EP0566478B1 - Carter haute pression pour turbine à vapeur - Google Patents

Carter haute pression pour turbine à vapeur Download PDF

Info

Publication number
EP0566478B1
EP0566478B1 EP93400960A EP93400960A EP0566478B1 EP 0566478 B1 EP0566478 B1 EP 0566478B1 EP 93400960 A EP93400960 A EP 93400960A EP 93400960 A EP93400960 A EP 93400960A EP 0566478 B1 EP0566478 B1 EP 0566478B1
Authority
EP
European Patent Office
Prior art keywords
rotor
high pressure
pressure module
turbine according
internal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400960A
Other languages
German (de)
English (en)
Other versions
EP0566478B2 (fr
EP0566478A1 (fr
Inventor
Jean-Pierre Gros
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
GEC Alsthom Electromecanique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9429031&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0566478(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GEC Alsthom Electromecanique SA filed Critical GEC Alsthom Electromecanique SA
Publication of EP0566478A1 publication Critical patent/EP0566478A1/fr
Application granted granted Critical
Publication of EP0566478B1 publication Critical patent/EP0566478B1/fr
Publication of EP0566478B2 publication Critical patent/EP0566478B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings

Definitions

  • the present invention relates to improvements to the high pressure turbine modules comprising an inlet for steam with very high characteristics, a steam exhaust, a rotor supporting movable wheels consisting of movable fins and stator parts comprising an external body and a internal body supporting fixed stages arranged between the movable wheels, the internal body being provided on the intake side with a seal carrier ensuring the tightness of the intake steam (see for example FR-A-1 320 174).
  • the high pressure stator parts of the steam turbines have, in addition to the two envelopes formed by the internal body and the external body, a third envelope at the inlet when the pressures and temperatures are very high.
  • the internal and external bodies are in two parts and are provided with flanges in the horizontal joint plane to allow bolting.
  • the rotor is provided with discs supporting the movable fins, which results in a significant increase in the transverse dimensions of the finned rotor and consequently in the stator parts.
  • the turbine module according to the invention of simplified design and whose dimensions have been reduced while ensuring good mechanical and thermal behavior is characterized in that the internal body comprises two bodies coupled together, an anterior body arranged on the side of the intake and a rear body disposed on the exhaust side, the front body being in one piece and surrounding a rotor part which is a drum rotor provided with grooves in which the feet of the fins are fixed.
  • each of the parts can be adapted to the characteristics of the vapor.
  • the front part in which the temperature and the pressure of the vapor are very high has an internal casing and a gasket holder at the isotropic intake therefore without bolting.
  • This arrangement also has the effect of reducing the radial and transverse dimensions since it eliminates the thickness of the flange necessary for bolting.
  • the use of a drum rotor (therefore without discs) inside the anterior internal body makes it possible to reduce the radial dimension of the vein and correlatively that of the envelopes.
  • this reduction in the radial dimension of the vein is favorable to efficiency, in particular for action turbines.
  • the body only has two envelopes on admission, an external body and an internal body.
  • the third casing which may sometimes be necessary for partial injection operating questions, is not necessary in the case of supercritical turbines (250 bars, 565 ° C) or with even higher characteristics (350 bars, 580 ° C) which operate with total sliding pressure injection.
  • the grooves of the drum rotor located in the region of the anterior internal body are longitudinal and the movable wheels are separated by spacers of the same shape as the feet of the fins slid in the longitudinal grooves and facing the stages. fixed which consist of monoblock diaphragms.
  • this can be of conventional construction with discs for the turbines with action for carrying the movable fins which has the advantage of having a number of 'floors limited.
  • This rotor part can also be a drum rotor with circumferential grooves which brings the indicated advantages of the drum rotor.
  • a drum rotor HP module is described in French patent application No. FR-9104855 in the name of the applicant.
  • the posterior internal body for reasons of simplification is in two parts which can be either bolted or shrunk.
  • FIG. 1 represents a longitudinal half-section of a HP module of a conventional action turbine.
  • FIG. 2 represents in radial half-section the module of FIG. 1.
  • Figure 3 shows in longitudinal half-section a first embodiment of the turbine module according to the invention.
  • FIG. 4 represents a longitudinal section of a variant of FIG. 3.
  • FIG. 5 represents a radial section of FIG. 4.
  • FIG. 6 represents a second embodiment of the turbine module according to the invention.
  • FIG. 7 represents a section of a movable wheel of the module of FIG. 6.
  • FIG. 8 represents a section of a diaphragm of the module of FIG. 6.
  • Figure 9 shows the circumferential mounting of the fins.
  • FIGs 10, 12, 14 represent the three stages of assembly of the module in Figure 3.
  • FIGS 11, 13, 15 show the three stages of mounting the module of Figure 6.
  • FIG. 16 represents a third embodiment of the turbine module according to the invention.
  • FIG. 17 is a detailed view of the front part of FIG. 3.
  • FIG. 18 is a detailed view of the front part of FIG. 6.
  • FIG. 19 is a variant of the rear part of the rotor of FIGS. 3 and 6.
  • FIG. 20 represents the air conditioning of the modules of FIGS. 3 and 6.
  • the HP module of conventional action turbine (FIG. 1) comprises a rotor 1 provided with discs 2 supporting movable fins 3 constituting movable wheels 4 and stator parts 5.
  • the stator parts 5 comprise an external body 6 in two parts bolted in the horizontal joint plane and an internal body 7 supported by the external body 6 which is also in two parts bolted in the joint plane.
  • diaphragms 8 also in two parts comprising fixed guide vanes 9 of the vein 10.
  • Each diaphragm 8 constitutes the fixed part of a stage 40 with the movable wheel 4 which follows it.
  • the diaphragms 8 produced in two parts to allow their mounting are the seat of different stresses and deformations depending on the azimuth considered. They must be axially oversized, especially for the first floors, so as to take this cut at the horizontal joint into account.
  • the module comprises intake pipes 11 opening into an internal envelope 12 inside the internal body serving for the distribution of the vapor in the stream 10 which ends in the exhaust 13.
  • This envelope 12 can be produced in different ways. It can be made in two parts plugged at the joint and assembled by bolting or it can be made up of several nozzle holders for injecting steam fixed to the internal body 7.
  • a packing holder 14 made in two parts and bolted. It is provided with seals 15 ensuring the seal between the internal body 7 and the rotor 1 on the intake side.
  • FIG. 3 A first embodiment of the action turbine module is shown in FIG. 3.
  • the rotor 1 of the module is a drum rotor, that is to say without discs. It is provided with circumferential grooves 16 in which the feet 17 of the movable fins 3 are housed. Such a rotor is described in application FR-A-9104855 in the name of the applicant.
  • the external body 6 of the stator parts 5 of the module is of conventional construction and has two bolted parts.
  • the internal body 7 of the stator parts is separated into two coupled bodies, an anterior body 18 on the intake side disposed in the anterior zone (zone A) and a posterior body 19 on the side of the exhaust 13 in the posterior zone (zone P).
  • the front body 18 is in one piece, that is to say without radial cut, therefore perfectly isotropic. It comprises two half-rings 20 provided with grooves 21 in which guide vanes 9 are slipped individually, each set of guide vanes 9 with the movable wheel 4 which follows it constitutes a stage 40.
  • the front body 18 surrounds a seal holder 14 mounted at free expansion which comprises a monobloc external tube 22 ', that is to say without radial cut, therefore perfectly isotropic, which comes to hoop two half-rings 22 in which retractable packings are mounted. 15 each making a half-circumference. There can of course be several seals 15 in series. These linings 15 seal the rotor shaft 1.
  • the lining carrier 14 with free expansion no longer has half-rings and is completely monobloc.
  • the posterior body 19 is produced in two parts and coupled to the anterior body 18. It is isotropic and hooped by hoops 39. In this design the hooping is total and easy to perform since the posterior internal body is entirely cylindrical and does not include the steam admissions.
  • the fixed parts of the vein 10 are guide vanes 9 mounted full hole in the unit at the cut of the horizontal joint in the grooves 23 of the internal body.
  • This rear body 19 has a front face 24 located at the border between the zones A and P against which all of the half-crowns 20 of the zone A comes to bear.
  • the front face 24 is extended by a circular rim 25, which is housed in a groove 26 formed in the periphery of the front body 18, thus coupling the two bodies 18, 19 together.
  • the half-rings 20 (FIG. 17) comprise for each stage 40 a sealing segment 41 to prevent or slow down the flow of vapor in the annular space between the ring 20 and the anterior body. This possible leak is immediately recovered on the next stage by holes 42 so as to be sure of having the temperature of the last stage of zone A on the front face 24.
  • zone A has too large a number of stages 40 (see FIGS. 4 and 5), provision is made to introduce an intermediate support 27 produced by a ring 28 comprising several sectors which are pushed from outside the front body 18 towards the inside thereof, the sectors then being astride a circumferential groove 29 formed inside the front body 18 and on a groove 30 formed on the outside of the half-rings 20.
  • zone A comprises a drum rotor 1 whose grooves 31 are longitudinal.
  • diaphragms 8 are used in one piece without cutting at the horizontal joint, therefore perfectly isotropic and of reduced axial dimensions.
  • the fins 3 are mounted axially on the rotor 1 in the grooves 31; spacers 32 carrying the seals with respect to the diaphragms fill the groove between the movable wheels 4. This allows the assembly of the monobloc diaphragms 8 following each movable wheel 4 and spacer 32.
  • Figure 7 there is shown a section aa of a movable wheel 4 of the area A.
  • the feet 17 of the fins 3 have at the base a development and are exactly complementary to the longitudinal grooves 31.
  • the feet 17 of the fins 3 of the same movable wheel 4 are joined above the grooves 31 and the caps 35 of the same wheel 4 are mounted in contact with each other.
  • the spacers 32 can be separated or joined in packs of three, four or five. These spacers 32 or packets of spacers are in contact with each other above the grooves 31.
  • the spacers 32 carry the seals 36 opposite the hubs 37 of the diaphragms 8.
  • Each diaphragm 8 in zone A has for each stage 40 a sealing segment 41 to prevent or slow down the flow of vapor in the annular space between the diaphragm 8 and the anterior body 18. This possible leak is immediately retrieved on the next floor by grooves 43 so as to be sure of having the temperature of the last stage of zone A on the front face 24 (see fig. 18).
  • the posterior body 19 is constituted like that of FIG. 3 except that instead of being shrunk it is bolted therefore not isotropic.
  • the diaphragms 8 constituting the fixed parts of the vein 10 are made in two parts and mounted at free expansion. This arrangement makes it possible to better preserve the radial rotor / stator clearances when the latter is not isotropic.
  • the movable fins 3 have a foot 17 in the shape of an inverted T.
  • the foot 17 of the fin 3 is introduced into the circumferential groove 16 in the shape of an inverted T then pivots.
  • shims 38 are introduced having the same section as the foot 17 of the fins 3 but much thinner (see FIG. 9).
  • the last wedges 38 are cut in two in the height direction to be able to be introduced and the last in three.
  • Each movable wheel 4 is assembled in its entirety with its own clamping on the rotor 1 by sliding it axially, there is mounted between each movable wheel 4 the spacers 32 in the longitudinal grooves 31 and the monoblock diaphragms 8 (see FIGS. 7 and 8).
  • zone P a circumferential mounting of the fins 3 has been chosen, the grooves 16 of the drum rotor 1 in this zone are therefore circumferential.
  • the assembly takes place as indicated above (see figure 9).
  • zone P two embodiments can be provided as described for the fixed parts of the vein 10, depending on whether the rear body 19 is bolted or hooped and the mounting of the fixed stages will be different as indicated below for the mounting of the stators.
  • zone A the mounting of the internal body 18 and of the packing holder 14 are identical whatever the principle of fitting the fin (axial or circumferential).
  • the fins 4 and the diaphragms 8 or guide vanes 9 of the zone A are mounted on the rotor 1 as seen previously.
  • the lining holder 22 ′ which has an outer tube fringing two half-rings 22 carrying the retractable linings 15 is threaded and centered on the internal body 18 by keys external to the internal body 18.
  • This assembly is then threaded onto the rotor 1 on the intake side.
  • the diaphragms 8 (fig.13) or the crown 20 carrying the guidelines 9 (fig.12) are then centered by the outside of the anterior body 18 by pins and are thus mounted at free expansion.
  • the lower anterior half-body 18 comprising its half-diaphragms 8 (fig. 6) or the guide lines 9 (fig. 3) is in place in the lower external half-body 6.
  • the upper posterior half-body which includes its half-diaphragms 8 (fig.6) or its directors 9 (fig.3).
  • the upper external half-body is then mounted and bolted.
  • zone P As a variant for steam turbines with action, it is possible for zone P to take a rotor 1 with discs 2 which is entirely conventional.
  • This arrangement makes it possible to reduce the number of stages 4, 8 of zone P.
  • the rotor of zone A is a drum rotor with axial or circumferential mounting; in Figure 16 the fins 3 are shown in axial mounting.
  • zone P can be, as for zone P of the modules already described, either bolted or shrunk.
  • the leaks of hot steam having passed the linings 25 are taken from the front of the lining holder 14 by slots 46 formed in this lining holder.
  • the slots 46 are continued by slots 47 passing through the one-piece anterior body 18 and by conduits 48 passing through the interstatoric space and supplying slots 49 to a stage in zone P, thus preventing the escape of hot steam from the front part of the anterior body and in addition we work the hot steam that escapes. It is possible to regulate by means 50, a leak of cold vapor outside the interstatoric space 44, which makes it possible to regulate the temperature of this space and possibly cool the rotor of another module (MP for example) .
  • MP rotor of another module

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • La présente invention concerne des perfectionnements aux modules haute pression de turbine comportant une admission pour de la vapeur à très hautes caractéristiques, un échappement de vapeur, un rotor supportant des roues mobiles constituées d'ailettes mobiles et des parties statoriques comportant un corps externe et un corps interne supportant des étages fixes disposés entre les roues mobiles, le corps interne étant muni du côté admission d'un porte-garnitures assurant l'étanchéité de la vapeur admission (voir par exemple FR-A-1 320 174).
  • Les parties statoriques haute pression des turbines à vapeur comportent en plus des deux enveloppes constituées par le corps interne et le corps externe une troisième enveloppe à l'admission lorsque les pressions et les températures sont très élevées.
  • Grâce à cette multiplicité des enveloppes on peut réduire l'écart de pression et de température entre celles-ci.
  • Par ailleurs les corps interne et externe sont en deux parties et sont munies de brides dans le plan de joint horizontal pour permettre le boulonnage.
  • La multiplication des enveloppes, la présence de bride au joint horizontal pour le boulonnage des corps conduisent :
    • à une augmentation des dimensions transversales des enveloppes du stator
    • à une non isotropie de ces mêmes enveloppes.
  • Cela provoque une augmentation des efforts et affecte la tenue mécanique et thermique des enveloppes et de la boulonnerie.
  • Ce problème est critique dans la zone d'admission où la pression et la température sont très élevées.
  • Par ailleurs dans le cas des turbines à vapeur à action le rotor est muni de disques supportant les ailettes mobiles ce qui a pour conséquence une augmentation importante des dimensions transversales du rotor aileté et par conséquent des parties statoriques.
  • Le module de turbine selon l'invention de conception simplifiée et dont les dimensions ont été réduites tout en assurant un bon comportement mécanique et thermique est caractérisé en ce que le corps interne comporte deux corps attelés ensemble, un corps antérieur disposé du côté de l'admission et un corps postérieur disposé du côté de l'échappement, le corps antérieur étant monobloc et entourant une partie de rotor qui est un rotor tambour muni de rainures dans lesquelles sont fixées les pieds des ailettes.
  • En séparant le corps interne en deux parties antérieure et postérieure on peut adapter chacune des parties aux caractéristiques de la vapeur.
  • La partie antérieure dans laquelle la température et la pression de la vapeur sont très élevées comporte une enveloppe interne et un porte-garnitures d'étanchéité à l'admission isotropes donc sans boulonnage.
  • Cette disposition a encore pour effet de réduire les dimensions radiales et transversales puisqu'elle supprime l'épaisseur de la bride nécessaire au boulonnage.
  • D'autre part l'utilisation d'un rotor tambour (donc sans disques) à l'intérieur du corps interne antérieur permet de réduire la dimension radiale de la veine et correlativement celle des enveloppes. En outre cette réduction de la dimension radiale de la veine est favorable au rendement notamment pour les turbines à action.
  • Enfin le corps ne comporte plus à l'admission que deux enveloppes, un corps externe et un corps interne.
  • Ceci permet de réduire plus encore les dimensions transversales.
  • A noter que la troisième enveloppe qui peut être parfois nécessaire pour des questions de fonctionnement en injection partielle ne l'est pas dans le cas de turbines supercritiques (250 bars, 565°C) ou à caractéristiques encore plus élevées (350 bars, 580°C) qui fonctionnent en injection totale à pression glissante.
  • Selon une réalisation préférentielle de l'invention les rainures du rotor tambour situées dans la zone du corps interne antérieur sont longitudinales et les roues mobiles sont séparées par des entretoises de même forme que les pieds des ailettes glissées dans les rainures longitudinales et faisant face aux étages fixes qui sont constitués de diaphragmes monoblocs.
  • En ce qui concerne la partie du rotor située dans la zone du corps interne postérieur, celle-ci peut être de construction classique avec des disques pour les turbines à action pour porter les ailettes mobiles ce qui présente l'avantage d'avoir un nombre d'étages limité.
  • Cette partie de rotor peut être aussi à rotor tambour avec des rainures circonférentielles ce qui amène les avantages indiqués du rotor tambour.
  • Un module HP à rotor tambour est décrit dans la demande de brevet français n° FR-9104855 au nom du demandeur.
  • Le corps interne postérieur pour des raisons de simplification est en deux parties qui peuvent être soit boulonnées soit frettées.
  • L'invention va maintenant être décrite plus en détail en se référant à des modes de réalisation particuliers cités à titre d'exemple et représentés sur les figures 3 à 20.
  • La figure 1 représente une demi-coupe longitudinale d'un module HP de turbine à action classique.
  • La figure 2 représente en demi-coupe radiale le module de la figure 1.
  • La figure 3 représente en demi-coupe longitudinale une première réalisation du module de turbine selon l'invention.
  • La figure 4 représente une coupe longitudinale d'une variante de la figure 3.
  • La figure 5 représente une coupe radiale de la figure 4.
  • La figure 6 représente une seconde réalisation du module de turbine selon l'invention.
  • La figure 7 représente une coupe d'une roue mobile du module de la figure 6.
  • La figure 8 représente une coupe d'un diaphragme du module de la figure 6.
  • La figure 9 représente le montage circonférentiel des ailettes.
  • Les figures 10, 12, 14 représentent les trois étapes du montage du module de la figure 3.
  • Les figures 11, 13, 15 représentent les trois étapes du montage du module de la figure 6.
  • La figure 16 représente une troisième réalisation du module de turbine selon l'invention.
  • La figure 17 est une vue détaillée de la partie antérieure de la figure 3.
  • La figure 18 est une vue détaillée de la partie antérieure de la figure 6.
  • La figure 19 est une variante de la partie postérieure du rotor des figures 3 et 6.
  • La figure 20 représente la climatisation des modules des figures 3 et 6.
  • Le module HP de turbine à action classique (figure 1) comporte un rotor 1 muni de disques 2 supportant des ailettes mobiles 3 constituant des roues mobiles 4 et des parties statoriques 5. Les parties statoriques 5 comportent un corps externe 6 en deux parties boulonnées dans le plan de joint horizontal et un corps interne 7 supporté par le corps externe 6 qui est également en deux parties boulonnées dans le plan de joint. Dans le corps interne 7 sont montées des diaphragmes 8 également en deux parties comprenant des aubes directrices fixes 9 de la veine 10. Chaque diaphragme 8 constitue la partie fixe d'un étage 40 avec la roue mobile 4 qui lui fait suite.
  • Les diaphragmes 8 réalisés en deux parties pour permettre leur montage sont le siège de contraintes et de déformations différentes en fonction de l'azimut considéré. Ils doivent être surdimensionnés axialement surtout pour les premiers étages de manière à prendre en compte cette coupure au joint horizontal.
  • Le module comporte des canalisations d'admission 11 débouchant dans une enveloppe interne 12 à l'intérieur du corps interne servant à la distribution de la vapeur dans la veine 10 qui se termine par l'échappement 13.
  • Cette enveloppe 12 peut être réalisée de différentes manières. Elle peut être réalisée en deux parties bouchées au joint et assemblée par un boulonnage ou elle peut être constituée de plusieurs porte-tuyères d'injection de la vapeur fixés sur le corps interne 7.
  • Sur le corps interne 7 autour du rotor 1 côté admission est monté à libre dilatation, un porte-garnitures 14 réalisé en deux parties et boulonné. Il est muni de garnitures 15 assurant l'étanchéité entre le corps interne 7 et le rotor 1 côté admission.
  • Une première réalisation du module de turbine à action est représentée à la figure 3.
  • Le rotor 1 du module est un rotor tambour c'est-à-dire sans disques. Il est muni de rainures circonférentielles 16 dans lesquelles sont logées les pieds 17 des ailettes mobiles 3. Un tel rotor est décrit dans la demande FR-A-9104855 au nom du demandeur.
  • Le corps externe 6 des parties statoriques 5 du module est de construction classique et comporte deux parties boulonnées.
  • Le corps interne 7 des parties statoriques est séparé en deux corps attelés un corps antérieur 18 du côté admission disposé dans la zone antérieure (zone A) et un corps postérieur 19 du côté de l'échappement 13 dans la zone postérieure (zone P).
  • Le corps antérieur 18 est monobloc c'est-à-dire sans coupure radiale donc parfaitement isotrope. Il comporte deux demi-couronnes 20 munies de rainures 21 dans lesquelles sont glissées des aubes directrices 9 à l'unité, chaque ensemble d'aubes directrices 9 avec la roue mobile 4 qui lui fait suite constitue un étage 40.
  • Le corps antérieur 18 entoure un porte-garnitures 14 monté à libre dilatation qui comporte un tube externe monobloc 22' c'est-à-dire sans coupure radiale donc parfaitement isotrope qui vient fretter deux demi-couronnes 22 dans lesquelles sont montées des garnitures escamotables 15 faisant chacune une demi-circonférence. Il peut bien sûr, y avoir plusieurs garnitures 15 en série. Ces garnitures 15 assurent l'étanchéité avec l'arbre du rotor 1.
  • Si on ne désire pas utiliser de garnitures escamotables 15, le porte-garnitures 14 à libre dilatation ne comporte plus de demi-couronnes et est complétement monobloc.
  • Le corps postérieur 19 est réalisé en deux parties et attelé au corps antérieur 18. Il est isotrope et fretté par des frettes 39. Dans cette conception le frettage est total et facile à réaliser puisque le corps interne postérieur est entièrement cylindrique et ne comporte pas les admissions de vapeur.
  • Comme le corps postérieur 19 est isotrope, les parties fixes de la veine 10 sont des aubes directrices 9 montées plein trou à l'unité à la coupure du joint horizontal dans les rainures 23 du corps interne.
  • Ce corps postérieur 19 comporte une face avant 24 située à la frontière entre les zones A et P contre laquelle l'ensemble des demi-couronnes 20 de la zone A vient s'appuyer.
  • La face avant 24 est prolongée par un rebord circulaire 25, qui vient se loger dans une gorge 26 ménagée dans la périphérie du corps antérieur 18, attelant ainsi les deux corps 18, 19 ensemble.
  • Les demi-couronnes 20 (fig.17) comportent pour chaque étage 40 un segment d'étanchéité 41 pour empêcher ou freiner le débit de vapeur dans l'espace annulaire entre la couronne 20 et le corps antérieur. Cette fuite éventuelle est immédiatement récupérée à l'étage suivant par des trous 42 de manière à être sûr d'avoir la température du dernier étage de la zone A sur la face avant 24.
  • Si la zone A comporte un nombre d'étages 40 trop important (voir figures 4 et 5), il est prévu d'introduire un appui intermédiaire 27 réalisé par une couronne 28 comportant plusieurs secteurs qui sont poussés de l'extérieur du corps antérieur 18 vers l'intérieur de celui-ci les secteurs étant alors à cheval sur une rainure 29 circonférentielle ménagée à l'intérieur du corps antérieur 18 et sur une rainure 30 ménagée sur l'extérieur des demi-couronnes 20.
  • Selon une variante de l'invention (voir fig.6) la zone A comporte un rotor tambour 1 dont les rainures 31 sont longitudinales.
  • Dans cette conception on utilise comme sur les turbines à action comme parties fixes des étages 40 des diaphragmes 8 monoblocs sans coupure au joint horizontal donc parfaitement isotrope et de dimensions axiales réduites.
  • Les ailettes 3 sont montées axialement sur le rotor 1 dans les rainures 31; des entretoises 32 portant les étanchéités vis-à-vis des diaphragmes assurent le remplissage de la rainure entre les roues mobiles 4. Ceci permet le montage des diaphragmes 8 monoblocs à la suite de chaque roue mobile 4 et entretoise 32.
  • Une entretoise 33 d'extrémité située sous le porte-garnitures admission 14 bloque l'ensemble ailetages-entretoises dans le sens axial par l'intermédiaire d'une couronne 34 vissée sur le rotor.
  • Sur la figure 7 on a représenté une coupe aa d'une roue mobile 4 de la zone A.
  • Les pieds 17 des ailettes 3 ont à la base un épanouissement et sont exactement complémentaire des rainures longitudinales 31.
  • Les pieds 17 des ailettes 3 d'une même roue mobile 4 sont jointifs au dessus des rainures 31 et les chapeaux 35 d'une même roue 4 sont montés en contact les uns avec les autres.
  • Entre deux roues mobiles 4 d'ailettes 3 on a glissé les entretoises 32 qui ont la même forme que les pieds 17 des ailettes 3 dans chaque rainure (voir figure 8).
  • Les entretoises 32 peuvent être séparées ou réunies par paquets de trois, quatre ou cinq. Ces entretoises 32 ou paquets d'entretoises sont en contact les unes avec les autres au-dessus des rainures 31.
  • Les entretoises 32 portent les étanchéités 36 en regard des moyeux 37 des diaphragmes 8.
  • Chaque diaphragme 8 de la zone A (voir fig.18) comporte pour chaque étage 40 un segment d'étanchéité 41 pour empêcher ou freiner le débit de vapeur dans l'espace annulaire entre le diaphragme 8 et le corps antérieur 18. Cette fuite éventuelle est immédiatement récupérée à l'étage suivant par des rainures 43 de manière à être sûr d'avoir la température du dernier étape de la zone A sur la face avant 24 (voir fig.18).
  • Une turbine à action avec rotor tambour ayant des rainures longitudinales est décrite dans la demande FR-A-9200948 déposée le 29 janvier 1992 au nom du demandeur.
  • Le corps postérieur 19 est constitué comme celui de la figure 3 sauf qu'à la place d'être fretté il est boulonné donc non isotrope.
  • Les diaphragmes 8 constituant les parties fixes de la veine 10 sont réalisées en deux parties et montés à libre dilatation. Cette disposition permet de mieux conserver les jeux radiaux rotor/stator lorsque celui-ci n'est pas isotrope.
    Nous allons maintenant décrire les montages des zones A et P pour les modules des figures 3 et 6.
  • 1 - Montage ailetages et parties fixes des étages ZONE A
  • Deux cas se présentent selon que les rainures du rotor tambour sont circonférentielles ou axiales.
  • A - Cas du montage circonférentiel des ailettes (figure 3)
  • Les ailettes mobiles 3 comportent un pied 17 en forme de T renversé. Le pied 17 de l'ailette 3 est introduit dans la rainure circonférentielle 16 en forme de T renversé puis pivote. Lorsque toutes les ailettes 3 sont en place on introduit des cales 38 ayant même section que le pied 17 des ailettes 3 mais beaucoup plus minces (voir figure 9). Les dernières cales 38 sont coupées en deux dans le sens de la hauteur pour pouvoir être introduite et la dernière en trois.
  • Dans le cas général il subsiste un jeu entre les chapeaux. Ensuite on monte les aubes fixes 9 dans les demi-couronnes 20 puis on monte ces demi-couronnes 20 autour du rotor 1 aileté et tout en les maintenant provisoirement par des vis avant montage dans le corps antérieur 18.(voir figure 10).
  • B - Cas du montage axial des ailettes (figure 6)
  • On monte chaque roue mobile 4 en totalité avec son propre serrage sur le rotor 1 en la faisant glisser axialement, on monte entre chaque roue mobile 4 les entretoises 32 dans les rainures longitudinales 31 et les diaphragmes monoblocs 8 (voir figures 7 et 8).
  • On termine par l'entretoise d'extrémité 33 et la couronne 34 vissée sur le rotor 1 (voir figure 11).
  • ZONE P - voir figures 3 et 6)
  • Dans la zone P on a choisi un montage circonférentielle des ailettes 3, les rainures 16 du rotor tambour 1 dans cette zone sont donc circonférentielles.
  • Un montage axial des ailetages dans cette zone aurait été possible mais en fait plus complexe.
  • Le montage a lieu comme indiqué ci-dessus (voir figure 9).
  • Dans la zone P on peut prévoir comme décrit deux réalisations pour les parties fixes de la veine 10, selon que le corps postérieur 19 est boulonné ou fretté et le montage des étages fixes sera différent comme indiqué ci-dessous pour le montage des stators.
  • On peut prévoir pour la dernière roue mobile 4 du rotor 1 (donc côté échappement) un montage axial dans des rainures 31' (voir fig.19) ce qui améliore les problèmes vibratoires.
  • 2 - Montage des stators ZONE A - (voir figures 12, 13)
  • Dans la zone A le montage du corps interne 18 et du porte-garniture 14 sont identiques quel que soit le principe de montage de l'ailetage (axial ou circonférentiel).
  • Il a été dit que ces deux pièces étaient isotropes et sans coupure radiale.
  • Les ailetages 4 et les diaphragmes 8 ou aubes directrices 9 de la zone A sont montés sur le rotor 1 comme vu précédemment.
  • Le porte-garniture 22' qui comporte un tube extérieur frettant deux demi-couronnes 22 portant les garnitures escamotables 15 est enfilé et centré sur le corps interne 18 par des clavettes extérieures au corps interne 18.
  • Cet ensemble est ensuite enfilé sur le rotor 1 côté admission.
  • Les diaphragmes 8 (fig.13) ou la couronne 20 portant les directrices 9 (fig.12) sont alors centrés par l'extérieur du corps antérieur 18 par des pions et sont ainsi montés à libre dilatation.
  • Ce type de montage est nécessaire pour la construction mais compte tenu du corps antérieur 18 isotrope n'est pas nécessaire du point de vu de la conception.
    A noter que si le porte-garniture 14 ne comporte pas de garnitures escamotables 15 il est en totalité monobloc (fig.16).
  • ZONE P (figures 3, 10, 12, 14) et (figures 6, 11, 13, 15).
  • Le demi-corps antérieur inférieur 18 comprenant ses demi-diaphragmes 8 (fig.6) ou les directrices 9 (fig.3) est en place dans le demi-corps externe inférieur 6.
  • L'ensemble rotor 1 corps antérieur 18 de la zone A est monté dans le corps externe inférieur 6 en prenant les précautions suivantes:
    • rotor 1 en appui sur ses coussinets
    • corps antérieur 18 en appui dans le corps externe 6 côté admission et attelé au demi-corps postérieur 9.
  • On vient ensuite coiffer cet ensemble par le demi-corps postérieur supérieur qui comprend ses demi-diaphragmes 8 (fig.6) ou ses directrices 9 (fig.3).
  • On boulonne (fig.15) ou l'on frette (fig.14) le demi-corps postérieur supérieur 2 suivant la conception choisie.
  • Le demi-corps externe supérieur est ensuite monté et boulonné.
  • A titre de variante pour les turbines à vapeur à action on peut pour la zone P prendre un rotor 1 à disques 2 tout à fait classique.
  • Cette disposition permet de réduire le nombre d'étages 4, 8 de la zone P.
  • Par contre bien entendu le rotor de la zone A est un rotor tambour à montage axial ou circonférentiel; sur la figure 16 les ailettes 3 sont représentées à montage axial.
  • D'autre part le corps postérieur 19 de la zone P peut être comme pour la zone P des modules déjà décrit soit boulonné soit fretté.
  • On peut prévoir (voir fig.20) un balayage par de la vapeur froide de l'espace interstatorique 44. A cet effet des prélévements sont effectués sur un des derniers étages 40 de la zone P par des fentes 45.
  • On prélève à l'avant du porte-garniture 14 par des fentes 46 ménagées dans ce porte-garniture les fuites de vapeur chaude ayant passées les garnitures 25.
  • Les fentes 46 sont continuées par des fentes 47 traversant le corps antérieur monobloc 18 et par des conduites 48 traversant l'espace interstatorique et alimentant par des fentes 49 un étage de la zone P, on évite ainsi l'échappement de la vapeur chaude de la partie avant du corps antérieur et de plus on fait travailler la vapeur chaude qui s'échappe. On peut régler par des moyens 50, une fuite de vapeur froide à l'extérieur de l'espace interstatorique 44, ce qui permet de régler la température de cet espace et de refroidir éventuellement le rotor d'un autre module (MP par exemple).

Claims (13)

  1. Module haute pression de turbine comportant une admission (11) pour de la vapeur à très hautes caractéristiques, un échappement (13) de vapeur, un rotor (1) supportant des roues mobiles (4) constitués d'ailettes mobiles (3) et des parties statoriques (5) comportant un corps externe (6) et un corps interne (7, 18, 19) supportant des parties fixes (8, 9) constituant avec les roues mobiles (4) des étages (40), le corps interne (7, 18, 19) étant muni du côté admission (11) d'un porte-garnitures (14) entourant le rotor (1) et indépendant du corps interne (7, 18, 19), caractérisé en ce que le corps interne (18, 19) comporte deux corps attelés ensemble, un corps antérieur (18) disposé du côté de l'admission (11) et un corps postérieur (19) disposé du côté de l'échappement (13), le corps antérieur (18) étant monobloc et entourant une partie de rotor (1) qui est un rotor tambour muni de rainures (16, 31) dans lesquelles sont fixées les pieds (17) des ailettes (3).
  2. Module haute pression de turbine selon la revendication 1, caractérisé en ce que le porte-garnitures (14) est monobloc en totalité.
  3. Module haute pression de turbine selon la revendication 1, caractérisé en ce que le porte-garnitures (14) comporte un tube externe (22') monobloc venant enserrer deux demi-couronnes (22) portant chacune une ou plusieurs garnitures escamotables (15).
  4. Module haute pression de turbine selon l'une des revendications précédentes caractérisé en ce que la turbine est à action, en ce que les rainures (31) du rotor tambour (1) situées dans la zone du corps interne antérieur (18) sont longitudinales et en ce que les roues mobiles (4) sont séparées par des entretoises (32) de même forme que les pieds (17) des ailettes (3) glissées dans les rainures longitudinales (31) et faisant face aux étages fixes qui sont constitués de diaphragmes monoblocs (8).
  5. Module haute pression de turbine à action selon la revendication 4, caractérisé en ce que chaque diaphragme (8) d'un étage (40) est muni d'un segment d'étanchéité (41) assurant l'étanchéité entre ledit diaphragme (8) et le corps antérieur (18) et en ce que ledit diaphragme (8) est munie d'une rainure (43) assurant l'envoi de la vapeur qui pourraît fuir dans l'étage suivant (40).
  6. Module haute pression de turbine selon l'une des revendications 1 à 3, caractérisé en ce que les rainures (16) du rotor tambour entouré par le corps interne antérieur (18) sont circonférentielles et en ce que le corps interne antérieur (18) enserre une ou deux paires de demi-couronnes (20) dans lesquelles sont montées des aubes directrices (9) indépendantes constituant les parties fixes des étages (40).
  7. Module haute pression de turbine selon la revendication 6, caractérisé en ce que les demi-couronnes (20) pour chaque étage (40) sont munies de segments d'étanchéité (41) assurant l'étanchéité entre lesdites demi-couronnes (20) et le corps antérieur (18) et en ce que lesdites demi-couronnes (20) sont munis de trous (42) assurant l'envoi de la vapeur qui pourrait fuir dans l'étage suivant (40).
  8. Module haute pression de turbine selon l'une des revendications précédentes caractérisé en ce que la partie du rotor (1) entourée par le corps interne postérieur (19) est un rotor tambour muni de rainures circonférentielles (16) dans lesquelles sont logées les pieds (17) des ailettes mobiles (3) constituant les roues mobiles (4).
  9. Module haute pression de turbine selon la revendication 6, caractérisé en ce que la dernière roue mobile (4) de la partie du rotor (1) entourée par le corps interne postérieur (19) qui est un rotor tambour est montée dans des rainures longitudinales (31') ménagées dans ledit rotor (1).
  10. Module haute pression de turbine selon l'une des revendications 1 à 7, caractérisé en ce que la turbine est à action et en ce que la partie du rotor située dans la zone du corps interne postérieur (19) est munie de disques (2) sur lesquels sont montées les ailettes mobiles (3) constituant les roues mobiles (4).
  11. Module haute pression de turbine selon l'une des revendications 8 à 10, caractérisé en ce que le corps interne postérieur (19) est constitué de deux parties boulonnées dans le plan de joint dans lesquelles sont montés à libre dilation des diaphragmes (8) réalisés en deux parties constituant les étages fixes.
  12. Module haute pression de turbine selon l'une des revendications 8 à 10, caractérisé en ce que le corps interne postérieur (9) est constitué de deux parties frettées dans lesquelles sont enfilées des aubes fixes (9) constituant les étages fixes.
  13. Module haute pression de turbine selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (46, 47) de prélèvement de fuites de vapeur chaude s'échappant du porte-garnitures (14) et des moyens d'injection (48, 49) de cette vapeur chaude à l'intérieur du corps postérieur (19) et des moyens (44) de prélèvement de vapeur relativement froide à l'intérieur du corps postérieur (19) pour l'injecter dans l'espace interstatorique (44) situé entre corps intérieur (18) et postérieur (19) d'un part et corps externe (6), ladite vapeur froide pouvant être utilisée pour refroidir le rotor d'un autre module.
EP93400960A 1992-04-17 1993-04-13 Carter haute pression pour turbine à vapeur Expired - Lifetime EP0566478B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9204812 1992-04-17
FR9204812A FR2690202B1 (fr) 1992-04-17 1992-04-17 Perfectionnements aux modules haute pression de turbine a rotor tambour avec admission de vapeur a tres hautes caracteristiques.

Publications (3)

Publication Number Publication Date
EP0566478A1 EP0566478A1 (fr) 1993-10-20
EP0566478B1 true EP0566478B1 (fr) 1996-05-08
EP0566478B2 EP0566478B2 (fr) 2002-07-10

Family

ID=9429031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400960A Expired - Lifetime EP0566478B2 (fr) 1992-04-17 1993-04-13 Carter haute pression pour turbine à vapeur

Country Status (5)

Country Link
US (1) US5350276A (fr)
EP (1) EP0566478B2 (fr)
JP (1) JP3529145B2 (fr)
DE (1) DE69302520T3 (fr)
FR (1) FR2690202B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926273B2 (en) 2012-01-31 2015-01-06 General Electric Company Steam turbine with single shell casing, drum rotor, and individual nozzle rings

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9210421D0 (en) * 1992-05-15 1992-07-01 Gec Alsthom Ltd Turbine blade assembly
KR100807886B1 (ko) * 2001-09-24 2008-02-27 에스케이 텔레콤주식회사 직교 주파수 분할 다중화 시스템의 수신 장치
JP2004011609A (ja) * 2002-06-11 2004-01-15 Toshiba Corp 蒸気タービン
EP1744017A1 (fr) 2005-07-14 2007-01-17 Siemens Aktiengesellschaft Turbine combinée à vapeur et procédé de fonctionnement d'une turbine combinée à vapeur
US7497658B2 (en) * 2005-11-11 2009-03-03 General Electric Company Stacked reaction steam turbine stator assembly
EP2101042A1 (fr) * 2008-03-10 2009-09-16 Siemens Aktiengesellschaft Turbine à vapeur dotée de frettes
EP2101044A1 (fr) * 2008-03-13 2009-09-16 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
EP2119878A1 (fr) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un boîtier intérieur séparé
US8167566B2 (en) * 2008-12-31 2012-05-01 General Electric Company Rotor dovetail hook-to-hook fit
TWI396261B (zh) * 2009-11-11 2013-05-11 Inotera Memories Inc 堆疊式隨機動態存取記憶體之低寄生電容位元線之製造方法
EP2423454A1 (fr) * 2010-08-25 2012-02-29 Siemens Aktiengesellschaft Boîtier pour une turbomachine et procédé de fabrication
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US20120189460A1 (en) * 2011-01-21 2012-07-26 General Electric Company Welded Rotor, a Steam Turbine having a Welded Rotor and a Method for Producing a Welded Rotor
FR2975124B1 (fr) * 2011-05-09 2013-05-24 Snecma Virole annulaire de moteur d'aeronef comportant une fenetre d'introduction d'aubes
US8834114B2 (en) * 2011-09-29 2014-09-16 General Electric Company Turbine drum rotor retrofit
CN102562187B (zh) * 2011-12-21 2014-08-06 上海发电设备成套设计研究院 一种空冷式高参数汽轮机的高中压合体缸
US9359913B2 (en) * 2013-02-27 2016-06-07 General Electric Company Steam turbine inner shell assembly with common grooves
CN105507964A (zh) * 2016-01-18 2016-04-20 哈尔滨汽轮机厂有限责任公司 一种700℃超超临界三缸600mw汽轮机
CN105804802A (zh) * 2016-05-18 2016-07-27 哈尔滨汽轮机厂有限责任公司 一种350mw超临界双缸双排汽汽轮机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE38382C (de) * P. HIERONYMUS in Karlsruhe. Nowaksanlage 19 Verfahren und Vorrichtung zur Herstellung von Hohl- und Vollgegenständen aus Papierstoff
CH111845A (de) * 1924-12-17 1926-01-02 Escher Wyss Maschf Ag Dampf- oder Gasturbine mit Leitscheiben, insbesondere für hohe Drücke und Temperaturen.
US2211874A (en) * 1938-08-16 1940-08-20 Westinghouse Electric & Mfg Co Turbine joint seal structure
CH250728A (de) * 1945-12-14 1947-09-15 Sulzer Ag Trommelläufer für Turbomaschinen.
US2467818A (en) * 1947-11-29 1949-04-19 Gen Electric High-temperature turbine casing arrangement
NL72215C (fr) * 1949-04-29
FR1085715A (fr) * 1952-11-20 1955-02-07 Escher Wyss Ag Turbine thermique à carters intérieur et extérieur
CH331946A (de) * 1954-03-24 1958-08-15 Westinghouse Electric Corp Dampfturbine für hohe Drücke und Temperaturen mit in ein Aussengehäuse eingesetztem Leitschaufelträger
US2855178A (en) * 1954-07-14 1958-10-07 Vickers Armstrongs Ltd Turbines
US2888240A (en) * 1956-03-07 1959-05-26 Allis Chalmers Mfg Co Fluid cooled barrel cylinder for turbines
FR1201991A (fr) * 1958-09-04 1960-01-07 Napier & Son Ltd Carter de turbine
FR1320174A (fr) * 1962-01-25 1963-03-08 Rateau Soc Perfectionnement des enveloppes de turbomachines, notamment de turbines à vapeur
GB1101305A (en) * 1965-04-06 1968-01-31 Dominion Eng Works Ltd Method of fabricating parts using shrink elements
GB1335939A (en) * 1972-03-06 1973-10-31 Kraftwerk Union Ag Fluid flow machine
DE2218500B2 (de) * 1972-04-17 1974-01-31 Kraftwerk Union AG, 4330 Mülheim Mehrschaliges gehaeuse einer dampfturbine fuer hohe dampfdruecke und dampftemperaturen
US4431373A (en) * 1980-05-16 1984-02-14 United Technologies Corporation Flow directing assembly for a gas turbine engine
US4480957A (en) * 1983-04-14 1984-11-06 General Electric Company Dynamic response modification and stress reduction in dovetail and blade assembly
KR100204743B1 (ko) * 1990-09-12 1999-06-15 레비스 스테픈 이 압축기 케이스의 구조체 및 외부케이스 조립방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926273B2 (en) 2012-01-31 2015-01-06 General Electric Company Steam turbine with single shell casing, drum rotor, and individual nozzle rings

Also Published As

Publication number Publication date
FR2690202A1 (fr) 1993-10-22
DE69302520T2 (de) 1996-09-12
EP0566478B2 (fr) 2002-07-10
JPH0658101A (ja) 1994-03-01
DE69302520T3 (de) 2002-12-05
JP3529145B2 (ja) 2004-05-24
US5350276A (en) 1994-09-27
DE69302520D1 (de) 1996-06-13
EP0566478A1 (fr) 1993-10-20
FR2690202B1 (fr) 1995-07-07

Similar Documents

Publication Publication Date Title
EP0566478B1 (fr) Carter haute pression pour turbine à vapeur
EP0115984B1 (fr) Dispositif d'étanchéité d'aubages mobiles de turbomachine
EP0356305B1 (fr) Anneau de stator de turbine associé à un support de liaison au carter de turbine
EP1607582B1 (fr) Montage de chambre de combustion de turbine à gaz avec distributeur intégré de turbine haute pression
EP1607682B1 (fr) Turbine à gaz
EP1972756B1 (fr) Carter inter-turbine avec circuit de refroidissement et turboréacteur le comportant
EP2801702B1 (fr) Virole interne de redresseur de turbomachine avec joint abradable
EP0176447B1 (fr) Dispositif de contrôle automatique du jeu d'un joint à labyrinthe de turbomachine
EP1517005B1 (fr) Réalisation de l'étanchéité dans un turboréacteur pour le prélèvement cabine par joints double sens à lamelles
FR2466610A1 (fr) Assemblage de rotor
CA2882320A1 (fr) Rotor de turbine pour une turbomachine
WO2015044579A1 (fr) Ensemble rotatif pour turbomachine
FR3068070B1 (fr) Turbine pour turbomachine
FR2482661A1 (fr) Assemblage directeur d'ecoulement pour une turbine a gaz
EP1534932B1 (fr) Turbine a gaz a roue de turbine de type radial
EP1517006A1 (fr) Réalisation de l'étanchéité dans un turboréacteur pour le prélèvement cabine par un joint à brosse
EP0374020B1 (fr) Ensemble structural compact d'alimentation d'un moteur-fusée en ergols à haute pression
FR3061741A1 (fr) Turbine pour turbomachine
FR2534982A1 (fr) Dispositif de controle des jeux d'un compresseur haute pression
FR3072122A1 (fr) Roue de turbomachine
EP3382242B1 (fr) Joint à brosse pour rotor de turbomachine
FR3103012A1 (fr) Rangée annulaire sectorisée d’aubes fixes
FR3066533B1 (fr) Ensemble d'etancheite pour une turbomachine
FR2868125A1 (fr) Turbomachine comprenant deux sous-ensembles assembles sous contrainte axiale
FR2965844A1 (fr) Dispositif de retenue axiale pour systeme de turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19940302

17Q First examination report despatched

Effective date: 19950804

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM (SUISSE) S.A. DEPARTEMENT DES BREVETS

REF Corresponds to:

Ref document number: 69302520

Country of ref document: DE

Date of ref document: 19960613

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960722

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ASEA BROWN BOVERI ABB MANAGEMENT AG, BADEN TEI/IMM

Effective date: 19970206

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20020710

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: MAINTIEN DU BREVET DONT L'ETENDUE A ETE MODIFIEE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070413

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070426

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070416

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080413

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100423

Year of fee payment: 18

Ref country code: DE

Payment date: 20100430

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69302520

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69302520

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031