the right relative to the Fig. 13b.
  • the distribution of the flow rate is uneven, also when seen in this direction, whereby the highest outlet flow rate is found at a short distance from the blades (44) advancing the air and with an abruptly decreasing flow rate towards this blade and with a more evenly decreasing flow rate down to a minimum value at the leading blade (44) in the blade interspace (50) in question.
  • the gas flow is provided with a flow rate component in the tangential direction resulting from the rotation of the blade wheel, which naturally provide the particles with a rotary motion, but does not, however, influence the principle of the aforementioned reflections about the influences to which the particles are subjected.
  • the particles being close to the outlet openings are thus subjected to more or less intensive pulsations.
  • Figs. 14a, b, and c illustrate the distribution of the flow rate in a blade wheel (18) and above the outlet openings thereof, wherein the outlets in successive blade interspaces (50) are mutually radially displaced and thus is found at different distances from the chamber wall (14), as it appears from Figs. 14a and 14b. This corresponds to the illustration of Fig. 11b, and c.
  • velocity vectors are shown illustrating the increasing gas flow rate out through the blade interspaces (50) to the outlet openings and also the distribution of the axial flow rate above the outlet openings in the radial direction as seen in Figs.
  • the process and apparatus according to the invention has proved particularly advantageous for the disintegration and drying of organic material which is particularly sensitive to heat and especially for the disintegration and drying of materials to be used as fodder or foodstuffs.
  • the following Examples are based on a test run of a pilot plant and illustrate the advantages obtained by means of the process and the apparatus according to the invention.
  • Disintegration and drying of a press cake of organic material with a moisture content of 50% calculated on the wet weight was carried out. Heated atmospheric air was used for the drying.
  • an apparatus according to the invention comprising a blower of a diameter of 250 mm and thirty-six evenly dispersed, radially arranged blades and a disintegrator with a conical upper part and sixteen horizontal disintegrator arms in form of swingles displaced in sets at the angle of 90°.
  • the numbers of revoluations of the blower was 1000 r.p.m, whereby the air at the chamber wall opposite the ventilator was provided with a tangential flow rate of approximately 13 m/s.
  • the average axial air flow rate in the processing chamber was about eight m/s in the Example, rendering peak values of 20 m/s or more at the chamber wall as a result of the special flow rate profile for the air flow out of each individual blade interspace in the blower.
  • the absolute peak value for the air flow rate was thus about 24 m/s, which in the drying area ensured substantial heat tranfer coefficient between the drying air and the product which were intensively agitated, mixed and disintegrated by the disintegrator.
  • the inlet temperature was 400°C.
  • the outlet temperature was 120°C and a powder residue moisture of 4 percent calculated on the wet weight was thereby obtained.
  • the capacity was 33 kg/h.
  • the blower In order to have an indication of the effect of the blower, the blower was stopped, whereafter the residual moisture increased to 8 percent water calculated on the wet weight, and the capacity decreased to 28.5 kg/h. Concurrently, the outlet temperature increased to 130°C, and the product showed signs of incipient heat damage.
  • the effect of the blower is thus essential for the drying effect and for the capacity as well as for the quality of the product.
  • the thermal efficiency is in the fluidized bed process: and is in the process according to the invention:
  • the ratio of the differences in temperature between the inlet and the outlet drying air broadly represents the drying capacity, and also the inverse ratio of the required drying air flows formulated as follows: In this case the air flow is approximately four times lower at the process according the invention.
  • the physical dimensions of the system according to the invention are further much smaller.
  • the connected air heaters and the powder separators, including filters and any air washers primarily dimensioned according to the volume of air passing through the system are also considerably smaller, whereby the total costs of construction are lower at the new process.
  • the cleaning costs are reduced, as the system can be completely emptied automatically by stopping the feeding of the product, whereby cleaning is made practically superfluous.
  • the disintegration and drying apparatus according to the invention may be sterilized immediately by flowing hot drying air through the apparatus prior to feeding the new product into the system. This feature is particularly vital when dealing with foodstuffs systems.
  • the very short processing time of the product in the apparatus according to the invention permits the use of the selected temperatures without heat damaging the product, this in spite of the air temperatures utilized at the prior art both to and fro the fluidized bed being lower, but the processing time hereof is on the other hand several minutes.
  • a third portion of the pre-treated product (product C3) was dried in the apparatus according to the invention at an inlet air temperature of 400°C and an outlet air temperature of 120°C at atmospheric pressure.
  • concentration of essential amino acids present in the dried powder has been used, calculated in percentages of the total solid matter in the product.
  • the results found for the products mentioned C1, C2, and C3 are stated in the below table, in which also the capacity of water absorption of the products C2 and C3 is indicated measured as absorbable amount of water in gram per 100 g solid matter. It appears from the table that the content of essential amino acid was 9.7% higher and in total content of amino acid was 7.6% higher in the powder dried by means of the process according to the invention (C3) as compared to the powder dried at a low temperature (C2).
  • hood temperature in this connection means the condensation temperature of the heating medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Dans une chambre de traitement (12) comportant une boîte à tuyère (16) sous-jacente, une amenée continue de gaz de séchage et de la matière à traiter, une désintégration et un séchage intensifs à court terme de la matière ainsi que l'élimination d'une fraction finie de celle-ci conjointement avec les gaz d'émission (6) sont effectués. Au moyen d'une chute de pression gazeuse dans la chambre (12) et de pales (18) disposées entre la chambre et la boîte à tuyère, le gaz de séchage est injecté dans la chambre avec un débit important sous forme d'un flux gazeux turbulent à rotation rapide. Une agitation et un mélangeage intensifs et une désintégration suplémentaire de la matière sont assurés par un désintégrateur rotatif (20) disposé coaxialement et comportant des moyens de désintégration (34) s'étendant au-dessus des pales. Ces dernières (18) sont disposées avec leur ouverture d'admission (36) en communication d'écoulement avec la boîte à tuyère (16), sa sortie menant à une région annulaire (38) de la chambre de traitement définie par la paroi de la chambre au niveau du fond de celle-ci.

Claims (10)

  1. Procédé de désintégration et/ou séchage continu de matériaux tels qu'une pâte, une boue, un gâteau de pressage ou un gâteau de filtration, notamment de matières fibreuses, dans un appareil (10) qui comporte une chambre de traitement (12) ayant une paroi (14), la configuration générale de la chambre étant pratiquement analogue à une surface de révolution et ayant un axe essentiellement vertical, et un caisson inférieur de soufflage (16), le procédé comprenant en continu :
    - l'alimentation de la chambre de traitement (12) en un gaz de désintégration et de séchage provenant du caisson de soufflage (16),
    - l'alimentation en matière à traiter par une ouverture (40) formée dans la paroi (14) de la chambre,
    - la désintégration et/ou le séchage de la matière (1) transmise à la chambre de traitement (12), et
    - l'évacuation de la fraction traitée de la matière avec les gaz d'échappement,
    - si bien que l'alimentation de la chambre de traitement (12) en gaz de désintégration et de séchage et son évacuation avec la fraction traitée de la matière par une ouverture d'échappement formée à la partie supérieure de la chambre de traitement (12) sont réalisées à l'aide d'une perte de charge du gaz maintenue dans la chambre de traitement (12), et
    - la désintégration et le séchage de la matière (1) sont renforcés par rotation du gaz à l'intérieur de la chambre de traitement (12) provoquée par des moyens à pales (18) placés dans l'appareil (10) entre la chambre de traitement (12) et le caisson de soufflage (16), les moyens à pales (18) ayant une ouverture d'entrée (36) qui est raccordée au caisson de soufflage (16) et dont la sortie rejoint la chambre de traitement (12),
    - si bien que la matière (1) transmise de façon continue est désintégrée et séchée sous forme d'une couche fluidisée qui remonte lentement à l'intérieur d'une couche en rotation d'un gaz de fluidisation qui est proche de la paroi (14) de la chambre avec une fraction traitée de matière évacuée avec les gaz d'échappement,
    - si bien que les fractions incomplètement traitées de la matière descendent le long de la paroi (14) de la chambre et à l'intérieur de la chambre de traitement (12) pour subir un nouveau traitement,
       caractérisé en ce que :
    - une perte de charge du gaz dans la chambre de traitement (12) est utilisée pour l'obtention d'une vitesse axiale moyenne du gaz d'au moins 3 m/s dans la chambre de traitement (12),
    - la sortie des moyens à pales (18) débouche dans une région annulaire (38) de la chambre de traitement (12) délimitée par la paroi (14) de la chambre à sa partie inférieure,
    - grâce à un désintégrateur (20) placé coaxialement, tournant rapidement et comprenant des moyens désintégrateurs (34) placés au-dessus des moyens à pales (18) et dépassant vers la paroi (14) de la chambre, une agitation et un mélange intensifs supplémentaires du gaz et une désintégration de la matière (1) transmise dans la chambre de traitement (12) sont réalisés, et
    - suivant la nature et la quantité de la matière (1) qui est introduite, la direction et l'intensité du courant de gaz induit et le sens de rotation et la vitesse du désintégrateur (20) sont ajustés,
    - si bien que la désintégration et le séchage de la matière (1) sont encore renforcés et réalisés en quelques secondes dans une mince couche turbulente tournant rapidement et formée du gaz de fluidisation à proximité de la paroi de la chambre (14).
  2. Procédé selon la revendication 1, caractérisé en ce que les moyens à pales (18) sont utilisés avec une roue rotative (18) à pales, disposée coaxialement ou comprenant plusieurs éléments à pale (18', 18'') dont l'un au moins est un élément rotatif à pale (18', 18'') disposé coaxialement, et en ce que le sens de rotation et la vitesse des moyens rotatifs à pales (18) sont ajustés en fonction de la nature et de la quantité de la matière transmise.
  3. Procédé selon la revendication 2, caractérisé en ce que le nombre de tours des moyens rotatifs à pales (18) est utilisé pendant le traitement pour l'obtention, à la périphérie externe, de vitesses tangentielles comprises entre 1 et 50 m/s et de préférence entre 2 et 25 m/s, très avantageusement entre 2,5 et 20 m/s et, lors de la vidange de la chambre de traitement (12), les moyens à pales (18) sont arrêtés.
  4. Appareil (10) destiné à la mise en oeuvre du procédé selon l'une ou plusieurs des revendications 1 à 3 et d'un type qui comprend une chambre de traitement (12) ayant une paroi (14) dont la configuration générale est pratiquement une surface de révolution et ayant un axe pratiquement vertical et un caisson inférieur de soufflage (16), et comprenant des moyens à action continue et destinés à assurer :
    - le chauffage (4) d'un gaz de désintégration et de séchage destiné à être transmis au caisson de soufflage (16),
    - l'alimentation de la chambre de traitement (12) en gaz de désintégration et de séchage provenant du caisson de soufflage (16),
    - l'alimentation en matière (1) à traiter par une ouverture (40) formée dans la paroi (14) de la chambre,
    - la rotation du gaz de désintégration et de séchage à l'intérieur de la chambre de traitement (12),
    - l'agitation, le mélange et la désintégration de la matière (1) introduite dans la chambre de traitement (12), et
    - l'évacuation des gaz d'échappement et de la fraction traitée de la matière de la chambre de traitement (12), les moyens d'alimentation en continu en gaz de désintégration et de séchage et les moyens d'évacuation des gaz d'échappement et de la fraction traitée de la matière comprenant un organe (9) d'évacuation destiné à maintenir une perte de charge dans la chambre de traitement (12), l'organe d'évacuation (9) étant raccordé à la chambre de traitement (12) par un tube d'évacuation (6), dépassant de préférence dans la chambre de traitement (12) à sa partie supérieure, et
    - les moyens destinés à faire tourner le gaz de désintégration et de séchage sont un dispositif à pales (18) disposé dans l'appareil (10) entre la chambre de traitement (12) et le caisson de soufflage (16), ce dispositif ayant son ouverture d'entrée (36) qui est raccordée au caisson de soufflage (16) et sa sortie qui débouche dans la chambre de traitement (12),
       caractérisé en ce que :
    - l'organe d'évacuation (9) a un effet suffisant pour donner une vitesse moyenne axiale d'écoulement du gaz dans la chambre de traitement (12) d'au moins 3 m/s,
    - la sortie du dispositif à pales (18) conduit vers une région annulaire (38) de la chambre de traitement (12) délimitée par la paroi (14) de la chambre à sa partie inférieure, et
    - les moyens destinés à assurer l'agitation, le mélange et la désintégration continus comprennent un désintégrateur (20) tournant rapidement et à fonctionnement intensif, monté coaxialement à la partie inférieure de la chambre de traitement (12), le désintégrateur (20) comprenant des moyens désintégrateurs (34) placés au-dessus du dispositif à pales (18) et dépassant vers la paroi (14) de la chambre, et en ce que
    - le sens de rotation et le nombre de tours du désintégrateur (20) sont réglables.
  5. Appareil selon la revendication 4, caractérisé en ce que le dispositif à pales (18) ou l'un au moins des éléments à pale (18', 18'') respectivement est raccordé afin qu'il puisse pivoter avec le désintégrateur (20), de préférence à sa partie inférieure.
  6. Appareil selon une ou plusieurs des revendications 4 et 5, caractérisé en ce que le dispositif à pales (18) ou au moins l'un des éléments à pale (18', 18'') respectivement est raccordé afin qu'il puisse pivoter sur un arbre séparé (24) entraîné indépendamment du désintégrateur (20), l'arbre étant de préférence un arbre creux entourant l'arbre (26) du désintégrateur et étant entraîné par un moteur (28) placé à l'extérieur du caisson de soufflage (16).
  7. Appareil selon une ou plusieurs des revendications 5 et 6, caractérisé en ce que le sens de rotation de la roue rotative à pales (18) ou d'au moins un élément rotatif à pale (18', 18'') respectivement est réversible.
  8. Appareil selon une ou plusieurs des revendications 5 à 7, caractérisé en ce que la vitesse de rotation de la roue rotative à pales (18) ou d'au moins un élément rotatif à pale (18', 18'') respectivement est réglable.
  9. Appareil selon une ou plusieurs des revendications 5 à 8, caractérisé en ce que l'un au moins des éléments à pale (18', 18'') est raccordé à une alimentation séparée en gaz indépendante de l'alimentation en gaz du reste du dispositif à pales (18).
  10. Appareil selon une ou plusieurs des revendications 4 à 9, caractérisé par une plaque (22) de séparation qui est de préférence circonférentielle, placée horizontalement et/ou dont la dimension diminue vers le bas, vers l'ouverture d'entrée (36, 36', 36'') du dispositif à pales (18) ou d'au moins un élément à pale (18', 18'') respectivement, la plaque de séparation (22) étant de préférence disposée à la face inférieure du dispositif à pales (18) ou de l'élément à pale (18', 18'') respectivement et étant retenue par rapport à la paroi (14) de la chambre ou par rapport au dispositif à pales (18) ou à l'élément à pale (18', 18'') respectivement.
EP92904291A 1991-01-21 1992-01-21 Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en uvre du procede Expired - Lifetime EP0567560B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK9891A DK9891A (da) 1991-01-21 1991-01-21 Fremgangsmaade til kontinuerlig disintegration og/eller toerring af pasta, slam, pressekage, filterkage eller lignende, isaer fibroese materialer samt apparat til udoevelse af fremgangsmaaden
DK98/91 1991-01-21
PCT/DK1992/000018 WO1992012796A1 (fr) 1991-01-21 1992-01-21 Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en ×uvre du procede

Publications (2)

Publication Number Publication Date
EP0567560A1 EP0567560A1 (fr) 1993-11-03
EP0567560B1 true EP0567560B1 (fr) 1995-08-23

Family

ID=8089711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92904291A Expired - Lifetime EP0567560B1 (fr) 1991-01-21 1992-01-21 Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en uvre du procede

Country Status (5)

Country Link
EP (1) EP0567560B1 (fr)
AU (1) AU1202292A (fr)
DE (1) DE69204277T2 (fr)
DK (2) DK9891A (fr)
WO (1) WO1992012796A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165692A1 (fr) * 2017-03-17 2018-09-20 Nublend Pty Ltd Procédé de séchage

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP438798A0 (en) * 1998-06-30 1998-07-23 Akt Consultants Pty Limited Low temperature flow dryer and process
CN100420910C (zh) * 2005-01-27 2008-09-24 山东理工大学 脉动流化干燥机
EP1719963A3 (fr) * 2005-05-04 2009-03-18 Sahene Engineering v/Henning Rasmussen Dispositif de séchage en continu d'un gâteau de masse filtrante, de matières fibreuses, de pâte, de boues, ou de matières similaires.
FR2924435B1 (fr) 2007-11-30 2010-12-31 Inst Francais Du Petrole Procede et dispositif de torrefaction et de broyage en lit fluidise d'une charge de biomasse en vue d'une gazeification ou d'une combustion ulterieure
US9340741B2 (en) 2009-09-09 2016-05-17 Gas Technology Institute Biomass torrefaction mill
BG66611B1 (bg) * 2011-06-13 2017-10-16 "Сименол" Оод Метод и скоростна сушилня за сушене на твърди насипни материали с газ в псевдокипящ слой
RU2544406C1 (ru) * 2013-11-14 2015-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Аппарат для сушки дисперсных материалов в закрученном потоке теплоносителя с свч-энергоподводом
EP3221651B1 (fr) * 2014-11-19 2021-01-13 MinEx CRC Ltd Méthode de séchage des matériaux géologiques
WO2018099534A1 (fr) * 2016-11-30 2018-06-07 Danmarks Tekniske Universitet Séchoir à algues et système de séchage de pâte d'algues et/ou de biomasse liquide d'algues
AU2018333278B2 (en) * 2017-09-13 2023-07-13 Reflex Instruments Asia Pacific Pty Ltd Batch sample preparation apparatus
DK3459356T3 (da) 2018-01-22 2020-09-07 Tessenderlo Group Nv Forbedret fremgangsmåde til produktion af blodmel
CN112146354A (zh) * 2020-09-17 2020-12-29 庞玉琼 一种白酒生产用酒糟烘干装置
EP3991567A1 (fr) * 2020-10-28 2022-05-04 Bühler Insect Technology Solutions AG Procédé de fabrication d'une farine protéinée à partir d'insectes, en particulier à partir de larves d'insectes et de chrysalides d'insectes, ou à partir de vers et dispositif de séchage destiné à l'utilisation lors d'un tel procédé

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478371A (en) * 1982-01-07 1984-10-23 Williams Patent Crusher And Pulverizer Company Fuel grinding apparatus
DE3213250A1 (de) * 1982-04-08 1983-10-13 Manox Chemie Anstalt, 9494 Schaan Wirbelschichttrocknung
IT1151577B (it) * 1982-06-03 1986-12-24 Italiana Essiccatoi Procedimento e relativa apparecchiatura per essiccare materiali polverulenti in genere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165692A1 (fr) * 2017-03-17 2018-09-20 Nublend Pty Ltd Procédé de séchage

Also Published As

Publication number Publication date
WO1992012796A1 (fr) 1992-08-06
DE69204277D1 (de) 1995-09-28
DK9891A (da) 1992-09-15
DE69204277T2 (de) 1996-03-28
EP0567560A1 (fr) 1993-11-03
AU1202292A (en) 1992-08-27
DK0567560T3 (da) 1995-12-04
DK9891D0 (da) 1991-01-21

Similar Documents

Publication Publication Date Title
EP0567560B1 (fr) Procede pour la desintegration et/ou le sechage en continu de matieres telles que pate, boue, tourteau, gateau de filtre ou similaire, notament de matieres fibreuses, et appareil pour la mise en uvre du procede
CA2314634C (fr) Sechoir a action instantanee
US4511093A (en) Mixer-granulator drier
SE449656B (sv) Forfaringssett och anordning for kontinuerlig torkning och/eller granulering av massgods
CN203964623U (zh) 节能新型闪蒸干燥组合机组的闪蒸主机
US2313956A (en) Dispersion mill
CN106813480A (zh) 药用闪蒸干燥机
JPH0428989B2 (fr)
DE19631605C1 (de) Turbulenzschaufeln für Entwässerungseinrichtung
CN101828757A (zh) 一种翻料式发酵豆粕烘干机
CN208504992U (zh) 一种节能型有机肥料烘干装置
EP0856261B1 (fr) Méthode et appareil pour griller en continu des produits alimentaires
JP2002520245A (ja) 有機性廃棄物を分解するための分解方法および分解装置
US2466297A (en) Dehydrating apparatus
CN111375344A (zh) 医用混合造粒干燥设备
CN211552288U (zh) 一种闪蒸干燥系统
CN211688781U (zh) 立式污泥干化装置
CN205926140U (zh) 一种滚筒式搅拌装置及食品工业喷涂设备
CN211552319U (zh) 一种闪蒸干燥装置
CN208846865U (zh) 一种闪蒸干燥机
CN210017802U (zh) 一种摇晃式坚果除湿干燥装置
JPS6055113B2 (ja) 葉たばこ等の除骨方法及び装置
CN206531373U (zh) 防粘壁、防结块、防沉底、防堵塞的药用闪蒸干燥机
JPH073264Y2 (ja) 粉粒・塊状物の乾燥装置
CN219160887U (zh) 一种粉末香精加工的干燥处理设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK GB NL SE

17Q First examination report despatched

Effective date: 19931202

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BONTECH ENGINEERING A/S

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB NL SE

REF Corresponds to:

Ref document number: 69204277

Country of ref document: DE

Date of ref document: 19950928

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070116

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070117

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070322

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080121

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080122

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131