EP0564062B1 - Méthode et installation pour la régulation de trafic - Google Patents

Méthode et installation pour la régulation de trafic Download PDF

Info

Publication number
EP0564062B1
EP0564062B1 EP93250102A EP93250102A EP0564062B1 EP 0564062 B1 EP0564062 B1 EP 0564062B1 EP 93250102 A EP93250102 A EP 93250102A EP 93250102 A EP93250102 A EP 93250102A EP 0564062 B1 EP0564062 B1 EP 0564062B1
Authority
EP
European Patent Office
Prior art keywords
time
measured
evacuation
vehicles
transit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93250102A
Other languages
German (de)
English (en)
Other versions
EP0564062A1 (fr
Inventor
Dipl.-Ing. Heckeroth Rüdiger
Bernd Dr.-Ing. Petzold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORIZONT HOLDING GMBH
Original Assignee
Horizont Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horizont Holding GmbH filed Critical Horizont Holding GmbH
Publication of EP0564062A1 publication Critical patent/EP0564062A1/fr
Application granted granted Critical
Publication of EP0564062B1 publication Critical patent/EP0564062B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals

Definitions

  • the invention relates to a method and a system for traffic regulation according to the preambles of claims 1 and 12, respectively.
  • Transportable traffic signal systems are already known, which are used to regulate traffic at narrow points or as a replacement serve defective stationary systems. It is often necessary to observe that such portable traffic lights - which are necessary, for example, at construction sites - are often not optimally adapted to traffic for reasons of time and, as a result, cause unnecessary disabilities for many road users, especially in the event of fluctuating traffic volumes.
  • axle counters are provided which always switch the system by means of counters when there is coincidence between two counter circuits, that is, when the number of counted vehicles leaving the constriction has reached the number of vehicles retracted there.
  • the problem here is that these numbers are different when vehicles are in the narrowed area remain or drive from there into the constriction. In this case the system must be switched off. In addition, release and clearing times are not specified separately for this system.
  • the green phases of a traffic light system are adapted to the number of vehicles passing, with an extension of the phases with the number of vehicles Installation in a phase of passing vehicles.
  • release and clearing times there is also no distinction between release and clearing times.
  • the invention has for its object to provide in a method of the type mentioned the possibility to regulate the traffic throughput even better, especially at narrow points. Above all, optimal clearing times should be aimed for and achieved in a short time.
  • the light signal systems should also be as easy to use as possible for unskilled personnel.
  • the invention includes the knowledge that in such a method, the clearing time should be determined separately from the duration of the release times, since - in contrast to the latter - not directly from the traffic volume, but primarily from the geometric length of the passage to be traversed Area and the driving speed of the road users is dependent. On the contrary, increased traffic can even go hand in hand with reduced clearing times.
  • the "clearing time is the time after the end of a green phase that vehicles located within the constriction need to leave them.
  • the actually required clearing time is determined from the time shift between the The bottleneck is interpreted as a dead time element subject to malfunctions, with the sensor signal representing the undelayed signal upon entry and the sensor signal representing the delayed signal upon exit derived from the dead time element, which corresponds to the transit time.
  • the transit time of vehicles on a test section along the closed section is preferably measured and the clearing time is controlled depending on the stored transit time measured values and is gradually optimized by repeated readjustment.
  • the transit time is preferably measured by detecting the vehicle transversely and / or obliquely to the direction of travel at both ends of the measuring section, i.e. at the entry and exit points of the area to be secured.
  • Sensors are attached there, preferably one sensor each on the associated light signal transmitter.
  • a two-beam scanning is also possible, with one sensor being oriented obliquely backwards and the other transversely to the roadway in order not only to reliably detect the vehicles passing through as such, but also their instantaneous speed.
  • the light signal transmitters belonging to the system each have their own control unit and are connected to one another by an information transmitter, optionally also to a control center.
  • active light signal transmitters of this type allows only the control and feedback signals to be transmitted via multi-core signal lines or via multi-channel radio links, provided these can be used.
  • Passive infrared motion detectors which are directed towards the approaching traffic, are preferably used for the perception of the flowing traffic in the case of the execution as a mobile light signal system. Unless there is a time gap between successive vehicles If an interruption in the flow of traffic signals that a preset time has elapsed, the release time (green phase) is extended to a preset maximum value. If necessary, the method according to the invention can then be used - without restricting its suitability - to switch to so-called request operation with little traffic so that release signals can also be allocated to other accesses on request, which is very favorable for avoiding noise in residential areas with night-time traffic of individual vehicles.
  • the invention brings about a substantial increase in traffic safety, since the operation can be reduced to switching on the system, which is extremely advantageous for use on construction sites. In particular, it is not necessary to adapt the parameters of the system to the geometry of the bottleneck. By assuming a maximum clearance time, the system adjusts itself to the actual traffic volume in a few measuring periods. Furthermore, a rapid flow of traffic is achieved in that the counter-green is delayed until after the clearing in the event of temporary disabilities in the constriction. This prevents double-sided entry and thus avoids additional traffic congestion. In addition, it no longer happens that - assuming that the system is working incorrectly - it is still or even only entered the blocked section when it is red. Since the clearing speed changes over the course of the day, there are strong fluctuations in the clearing time actually necessary, which according to the invention is used as a variable for the first time for traffic flow optimization.
  • the new method allows - especially in its preferred further developments - to still recognize extremely different traffic volumes at the access roads, so that an access road with a low traffic volume is assigned a barely acceptable blocking time, so that vehicles can collect there and drive through in one block according to the release signal can.
  • the cycle time is more than 300 s during several cycles, the operating personnel can be asked to take special measures to reduce the stowage, for example to operate manually with an adjustable clearing time, to allow a higher clearing speed and to display it.
  • the learning ability of the system proves to be particularly favorable in order to react appropriately to daily or weekly changes in the rhythm of the traffic parameters. Even if the driving distance and speed change greatly as a result of a dirty roadway or other changing disabilities, the time gap specification for the flowing traffic, which is then also not constant, can then be adapted to the circumstances using the method according to the invention.
  • an average value of the transit time of at least a selected number of vehicles is determined as the transit time, the measured value cannot be falsified by individual vehicles, the transit time of which differs from that of the entire vehicle column, but which happens to be from the Sensors are detected.
  • the transit time is preferably determined from the difference in the temporal mean values of passing the entry or Exit of the bottleneck of at least a number of vehicles, but advantageously the entire column.
  • An embodiment of a system that works according to the method according to the invention consists of at least two light signals (traffic light stations A, B) with conventional light signal transmitters 10 at each end P, R of a measuring section M in a constriction area E (FIG. 1) through which a vehicle flow F is to be directed in only one direction during a period determined for example by construction activity.
  • At least one sensor is arranged on each light signal transmitter 10 in such a way that it acts as a detector which detects individual vehicles on a measurement section M in a zone D which runs essentially transversely to the carriageway (see FIGS. 1 and 2). and is between stops indicated by bars H and the beginning or end of a blocked section S.
  • These sensors are attached to each entry and exit point P or R of the area E to be secured in such a way that they detect all vehicles that drive in or out in this area.
  • a sensor is preferably sufficient for this purpose is attached directly to the light signal generator 10 and is aligned accordingly (FIG. 3). The same sensor can also be used at the same time to implement the time gap method for the release time control. All of the light signal transmitters 10 belonging to the system have their own control unit 20, but can also be controlled centrally and connected to one another or to the control center by means of an information transmitter 24 (FIG. 5) via a cable or radio connection.
  • each light signal transmitter 10 has a glare-protected lighting unit 16 equipped with signal lamps, and underneath this a control unit 20 in a chamber 18 for determining the traffic signal currently to be emitted and for complying with the required signal times, as well as a correlator or comparator 22 , an information transmitter 24 and a safety device 27 for monitoring the signal sequence and for outputting error signals in the event of a fault.
  • the power supply takes place with a mains connection or from a battery box 12, which can also form the base of the light signal transmitter 10.
  • the latter can also have connections 32 for connecting cables for information transmission or for a (not shown) manual control device.
  • the control unit 20 are either permanently attached or plug-on and removable control elements 28, 30 for setting intermediate times such as red-yellow time or yellow time as well as default and limit values for the green and clearing times TF and TR in the individual traffic -Phases assigned.
  • Such controls can be omitted in simplified systems whose field of application permits fixed values.
  • Each sensor or detector (motion detector 38) only detects the moving vehicle flow F in both directions, specifically across the traffic in zones D in the end regions of the constriction E. However, vehicles traveling towards or waiting in front of traffic lights A, B are detected by these detectors not reported. As such, all sufficiently selective motion detectors are suitable, which therefore ensure the necessary resolution, including Pressure hose, infrared, ultrasonic and radar sensors as well as induction loops, light barriers etc.
  • the system according to the invention works the better the more accurately the traffic flow F is detected.
  • the or each control unit 20 uses initially selected or properly set default clearing times Ti.
  • the length of the measuring section in meters
  • the method for automatically setting the clearing time is described in more detail below on the basis of the block diagram of FIG. 5:
  • the system operates with predetermined or preferably fixed controls via corresponding control elements 28 a preset clearance level Ti.
  • the entry-side sensor detects those vehicles F that enter the area to be secured at the entry point P.
  • a pulse of a predetermined period of time is preferably emitted and integrated in each detected vehicle.
  • the integration of the trigger times of the motion detector without recognizing the response to individual vehicles is sufficient.
  • the temporal courses of the associated sensor signals or - depending on the evaluation method - a signal characteristic of the time when the entry point P passes through the vehicle column, in particular the time itself, are recorded in a memory 26 by means of the information transmitter 24 and also transferred to the control unit 20 .
  • a time signal for entry into the constriction that is independent of individual vehicles - which can cause incorrect measurements due to premature turning inside the constriction or due to the speed differing greatly from the rest of the column - there are basically two possibilities according to the invention: "of the column, whereby an average is formed from the times at which the individual vehicles pass the entry and exit points.
  • the vehicles are again detected by the exit sensors at point R.
  • the measuring probes work accordingly, so that - depending on the measuring method used - either a time measurement is obtained, which represents the mean time at which the vehicle column has passed the exit point, or else an analog pulse with a course as can be seen in FIG. 6b above.
  • all that is required to determine the transit time is to subtract the time values recorded at the entry and exit points.
  • the transit time can be additionally qualified with a shape comparison, for example by means of a correlation method (as described below), on the basis of the information contained in the pulse shape will.
  • the characteristic signal curves at entry and exit are brought into line as much as possible, the time shift necessary for this forming the (mean) transit time of the vehicle column.
  • the characteristic form of the main group will determine the transit time in the correlation method, while the individual vehicles, on the other hand, are less taken into account.
  • sensors with an even higher information acquisition rate can also be used for a correlation method. This can go from a contour detection to video control, whereby the transit time can then be determined by correlating the recorded video information, so that the transit times of actually "recognized" vehicles are included in the averaging.
  • the release of the next phase only takes place when the currently valid clearance time T RA has expired and none of the exit-side sensors detects vehicles that are still moving . This prevents green from being given even though there are still vehicles in area E to be protected.
  • the recording of the sensor signals is restarted and the sensor signal profiles determined up to that point from the previous phase are transferred to the correlator or comparator 22.
  • the sensor signal curve of a light signal transmitter that had an enable signal in the recorded phase is compared with all sensor signal curves of those light signal transmitters that did not have an enable signal. Since the vehicles that have entered the area E to be protected generate a similar sensor signal curve when driving out as when driving in, but this is shifted on the time axis t (FIGS. 6a, 7) exactly by the amount that the vehicles need to cross the narrow point E. the time shift at which the associated sensor signals have the greatest agreement is equal to the actually required clearing time T R.
  • the clearing time T R determined in this way is transmitted to the control unit 20 as an optimized value after the corresponding number of values.
  • the current clearing time is corrected by an appropriate amount after each measurement Amount ⁇ corr in the direction of the expected optimum. For security reasons, lengthening corrections are usually immediately applied in full, whereas reductions are preferably distributed over a number of steps and are therefore carried out slightly slower.
  • the current sensor signals of the motion detector 38 of a station assigned to a light signal transmitter 10, for example A, are stored in a direct part of the memory 26, which is illustrated in FIG. 5 as the left half.
  • the sensor signals coming from all other light signal transmitters 10 (stations B,...) are received in a feedback part of the memory 26 (right half), specifically in an input stage labeled I. This is followed by at least one subsequent stage II, which contains the most recent sensor signal curves and next receives the newer values from stage I as soon as the current traffic phase updates there.
  • the determination and correction of the clearing time T R using the described method is carried out during the entire operating time of the system.
  • the clearing time measured values T R in the comparator 22 are averaged over a sufficiently large number of measured values, so that the clearing time is constantly adapted to changing traffic conditions.
  • Parametric and nonparametric methods of mathematical statistics are suitable for comparing the sensor signal profiles; for example, the cross-correlation method explained below can be used. With appropriate Sensors can also make comparisons based on the number of vehicles entering and leaving the vehicle.
  • the method according to the invention can also be used with more than two light signal transmitters 10 if, for example, a junction exists at the narrow point E.
  • the sensor signals generated and temporarily stored by the sensors enable the formation of cross-correlation functions KKF in each correlator or comparator 22 from the sensor reaction of the own transmitter 10 and from sensor signal curves coming from the or each other transmitter 10 (FIG. 5).
  • the maxima G of these correlation functions KKF are shifted by exactly the time T D that the vehicles F need to travel through the measuring path M in the case of matching courses.
  • FIG. 6b illustrates such a correspondence between the sensor signal profiles of a green phase that are successively registered at stations A and B, respectively.
  • the clearing time T R is shortened by a predetermined amount.
  • the clearing time T R is extended by a predetermined amount until either this sensor is not a vehicle reports more or until a maximum time has been reached, for example twice the current value.
  • the sensor signals of the motion detectors 38 have either the amount 1 (sensor triggered) or the amount 0 (sensor not triggered).
  • a cross-correlation function results for the aperiodic sensor signals V 1 (t) and V 2 (t) it delivers the maximum value with the same sensor signals
  • the smaller value of the integral is used for control over each individual course and the KKF is standardized to this value for evaluation.
  • the time shift Tmax is used for the clearing time T R , at which the normalized KKF n assumes its maximum G. In the case of several maxima G of the same size, the largest of the associated ⁇ values is selected. The measurement is rejected as unusable if the standardized KKF n does not reach at least the amount of 0.75; the last clearing time T R therefore remains.
  • ⁇ max exceeds the current clearing time T RA , it is increased by the difference for safety reasons, otherwise it is reduced by smaller amounts in two or more steps.
  • the correction amount can be greater the closer the maximum G of the standardized KKF n is to 1.
  • the clearing times T R are rounded to full seconds. If no clear maximum can be found in one of the correlation functions KKF, a correction is not made. Since a combination of several traffic flows within the constriction E must be considered to be excluded, no correlation function can have several maxima G when the sensors are working correctly.
  • false reactions of the sensors or motion detectors 38 are largely compensated for and compensated for, which can occur, for example, as a result of inadequate adjustment, inadequacies in the measurement method or the detector principle, or with isolated “outlier” times, such as can be caused by " Speeders "or” sneaking ".
  • the sensors can be used in addition to detectors that are already available for green time regulation, but can also be used to carry out the time gap method.
  • the sensors or movement avoiders 38 can be arranged on or in the ground, close to the ground or at some height above the roadway.
  • a motion detector 38 effective transversely to the carriageway in the direction Z D , which detects the vehicles passing through.
  • a front motion detector 40 can be provided, whose scanning direction Z K (FIG. 9) detects the arriving vehicles and which, for example, is held on an angle arm 42 in a shielded manner above the light field 36 on the door 34 of the lighting unit 16.
  • This arrangement makes it possible to use the traffic light system in the request mode and to continuously use the time gap method as needed Make corrections. It is also possible and provided according to the invention to accommodate two such detectors or motion detectors 38, 40 rotatably in one structural unit.
  • What is essential for the method according to the invention is the reliable detection of the traffic rolling over the measurement section M by sensors working transversely to the road at all entrances and exits of the narrowed area E. In this way, interference of all kinds is largely eliminated, especially since all measurement and control values on all Stations of the traffic light system are measured, stored and evaluated, so that a constant mutual control is guaranteed. In addition, it can be used to assess whether the sensor signals supplied actually record traffic. In any case, the clearing time TD is automatically optimally adapted to the prevailing conditions. In combination or in parallel with the above-mentioned known possibilities for regulating the transit times TD, the operation is in most cases reduced to switching on the system.
  • the clearing times can be determined separately from the signals averaged for both directions of travel - but also (by doubling the circuit modules shown) for both directions of travel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Road Signs Or Road Markings (AREA)

Claims (16)

  1. Procédé de régulation de trafic au moyen d'installations de signalisation lumineuses transportables (feux mobiles ; A, B), en particulier au niveau de rétrécissements (E), en utilisant des commandes à détection qui prédéterminent dans la région à protéger, c'est-à-dire au niveau d'un trajet de blocage (S), des temps de libération (phases vertes, TF) et des temps de dégagement (phases rouges, TR), caractérisé en ce que le temps de passage (TD) de véhicules (F) est mesuré sur un trajet de mesure (M) qui s'étend sensiblement le long trajet de blocage (S), et que le temps de dégagement (TR) est ajouté en fonction de valeurs de mesure déterminées pour le temps de passage (TD).
  2. Procédé selon la revendication 1, caractérisé en ce que le temps de passage est déterminé par la différence des valeurs moyennes temporelles des instants de passage à l'emplacement d'entrée et à l'emplacement de sortie du rétrécissement, au moins d'un nombre choisi de véhicules et/ou par la différence temporelle de l'apparition d'un signal caractéristique pour les véhicules qui passent l'emplacement d'entrée ou l'emplacement de sortie, en particulier d'un signal qui se modifie dans le temps, et qui dépend dans son allure de la répartition temporelle des véhicules lorsqu'ils passent l'emplacement d'entrée ou l'emplacement de sortie.
  3. Procédé selon la revendication 1, caractérisé en ce que la détermination du temps de passage est constituée par le signal de sortie d'un détecteur qui est activé à chaque fois lors du passage d'un véhicule, et ce signal de sortie est amenée à un circuit d'intégration.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le temps de dégagement (TR) est ajouté aux valeurs de temps de passage déterminées par modification répétée par pas de longueurs fixes ou variables, et dans lequel la modification pas à pas commence lors de la mise en service de l'installation de signalisation lumineuse depuis un temps de dégagement maximal préalablement choisi (Ti).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la saisie du temps de passage et la détermination du temps de dégagement ont lieu séparément selon les directions de circulation.
  6. Procédé selon la revendication 3, caractérisé en ce que des valeurs de modification du temps de dégagement (TR) lors de son allongement sont plus importantes que lors de son raccourcissement, et ces valeurs de modification sont en particulier entièrement reprises lors du prolongement du temps de dégagement, mais au contraire subdivisées en plusieurs pas d'adaptation lors de son raccourcissement.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la mesure du temps de passage (TD) a lieu par détection de véhicules transversalement et/ou en oblique par rapport à la direction du trajet de mesure (M) à ses deux extrémités (P, R) dans la région des emplacements d'entrée et de sortie respectifs.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les temps de dégagement actuels et les valeurs de mesure du temps de passage (TD) de chaque installation ou station sont comparés avec des méthodes paramétrales et/ou non-paramétrales de la statistique mathématique, et corrélés pour délivrer des valeurs caractéristiques d'influence, en particulier pour obtenir des montants de modification du temps de dégagement.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que les signaux produits par les capteurs individuels font l'objet d'une corrélation croisée, et en ce que l'écart temporel entre des valeurs maximum successives des fonctions de corrélation obtenues (KKF) forment la modification du temps de passage, et qu'il est alors en particulier respectivement utilisé pour obtenir une valeur de modification (τ) du temps de dégagement, à partir de laquelle on dérive le temps de dégagement (TR).
  10. Procédé selon la revendication 9, caractérisé en ce que le dernier temps de dégagement respectif (TR) est raccourci d'une valeur prédéterminée lorsqu'il dépasse l'écart maximum déterminé le plus élevé (Q), et inversement, en ce qu'un allongement a lieu d'une valeur prédéterminée lorsque le dernier temps de dégagement respectif (TR) est inférieur à l'écart maximum déterminé le plus élevé (Q).
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le temps de dégagement est augmenté lorsqu'on détermine un déplacement de véhicule sur le trajet de mesure (M) pendant un intervalle de sécurité ajouté au temps de dégagement déterminé, avant le temps de libération suivant (phase verte TF).
  12. Installation pour régulation de circulation au moyen de stations de signalisation lumineuses transportables (feux mobiles ; A, B), en particulier au niveau de rétrécissements (E), en utilisant des commandes à détection (20, 38) au moyen desquelles on peut établir dans la région à protéger, sous forme d'un trajet de blocage (S), des temps de libération (phases vertes, TF) et des temps de dégagement (phases rouges, TR),
    caractérisée en ce que l'on prévoit des dispositifs (38) pour mesurer le temps de passage (TD) de véhicules (F) sur un trajet de mesure (M) qui s'étend sensiblement le long du rétrécissement (E), et en ce que des signaux électriques dérivés des valeurs de mesure du temps de passage (TD) en tant que signaux de sortie des dispositifs pour mesurer le temps de passage (TD), sont amenés à l'unité de commande (20) contenue dans la commande à détection.
  13. Installation selon la revendication 12, caractérisée en ce que, aux deux extrémités (P, R) du trajet de mesure (M) sont agencés des détecteurs (38) qui agissent perpendiculairement et/ou en oblique par rapport au tracé de ce trajet.
  14. Installation selon l'une ou l'autre des revendications 12 et 13, caractérisée en ce que, à l'une au moins des extrémités (P ou R) du trajet de mesure (M) sont prévus une paire de détecteurs (38, 40) qui agissent suivant un angle droit ou un angle obtus l'un par rapport à l'autre.
  15. Installation selon l'une des revendications 12 à 14, caractérisée en ce que deux détecteurs respectifs (38, 40) sont prévus dans une unité structurelle commune, et en particulier susceptible d'être tournés l'un par rapport à l'autre.
  16. Installation selon l'une des revendications 12 à 15, caractérisée en ce que les détecteurs (38) d'au moins deux stations de signalisation lumineuses (A, B) sont reliés en permanence de façon croisée l'un avec l'autre par des dispositifs de transmission d'information (24) et des trajets de connexion, en particulier par des câbles ou des liaisons radio, ou sont branchés en réseau.
EP93250102A 1992-04-02 1993-04-02 Méthode et installation pour la régulation de trafic Expired - Lifetime EP0564062B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP92105771 1992-04-02
EP92105771 1992-04-02

Publications (2)

Publication Number Publication Date
EP0564062A1 EP0564062A1 (fr) 1993-10-06
EP0564062B1 true EP0564062B1 (fr) 1997-07-30

Family

ID=8209504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93250102A Expired - Lifetime EP0564062B1 (fr) 1992-04-02 1993-04-02 Méthode et installation pour la régulation de trafic

Country Status (7)

Country Link
US (1) US6124807A (fr)
EP (1) EP0564062B1 (fr)
AT (1) ATE156287T1 (fr)
AU (1) AU4038893A (fr)
CA (1) CA2110267A1 (fr)
DE (1) DE59306990D1 (fr)
WO (1) WO1993020545A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE194244T1 (de) * 1994-04-28 2000-07-15 Nihon Samicon Co Ltd Verkehrssteuersystem zum leiten der abwechselnden einseitigen durchfahrt von fahrzeugen an einer strassenbaustelle
AU2002308468A1 (en) * 2001-04-23 2002-11-05 Carmanah Technologies Inc. Potted domed solar panel capsule and traffic warning lamps incorporating same
US6646568B2 (en) 2001-09-27 2003-11-11 International Business Machines Corporation System and method for automated parking
US6693557B2 (en) * 2001-09-27 2004-02-17 Wavetronix Llc Vehicular traffic sensor
US6609061B2 (en) 2001-09-27 2003-08-19 International Business Machines Corporation Method and system for allowing vehicles to negotiate roles and permission sets in a hierarchical traffic control system
US6574547B2 (en) 2001-09-27 2003-06-03 International Business Machines Corporation Use of vehicle permissions to control individual operator parameters in a hierarchical traffic control system
US6611750B2 (en) 2001-09-27 2003-08-26 International Business Machines Corporation Hierarchical traffic control system
US6580997B2 (en) 2001-09-27 2003-06-17 International Business Machines Corporation Hierarchical traffic control system which includes vehicle roles and permissions
US6992598B2 (en) * 2002-01-10 2006-01-31 Poltorak Alexander I Apparatus and method for providing travel information
US7426450B2 (en) * 2003-01-10 2008-09-16 Wavetronix, Llc Systems and methods for monitoring speed
US20050131627A1 (en) * 2003-12-15 2005-06-16 Gary Ignatin Traffic management in a roadway travel data exchange network
US7174153B2 (en) * 2003-12-23 2007-02-06 Gregory A Ehlers System and method for providing information to an operator of an emergency response vehicle
US20070138347A1 (en) * 2004-12-16 2007-06-21 Ehlers Gregory A System and method for providing information to an operator of a vehicle
US7893849B2 (en) * 2005-10-20 2011-02-22 Poltorak Alexander I Apparatus and method for providing travel information
US8248272B2 (en) 2005-10-31 2012-08-21 Wavetronix Detecting targets in roadway intersections
US7889097B1 (en) 2005-12-19 2011-02-15 Wavetronix Llc Detecting targets in roadway intersections
US7573400B2 (en) * 2005-10-31 2009-08-11 Wavetronix, Llc Systems and methods for configuring intersection detection zones
US8665113B2 (en) 2005-10-31 2014-03-04 Wavetronix Llc Detecting roadway targets across beams including filtering computed positions
US7991542B2 (en) * 2006-03-24 2011-08-02 Wavetronix Llc Monitoring signalized traffic flow
US20080074289A1 (en) * 2006-09-21 2008-03-27 Adc Telecommunications, Inc. Wireless internet-protocol-based traffic signal light management
US20090051568A1 (en) * 2007-08-21 2009-02-26 Kevin Michael Corry Method and apparatus for traffic control using radio frequency identification tags
US8050854B1 (en) 2007-11-26 2011-11-01 Rhythm Engineering, LLC Adaptive control systems and methods
FR2929034B1 (fr) * 2008-03-20 2010-04-16 Armines Ass Pour La Rech Et Le Systeme et procede d'information sur le trafic dans un reseau routier
US9412271B2 (en) 2013-01-30 2016-08-09 Wavetronix Llc Traffic flow through an intersection by reducing platoon interference
US10043385B2 (en) * 2016-06-06 2018-08-07 United States Cellular Corporation Configuring traffic control device switch timing intervals using mobile wireless device-provided traffic information
CN111275011B (zh) * 2020-02-25 2023-12-19 阿波罗智能技术(北京)有限公司 移动红绿灯检测方法、装置、电子设备和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933716A (en) * 1957-01-22 1960-04-19 Robert P Strakas Automatic traffic control
US3529286A (en) * 1968-04-23 1970-09-15 Fischer & Porter Co Capacity demand traffic control system
DE1813336A1 (de) * 1968-12-07 1970-10-15 Reinhold Weidner Vorrichtung zum Steuern zweier Verkehrsampeln
BE789513A (fr) * 1971-09-30 1973-03-29 Siemens Ag Installation de signalisation routiere
AT370540B (de) * 1976-07-20 1983-04-11 Stein Hermann Anlage zum synchronisieren von strassenverkehrs -signalampeln
FR2465283A1 (fr) * 1979-09-07 1981-03-20 Thomson Csf Dispositif de mesure du trafic routier, et systeme de signalisation comportant un tel dispositif
CA2044794A1 (fr) * 1990-06-21 1991-12-22 Mitsuhiro Kishi Systeme de signalisation temporaire

Also Published As

Publication number Publication date
AU4038893A (en) 1993-11-08
CA2110267A1 (fr) 1993-10-14
US6124807A (en) 2000-09-26
WO1993020545A1 (fr) 1993-10-14
ATE156287T1 (de) 1997-08-15
DE59306990D1 (de) 1997-09-04
EP0564062A1 (fr) 1993-10-06

Similar Documents

Publication Publication Date Title
EP0564062B1 (fr) Méthode et installation pour la régulation de trafic
DE4410406C2 (de) Optoelektronische Vorrichtung zum Überwachen der Umgebung eines Fahrzeugs
EP1019883B1 (fr) Procede et dispositif de guidage a assistance automatique d'aeronefs vers un emplacement de stationnement
EP1298620B1 (fr) Système de commande pour dispositif lumineux de signalisation d'un carrefour
DE4423966A1 (de) Hinderniserfassungssystem für Kraftfahrzeuge
EP1831853B1 (fr) Procede et dispositif pour commander des installations de signaux lumineux et creer une onde verte
DE60006411T2 (de) Zählvorrichtung
DE19710234A1 (de) Automatische Fahrvorrichtung für Fahrzeuge
EP0782000B1 (fr) Procédé de détermination d'une vitesse avec combinaison de la mesure d'un intervalle de temps avec une corrélation
DE10102678A1 (de) Verfahren und System zum Erfassen und Einstellen von Radausrichtfehlern eines Fahrzeugs
DE1574054B1 (de) Vorrichtung zur bestimmung des autoverkehrsflusses
DE69631629T2 (de) Erfassung und Vorhersage von Verkehrsbehinderungen
DE7240022U (de) Vorrichtung zum pruefen von verbrennungsmotoren
DE4337828C2 (de) Verfahren und Vorrichtung zur Regelung und/oder Steuerung einer Tür
EP1136826A2 (fr) Dispositif pour la mesure de vitesse
DE102011107663B4 (de) Verfahren und Vorrichtung zur dynamischen Steuerung einer Signalanlage
DE1959546A1 (de) Vorrichtung zur Ermittlung von Verkehrsinformationen
EP0016919A1 (fr) Dispositif pour détecter le franchissement de la ligne d'arrivée par les participants d'une course
DE1574298A1 (de) Vorrichtung fuer die Lageeinstellung eines endlosen Bandes
CH660926A5 (de) Ueberwachungsanlage.
EP0042546B1 (fr) Système de mesure de vitesse, en particulier pour véhicules routiers
DE2207487C3 (de) Einrichtung zum Erfassen und Steuern des Verkehrsablaufs auf Straßen
DE102007032091B3 (de) Verfahren zum Überwachen eines höhengleichen Bahnübergangs
DE3608890C2 (fr)
EP3080026A1 (fr) Dispositif sur une installation d'ascenseur permettant de déterminer la position d'un contrepoids d'un ascenseur et procédé pour ledit dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19940331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HORIZONT HOLDING GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960930

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970730

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970730

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970730

Ref country code: FR

Effective date: 19970730

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970730

Ref country code: DK

Effective date: 19970730

REF Corresponds to:

Ref document number: 156287

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306990

Country of ref document: DE

Date of ref document: 19970904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19971030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19971105

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980617

Year of fee payment: 6

26N No opposition filed
BERE Be: lapsed

Owner name: HORIZONT HOLDING G.M.B.H.

Effective date: 19980430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201