EP0561262B1 - Pump for viscous materials having cylinders, in particular two cylinder concrete pump - Google Patents

Pump for viscous materials having cylinders, in particular two cylinder concrete pump Download PDF

Info

Publication number
EP0561262B1
EP0561262B1 EP93103802A EP93103802A EP0561262B1 EP 0561262 B1 EP0561262 B1 EP 0561262B1 EP 93103802 A EP93103802 A EP 93103802A EP 93103802 A EP93103802 A EP 93103802A EP 0561262 B1 EP0561262 B1 EP 0561262B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
delivery
pump
slide valve
control slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93103802A
Other languages
German (de)
French (fr)
Other versions
EP0561262A1 (en
Inventor
Friedrich Dipl.-Ing. Schwing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Wilhelm Schwing GmbH
Original Assignee
Friedrich Wilhelm Schwing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Wilhelm Schwing GmbH filed Critical Friedrich Wilhelm Schwing GmbH
Publication of EP0561262A1 publication Critical patent/EP0561262A1/en
Application granted granted Critical
Publication of EP0561262B1 publication Critical patent/EP0561262B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0454Devices for both conveying and distributing with distribution hose with booms with boom vibration damper mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0075Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/02Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated
    • F04B7/0233Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0258Piston machines or pumps characterised by having positively-driven valving the valving being fluid-actuated a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an orbital movement, e.g. elbow-pipe type members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/90Slurry pumps, e.g. concrete

Definitions

  • the invention relates to a thick matter pump with delivery cylinders, in particular a two-cylinder concrete pump according to the preamble of claim 1.
  • the basic mode of operation of known thick matter pumps, particularly those used for concrete delivery, in two-cylinder piston pumps is that the two delivery pistons in the delivery cylinders are usually driven by hydraulic cylinders in such a way that during the one delivery the other sucks in.
  • the piston play changes in the stroke end positions.
  • the movement of the pistons is synchronized, i. that is, if the hydraulic cylinder driving the feed cylinder, e.g. B. is applied to the piston side with hydraulic oil, the piston rod-side displaced oil is passed via a bridge line to the piston rod side of the suction feed cylinder, so that this travels its suction stroke at the same speed as the advancing cylinder because of the identical area ratios of the two drive cylinders.
  • both pistons reach their end positions simultaneously in the feed cylinders.
  • the delivery cylinders are each connected to the delivery line during the delivery stroke or to the filling funnel containing the thick matter during the suction stroke, a logic circuit is required which controls the concrete flow between the strokes after reaching the end of the stroke and the connection of the delivery cylinders with the delivery line or with the Inlet funnel reverses.
  • Such a two-cylinder concrete pump does not achieve the goal of a more uniform concrete delivery through the delivery line. This is because the lack of compression of the concrete sucked in at such a pump at the beginning of each piston stroke leads to a standstill of the concrete flow.
  • a thick matter pump with delivery cylinders in particular a two-cylinder concrete pump with a thick matter flow control between a feed hopper, the delivery cylinders and a delivery line, as well as one of the drives of the delivery cylinders and the thick matter flow controlling logic circuit, known, in which the thick matter flow runs through a control slide, which is permanently connected with its outlet opening to the delivery line and is provided with at least one inlet opening, which is alternately in front of the openings of the feed cylinder, a compensating cylinder excluding thick material interruptions during switching of the control slide and the logic circuit is designed such that the compensating cylinder presses thick material into the delivery line during the switching of the control slide and during the subsequent delivery cycle one of the delivery cylinders with thick material is filled, and in which on each side of the inlet opening of the control slide associated slide plates are adjusted in size to an area between the feed cylinder openings such that in the switching center position of the control slide, the openings of the feed
  • This solution has the disadvantage that when the opening of the feed cylinder that has sucked in the thick matter is released, the thick matter flow in the feed line is interrupted because the feed piston must first compress the thick matter in the feed cylinder before the thick matter flow can start in the feed line.
  • the object of the invention is therefore to easily realize a thick matter pump with a continuous and pulsation-free flow.
  • the invention is based on a new way of looking at the previously known two-cylinder high-density pumps, which is illustrated by the example of a known pump II Art is explained below, which has neither a pre-compression nor a compensating cylinder.
  • pump stroke the time for the effective delivery stroke (pump stroke) is determined by the actually required concrete delivery quantity and by the volumetric efficiency ⁇ .
  • the comparison of f 1 and f 2 means that the max.
  • the running speed of the pistons is substantially / significantly determined solely by the switching time tSch, given otherwise the same requirements with regard to the required delivery rate (Q o ), delivery cylinder volume (V o ) and volumetric efficiency ( ⁇ ).
  • a conveying stroke of the compensating cylinder directly adjoins the conveying stroke of a conveying cylinder, and the conveying break that has occurred so far is thus avoided in this phase.
  • the delivery stroke of the other delivery cylinder is connected directly to the delivery stroke of the compensating cylinder, so that overall delivery pauses can no longer occur. This also ensures the invention in that the switching of the control slide including the various hydraulic valves and the compression stroke take place during the delivery stroke of the compensating cylinder.
  • the volume (V A ) of the compensating cylinder is determined by the first time and volume equivalence consideration, which relates to the pumping phase of the compensating cylinder.
  • the second consideration of time and volume equivalence is intended to determine the running time or running speed of the piston of the delivery cylinder during the pumping stroke.
  • the compensation takes place Reduction of the effective delivery volume of the pumping delivery cylinder an acceleration of the effective running speed of the piston in this pumping delivery cylinder, which results in a pump delivery rate Q ***, which is increased and must be such that the delivery rate effectively delivered to the delivery line is equal to Q o is.
  • the representations of the figures are based on a two-cylinder concrete pump.
  • the two feed cylinders are labeled L and R.
  • the letter A denotes a compensating cylinder which opens into the delivery line 105.
  • the feed cylinder and the compensating cylinder are each driven by a hydraulic working cylinder, the letters each referring to the unit consisting of the feed cylinder and drive cylinder.
  • the end positions of the pistons in the cylinders are conveyed to the logic circuit by pulses from sensors which are identified by the letters a-f. These sensors control valves that are identified with Arabic numbers.
  • the control pulses of the sensors can be electrical, hydraulic, mechanical or pneumatic.
  • the concrete flow control provided in the invention is carried out with a swivel tube 100 which has a control plate 101 and 102 on opposite sides of its inlet opening and is therefore referred to as a control slide (104).
  • a hydraulic drive is used to impart motion is generally designated B. This is also controlled via a directional valve, which is shown at 3.
  • a hopper has on its side opposite the openings of the delivery cylinders L and R a pivot bearing 103 for the control slide 104 and the rotationally fixed connection of the pump-side end of a concrete delivery line 105.
  • the combination circuit accelerates the drive piston of the conveying cylinder currently being conveyed, so that its conveying piston runs faster and thereby conveys more in this phase, which corresponds to the size of the amount of concrete removed from the filling funnel at the front of the equalizing cylinder. This is done by adding additional hydraulic medium (oil). If the area ratio of the compensating cylinder drive piston to the compensating cylinder feed piston is the same as that of the feed cylinders, the hydraulic drive medium which the rear of the compensating cylinder drive piston displaces through the outlet cylinder feed piston when the concrete is sucked in from the delivery line is sufficient.
  • the control slide 104 is switched between the piston clearances of the delivery cylinders R and L.
  • the switching takes place in two successive steps, the first of which holds the control slide in a central position between the openings of the two delivery cylinders.
  • one of the slide plates 101 and 102 closes the delivery cylinder opening of the delivery cylinder switched from suction to delivery. This enables the piston of this feed cylinder to compress the previously sucked concrete.
  • the logic circuit causes the second switching step of the control slide 104 into the respective end position. Thereby the inlet opening 106 of the control slide 104 is aligned with the opening of the conveying cylinder and the previously compacted concrete is pressed into the conveying line 105.
  • the middle switching position of the control slide 104 is controlled by the directional valve 7.
  • the control hole for the return oil is closed in the middle switch position, causing the control slide to come to a standstill in the middle switch position.
  • Valve 7 is switched on at intervals and moves to the other switching position. This will clear a return control bore at the end of the drive cylinder.
  • the control spool can be switched to the end position.
  • the middle switching position of the control slide is determined by the fact that two drive cylinders according to FIG. 5 are connected in series for driving the control slide.
  • the middle position is established.
  • the second cylinder 108 is actuated at intervals, by means of which the control slide 104 reaches its end position.
  • the first cylinder 107 is actuated by the valve 3 and the second cylinder 108 by the valve 31.
  • the required limitation of the compression stroke is done with a cylinder 33 in which a piston 38 is arranged.
  • the stroke volume 40 corresponds to the selected compression stroke limitation.
  • a valve 51 controls the cylinder in such a way that in the phase of the compression stroke the valve 51 is switched by one of the sensors a, b.
  • pressure oil from a reservoir 60 acts on the side 36 of the piston 38 via the line 35.
  • the amount of oil displaced by the piston side 37 becomes via a line 34, 28 to the compressing feed cylinder until the piston 38 has reached its end position.
  • the switching back of the valve 51 by a sensor acts on the accumulator side 37 of the piston 38.
  • the oil displaced from the side 36 flows out to the tank.
  • the piston 38 can thus be returned in its starting position for the next compression.
  • a continuous concrete flow is achieved in that the same piston area ratios as well as the same hydraulic quantities for the delivery stroke are available for the different cylinders L, R and A.
  • the hydraulic pump P1 ensures the continuity of the concrete delivery. It is therefore advantageous to provide one or more separate other drive sources for all other drives of the valves or control slides, the suction stroke of the compensating cylinder A, etc.
  • a second hydraulic circuit which has a reservoir 60 fed by a pump P2, is used for this purpose.
  • an auxiliary pump P3 is provided, which is switched so that in the phase in which the compensating cylinder conveys the concrete, the pump P3 is not switched off, but the hydraulic medium supplied by it via line 9 additionally to the reservoir 60 is supplied.
  • a correspondingly enlarged pump P2 can be provided in connection with a larger working volume storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

The invention relates to a pump for viscous materials having cylinders, especially to a two-cylinder concrete pump having a viscous-material flow control between a feed hopper, the two cylinders and a delivery line, a linkage circuit which controls the drives of the cylinders and the viscous-material flow control, a control valve and an equalising cylinder which during switch-over of the control valve precludes breaks in the flow of the viscous material. According to the invention it is provided that the linkage circuit causes the drive of the cylinder which is delivering at any given time to increase delivery by the measure of the amount of viscous material received by the equalising cylinder, and delays switch-over of the control valve in such a way that one of the valve plates, which are assigned to each cylinder at both ends of the inlet orifice of the control valve and whose size is matched to an area between the cylinder ports in such a way that in the switching centre position of the control valve the cylinder port is sealed by the valve plates and the inlet orifice in the control valve is sealed on the face between the cylinders, in order to carry out a part stroke of the cylinder piston, which part stroke compresses the viscous material drawn in, closes the port of the delivering cylinder. <IMAGE>

Description

Die Erfindung betrifft eine Dickstoffpumpe mit Förderzylindern, insbesondere eine Zweizylinderbetonpumpe gemäß dem Oberbegriff des Anspruches 1.The invention relates to a thick matter pump with delivery cylinders, in particular a two-cylinder concrete pump according to the preamble of claim 1.

Die grundsätzliche Arbeitsweise bekannter, insbesondere zur Betonförderung verwendeter Dickstoffpumpen besteht bei Zweizylinderkolbenpumpen darin, daß die beiden Förderkolben in den Förderzylindern in der Regel von Hydraulikzylindern in der Weise angetrieben werden, daß während der eine Kolben fördert der andere ansaugt. Der Wechsel des Kolbenspiels vollzieht sich jeweils in den Hubendstellungen. Die Bewegung der Kolben ist synchronisiert, d. h., wenn der den Förderzylinder antreibende Hydraulikzylinder, z. B. kolbenseitig mit Hydrauliköl beaufschlagt ist, wird das kolbenstangenseitig verdrängte Öl über eine Brückenleitung auf die Kolbenstangenseite des saugenden Förderzylinders geleitet, so daß dieser wegen identischer Flächenverhältnisse der beiden Antriebszylinder mit gleicher Geschwindigkeit wie der vorfahrende Zylinder seinen Saughub zurücklegt. Dadurch erreichen beide Kolben in den Förderzylindern jeweils gleichzeitig ihre Endstellungen.The basic mode of operation of known thick matter pumps, particularly those used for concrete delivery, in two-cylinder piston pumps is that the two delivery pistons in the delivery cylinders are usually driven by hydraulic cylinders in such a way that during the one delivery the other sucks in. The piston play changes in the stroke end positions. The movement of the pistons is synchronized, i. that is, if the hydraulic cylinder driving the feed cylinder, e.g. B. is applied to the piston side with hydraulic oil, the piston rod-side displaced oil is passed via a bridge line to the piston rod side of the suction feed cylinder, so that this travels its suction stroke at the same speed as the advancing cylinder because of the identical area ratios of the two drive cylinders. As a result, both pistons reach their end positions simultaneously in the feed cylinders.

Da die Förderzylinder jeweils beim Förderhub mit der Förderleitung bzw. beim Saughub mit einem den Dickstoff enthaltenden Einfülltrichter in Verbindung stehen, bedarf es einer Verknüpfungsschaltung, die den Betonfluß zwischen den Hüben nach Erreichen des Hubendes und die Verbindung der Förderzylinder mit der Förderleitung bzw. mit dem Einfülltrichter umkehrt.Since the delivery cylinders are each connected to the delivery line during the delivery stroke or to the filling funnel containing the thick matter during the suction stroke, a logic circuit is required which controls the concrete flow between the strokes after reaching the end of the stroke and the connection of the delivery cylinders with the delivery line or with the Inlet funnel reverses.

Charakteristisch für diese und andere Dickstoffpumpen ist dabei, daß zwischen den Förderhüben, nämlich für die Zeitdauer des Umschaltens des Steuerorgans die Förderung der Förderzylinder zum Stillstand kommt. Dadurch wird die Dickstofförderung unterbrochen. Dabei wird bei der bekannten Dickstoffpumpe die Zeitdauer der Unterbrechnung entsprechend dem Füllungsgrad, der abhängig ist vom Luftgehalt, dem Fließwiderstand des Betons, der Sauggeschwindigkeit sowie den Zylinderdurchmessern, noch weiter vergrößert und zwar um die Zeit, die der Förderzylinder zu Beginn des Förderhubes benötigt, um den Dickstoff zu verdichten.It is characteristic of these and other thick matter pumps that the delivery of the delivery cylinders comes to a standstill between the delivery strokes, namely for the duration of the switching of the control member. As a result, the thick matter feed is interrupted. In the known thick matter pump, the duration of the interruption in accordance with the degree of filling, which is dependent on the air content, the flow resistance of the concrete, the suction speed and the cylinder diameters, is further increased by the time that the feed cylinder requires at the beginning of the delivery stroke by to compact the thick matter.

Hinzu tritt noch eine weitere unangenehme Erscheinung, nämlich das Zurückströmen des Dickstoffes aus der Förderleitung in den Pumpzylinder während der Umschaltphase des Betonschiebers.In addition, there is another unpleasant phenomenon, namely the backflow of the thick material from the delivery line into the pump cylinder during the switchover phase of the concrete slide valve.

Die Unterbrechnungen des Förderflusses wirken sich insgesamt ungünstig aus. Tatsächlich ergibt sich eine pulsierende Förderung, welche Schwingungen hervorruft. Diese wirken sich besonders nachteilig aus, wenn die Dickstoffpumpe auf einem Fahrzeug aufgebaut ist und die Förderleitung an einem knickbaren Verteilermast angebracht ist. Denn hieraus ergibt sich ein schwingungsfähiges System, das bei den üblichen Kolbenhubfrequenzen Resonanzerscheinungen zeigt.The interruptions in the flow of funding have an overall adverse effect. In fact, there is a pulsating delivery, which causes vibrations. These have a particularly disadvantageous effect if the thick matter pump is installed on a vehicle and the delivery line is attached to a bendable placing boom. Because this results in an oscillatory system that shows signs of resonance at the usual piston stroke frequencies.

Daraus leitet sich die Forderung ab, eine Pumpe zu schaffen, mit der ein kontinuierlicher Förderstrom erzielt werden kann.This leads to the requirement to create a pump with which a continuous flow can be achieved.

Gemäß einem Stand der Technik (A) hat man sich bereits bemüht, die Unterbrechnungen der Dickstofförderung zwischen den Förderhüben der Förderzylinder zu verkürzen oder gar zu eliminieren.According to a prior art (A), efforts have already been made to shorten or even eliminate the interruptions in the thick matter conveyance between the conveying strokes of the conveying cylinders.

Bei einem solchen vorbekannten Vorschlag (US-PS 3 663 129) ist zu diesem Zweck ein Ausgleichszylinder vorgesehen, der während des Umschaltens eines als einheitlicher Hohlkörper ausgebildeten Schwenkrohres Dickstoff in die Förderleitung drückt und während des anschließenden Förderhubes eines der beiden Förderzylinder mit Dickstoff aus der Förderleitung gefüllt wird. Das geschieht dadurch, daß die Mündung des Ausgleichszylinders mit dem zur Steuerung des Betonflusses dienenden Hohlkörper in der gleichen Weise wie die Öffnungen der Förderzylinder gesteuert wird. Die Verknüpfungsschaltung arbeitet mit Endschaltern, die von den Förderzylinderkolben betätigt werden und den Ansaug- bzw. den Förderhub des Ausgleichszylinders einleiten.In such a previously known proposal (US Pat. No. 3,663,129) a compensating cylinder is provided for this purpose, which presses thick matter into the delivery line during the switching over of a swivel tube designed as a uniform hollow body and during the subsequent delivery stroke one of the two delivery cylinders with thick matter from the delivery line is filled. This is done in that the mouth of the compensating cylinder with the hollow body serving to control the concrete flow is controlled in the same way as the openings of the delivery cylinders. The logic circuit works with limit switches which are actuated by the delivery cylinder pistons and initiate the suction or delivery stroke of the compensating cylinder.

Eine derartige Zweizylinderbetonpumpe erreicht nicht das Ziel einer gleichmäßigeren Betonförderung durch die Förderleitung. Es führt nämlich die bei einer solchen Pumpe fehlende Verdichtungsmöglichkeit des jeweils angesaugten Betons zu Beginn jedes Kolbenhubes zu einem Stillstand des Betonflusses.Such a two-cylinder concrete pump does not achieve the goal of a more uniform concrete delivery through the delivery line. This is because the lack of compression of the concrete sucked in at such a pump at the beginning of each piston stroke leads to a standstill of the concrete flow.

Gemäß einem anderen Stand der Technik (B), nämlich der DE-OS 29 09 964 ist es bekannt, die Betonflußsteuerung mit einer Rohrweiche zu bewerkstelligen, die mit zwei S-förmig gekrümmten Rohren verwirklicht ist. Diese Rohre sind im Einfülltrichter schwenkbar angeordnet und S-förmig gekrümmt. Jedes Rohr ist mit seinen Öffnungen im ständigen Kontakt mit einem an einer Seite des Einfülltrichters liegenden Förderleitungsanschluß, während die andere Öffnung als Eintrittsöffnung dient und wechselweise mit der an der gegenüberliegenden Seite des Einfülltrichters mündenden Öffnung des ihm zugeordneten Förderzylinders ausgefluchtet ist oder diese freigibt, so daß die Förderzylinderöffnung in den Einfülltrichter geöffnet ist und der Zylinder den Dickstoff anzusaugen vermag.According to another prior art (B), namely DE-OS 29 09 964, it is known to accomplish the concrete flow control with a pipe switch, which is realized with two S-shaped curved pipes. These tubes are pivoted in the hopper and curved in an S-shape. Each tube is in constant contact with its openings with a delivery line connection located on one side of the hopper, while the other opening serves as an inlet opening and is alternately aligned with the opening of the delivery cylinder assigned to it on the opposite side of the hopper or releases it, so that the delivery cylinder opening is opened in the hopper and the cylinder is able to suck in the thick matter.

Die Notwendigkeit, zur Steuerung des Dickstofflusses mehrere Schwenkrohre vorzusehen, ergibt sich daraus, daß die Förderunterbrechnungen nicht durch den Förderhub eines Ausgleichszylinders ausgeglichen werden, sondern dadurch, daß die Verknüpfungsschaltung die Zylinder derart steuert, daß während der Zeitdauer des um den Füllungsgrad verkürzten effektiven Förderhubes eines Förderzylinders; der andere Förderzylinder mit erheblich höherer Geschwindigkeit über einen vollen Hub den Dickstoff ansaugt, der diesem Zylinder zugeordnete Schwenkrohrschieber in einem ersten Schaltschritt mit seiner Schieberplatte die Öffnung dieses Förderzylinders verschließt, dieser Förderzylinder daran anschließend ebenfalls mit erhöhter Geschwindigkeit einen dem Füllungsfehlvolumen entsprechenden Teilhub ausführt und dabei den angesaugten Dickstoff verdichtet, und daß der zugeordnete Schwenkrohrschieber in einem zweiten Schaltschritt in seine Endstellung, d. h. der Förderzylinder mit seinem vorverdichteten Dickstoffinhalt in eine Pump-bereitschaftsstellung gelangt.The necessity to provide several swivel tubes for the control of the thick matter flow results from the fact that the interruptions in conveyance are not compensated by the conveying stroke of a compensating cylinder, but rather by the fact that the combination circuit controls the cylinders in such a way that during the period of the effective conveying stroke shortened by the degree of filling, one Delivery cylinder; the other feed cylinder sucks in the thick matter at a significantly higher speed over a full stroke, the swivel tube slide assigned to this cylinder closes the opening of this feed cylinder with its slide plate in a first switching step, this feed cylinder then also executes a partial stroke corresponding to the filling error volume at an increased speed while doing so sucked thick material compacted, and that the associated swivel tube slide in a second switching step in its end position, d. H. the feed cylinder with its precompressed thick matter content is in a pump-ready position.

Bei diesem vorgenannten Stand der Technik ist nicht nur die erheblich höhere Geschwindigkeit für Saug-und Kompressionshub infolge einer, wegen mehrfacher Schaltwege, höheren Gesamtschaltzeit nachteilig, sondern auch wegen der zwei notwendigen Schwenkrohrschieber ein erheblich höherer technischer Mehraufwand erforderlich.In the aforementioned prior art, not only is the considerably higher speed for suction and compression stroke disadvantageous as a result of a longer total switching time because of multiple switching paths, but also because of the two necessary swivel tube slides, a considerably higher technical outlay is required.

Aus dem Stand der Technik (C), dem US-A-3 963 385, ist schließlich eine Dickstoffpumpe mit Förderzylindern, insbesondere eine Zweizylinderbetonpumpe mit einer Dickstoffflußsteuerung zwischen einem Einfülltrichter, den Förderzylindern und einer Förderleitung, sowie einer die Antriebe der Förderzylinder und den Dickstofffluß steuernden Verknüpfungsschaltung, bekannt, bei der der Dickstofffluß durch einen Steuerschieber verläuft, der mit seiner Austrittsöffnung ständig mit der Förderleitung verbunden und mit wenigstens einer Eintrittsöffnung versehen ist, die abwechselnd vor den Öffnungen des Förderzylinders steht, wobei ein Ausgleichszylinder während des Umschaltens des Steuerschiebers Dickstoffunterbrechungen ausschließt und die Verknüpfungsschaltung so ausgebildet ist, daß der Ausgleichszylinder während des Umschaltens des Steuerschiebers Dickstoff in die Förderleitung drückt und während des anschließenden Fördertaktes eines der Förderzylinder mit Dickstoff gefüllt wird, und bei der an jeweils einer Seite der Eintrittsöffnung des Steuerschiebers zugeordnete Schieberplatten in ihrer Größe einer Fläche zwischen den Förderzylinderöffnungen derart angepaßt sind, daß in der Schaltmittelstellung des Steuerschiebers die Öffnungen der Förderzylinder von den Schieberplatten und die Eintrittsöffnungen im Steuerschieber auf der Fläche zwischen den Förderzylindern abgedichtet sind.Finally, from the prior art (C), the US-A-3 963 385, a thick matter pump with delivery cylinders, in particular a two-cylinder concrete pump with a thick matter flow control between a feed hopper, the delivery cylinders and a delivery line, as well as one of the drives of the delivery cylinders and the thick matter flow controlling logic circuit, known, in which the thick matter flow runs through a control slide, which is permanently connected with its outlet opening to the delivery line and is provided with at least one inlet opening, which is alternately in front of the openings of the feed cylinder, a compensating cylinder excluding thick material interruptions during switching of the control slide and the logic circuit is designed such that the compensating cylinder presses thick material into the delivery line during the switching of the control slide and during the subsequent delivery cycle one of the delivery cylinders with thick material is filled, and in which on each side of the inlet opening of the control slide associated slide plates are adjusted in size to an area between the feed cylinder openings such that in the switching center position of the control slide, the openings of the feed cylinders from the slide plates and the inlet openings in the control slide on the surface between the delivery cylinders are sealed.

Diese Lösung hat den Nachteil, daß bei Freigabe der Öffnung des Förderzylinders, der den Dickstoff angesaugt hat, eine Unterbrechung des Dickstofflusses in die Förderleitung eintritt, da der Förderkolben zunächst den Dickstoff im Förderzylinder verdichten muß, bevor der Dickstoffluß in die Förderleitung einsetzen kann.This solution has the disadvantage that when the opening of the feed cylinder that has sucked in the thick matter is released, the thick matter flow in the feed line is interrupted because the feed piston must first compress the thick matter in the feed cylinder before the thick matter flow can start in the feed line.

Die Aufgabe der Erfindung besteht deshalb darin, auf einfache Weise eine Dickstoffpumpe mit kontinuierlichem und pulsationsfreiem Förderstrom zu realisieren.The object of the invention is therefore to easily realize a thick matter pump with a continuous and pulsation-free flow.

Zur Erlangung einer Förderung ohne die Nachteile des Standes der Technik geht die Erfindung von einer neuen Betrachtungsweise der vorbekannten Zweizylinderdickstoffpumpen aus, was am Beispiel einer bekannten Pumpe II dieser Art nachfolgend erläutert wird, die weder eine Vorverdichtung noch einen Ausgleichszylinder aufweist. Bei einer solchen Dickstoffpumpe ist die Zeit für den effektiven Förderhub (Pumphub) bestimmt durch die effektiv geforderte Betonfördermenge und durch den volumentrischen Wirkungsgrad η.In order to obtain funding without the disadvantages of the prior art, the invention is based on a new way of looking at the previously known two-cylinder high-density pumps, which is illustrated by the example of a known pump II Art is explained below, which has neither a pre-compression nor a compensating cylinder. With such a thick matter pump, the time for the effective delivery stroke (pump stroke) is determined by the actually required concrete delivery quantity and by the volumetric efficiency η.

Danach gilt für η = 100 %, also vollständige Zylinderfüllung durch das Saugen, für den Pumphub die Grundleichung t F o = V o Q o · 3,6

Figure imgb0001
Darin bedeuten:

tFo =
Zeit für den effektiven Pumphub in (sec.) bei 100 % Saugfüllung
Vo =
gesamtes Volumen des Förder(Pump)Zylinders in [dm3]
Qo =
effektiv geforderte Betonfördermenge in (m3/h).
Bei Berücksichtigung eines volumetrischen Wirkungsgrades η lautet die Gleichung t F 1 = V o · η · 3,6 Q o
Figure imgb0002
Übertragen auf den Stand der Technik (B) muß, wenn nach dessen Zielsetzung ein kontinuierlicher Förderfluß erfolgen soll, folgende Zeitäquivalenz gegeben sein: t F 1 = t S + t K + t Sch
Figure imgb0003
Darin bedeuten:
tS =
Zeit für den Saughub
tK =
Zeit für den Kompressions(Verdichtungs)hub
tSch =
gesamte Zeit für das Schalten der Betonschieber und diverser Hydraulikventile.
Diesen Zeiten zugeordnet sind:
Vo =
das vom Kolben des saugenden Förderzylinders abgefahrene Volumen (entspricht dem vollen Zylindervolumen)
VK =
das vom komprimierenden Kolben abgefahrene Saugfüllungsfehlvolumen gemäß der Gleichung
V K = V o (1 - η )
Figure imgb0004
Aus den Kolbenlaufzeiten für den Saug- und Kompressionshub und den diesen zugeordneten Zylindervolumina ergeben sich Betonfördermengengrößen QS* und QK*. Da diese Größen frei wählbar sind, sei für die weitere Ableitung vorausgesetzt Q s * = Q * K = Q *
Figure imgb0005
Eingesetzt in Gleichung [ 3 ] ergibt sich V o · η · 3,6 Q o = V o · 3,6 Q* + V o · (1-η) · 3,6 Q* + t Sch
Figure imgb0006
Da die Laufgeschwindigkeit eines Kolbens in einem Zylinder proportional zur Fördermenge ist, ermittelt sich der Faktor f1, um welchen die Laufgeschwindigkeit der Kolben für Saugen und Komprimieren in einer Pumpe (I) gemäß dem Stand der Technik (B) größer sein muß, als die Laufgeschwindigkeit der Kolben für das Pumpen, als Quotient aus Q* und Qo nämlich ƒ1 = Q* Q o = 2 - η η- t Sch t F o
Figure imgb0007
Bei einem praxisüblichen Beispiel ergibt sich unter der Voraussetzung:
Qo =
120 (m3/h)
Vo =
83,5 (1)
η =
0,85
tSch =
0,9 (sec) (für zwei Betonschieber und Hydr. Ventile)
TFo =
V o ·3,6 Q o = 2.505 sec
Figure imgb0008
für f1 ein Wert in Höhe von f 1 = 2,342.
Figure imgb0009
According to this, the basic equation applies to η = 100%, i.e. complete cylinder filling by suction, and the pump stroke for the pump stroke t F O = V O Q O · 3.6
Figure imgb0001
Where:
t F O =
Time for the effective pump stroke in (sec.) With 100% suction filling
V o =
total volume of the delivery (pump) cylinder in [dm 3 ]
Q o =
effectively required concrete delivery rate in (m 3 / h).
When considering a volumetric efficiency η, the equation is t F 1 = V O · Η · 3.6 Q O
Figure imgb0002
Transferred to the state of the art (B), the following time equivalence must be given if a continuous flow of funding is to take place according to its objective: t F 1 = t S + t K + t Sch
Figure imgb0003
Where:
t S =
Time for the suction stroke
t K =
Time for the compression (compression) stroke
t Sch =
total time for switching the concrete slides and various hydraulic valves.
These times are assigned:
V o =
the volume traversed by the piston of the suction feed cylinder (corresponds to the full cylinder volume)
V K =
is the suction charge miss volume driven by the compressing piston according to the equation
V K = V O (1 - η)
Figure imgb0004
Concrete delivery quantities Q S * and Q K * result from the piston running times for the suction and compression stroke and the cylinder volumes assigned to them. Since these sizes can be freely selected, it is a prerequisite for further derivation Q s * = Q * K = Q *
Figure imgb0005
Inserted in equation [3] we get V O · Η · 3.6 Q O = V O · 3.6 Q * + V O · (1-η) · 3.6 Q * + t Sch
Figure imgb0006
Since the running speed of a piston in a cylinder is proportional to the delivery rate, the factor f 1 is determined by which the running speed of the pistons for suction and compression in a pump (I) according to the prior art (B) must be greater than that Running speed of the pistons for pumping, namely as a quotient of Q * and Q o ƒ1 = Q * Q O = 2 - η η- t Sch t F O
Figure imgb0007
In a practical example, the following results under the condition:
Q o =
120 (m3 / h)
V o =
83.5 (1)
η =
0.85
t Sch =
0.9 (sec) (for two concrete slides and hydraulic valves)
T F O =
V O · 3.6 Q O = 2,505 sec
Figure imgb0008
for f 1 a value of f 1 = 2,342.
Figure imgb0009

Dieser so ermittelte Faktor f1 für eine kontinuierliche fördernde Pumpe (I) nach dem Stand der Technik (B) ist aber noch keine echte, die Vorteile der Erfindung belegende, Vergleichgröße.However, this factor f 1 determined in this way for a continuous pump (I) according to the prior art (B) is not yet a real comparative variable which proves the advantages of the invention.

Denn zum Vergleich heranzuziehen ist eine in der Praxis weitgehend immer noch übliche gattungsgemäße Pumpe (II), bei der keinerlei Maßnahmen für eine kontinuierliche Förderung getroffen sind. Eine Pumpe also, bei der die Kolbengeschwindigkeit beim Saugen und beim Pumpen gleich sind, und der Förderstrom während des Umschaltens des Betonschiebers unterbrochen ist.Because a comparison is to be made of a generic pump (II) which is still largely customary in practice and in which no measures have been taken for continuous delivery. A pump, in which the piston speed is the same for suction and pumping, and the flow is interrupted while the concrete slide valve is switched.

Will man, wenn auch diskontinuierlich, mit einer solchen Pumpe (II) eine durchschnittliche effektive Fördermenge Qo erzielen, muß während des effektiven Förderhubes eine Fördermenge Q** erbracht werden, welche größer ist als Qo.If you want to achieve an average effective delivery rate Q o , even if discontinuously, with such a pump (II), a delivery rate Q ** which is greater than Q o must be provided during the effective delivery stroke.

Dabei ergibt sich die gesamte Zeit für einen Pumpzyklus tges aus den Zeitintervallen tFo (Zeit für einen vollen Zylinderhub) und tSch (Zeit für das Umschalten des Betonschiebers und diverser Hydr. Ventile) also t ges = t F o + t Sch

Figure imgb0010
wobei die Zeit tFo für einen vollen Förderhub aus den Zeitintervallen tK (Zeit für die Verdichtung des gesaugten Betons, also Ausgleich des Saugfüllungs-fehlvolumens) und tF1 (Zeit für den effektiven Pumphub gem. Gleichung [ 2 ]) besteht, also t F o = t K + t F 1
Figure imgb0011
Der Faktor f2, um den Q** bei vorgenannter Pumpe (II) größer sein muß als Qo ist somit ƒ 2 = t ges t F 1 = 1 + t Sch t F o η
Figure imgb0012
Da vorgenannte Pumpen (II) in der Regel nur einen Steuerschieber aufweisen, ist die Schaltzeit kürzer als bei einer Pumpe (I) mit mehreren Schiebern.The total time for a pump cycle t tot results from the time intervals t Fo (time for a full cylinder stroke) and t Sch (time for the switching of the concrete slide valve and various hydraulic valves) t total = t F O + t Sch
Figure imgb0010
where the time t Fo for a full delivery stroke from the time intervals t K (time for the compression of the sucked concrete, i.e. compensation of the defective suction filling volume) and t F1 (time for the effective pumping stroke according to equation [2]) t F O = t K + t F 1
Figure imgb0011
The factor f 2 by which Q ** in the aforementioned pump (II) must be greater than Q o is thus ƒ 2nd = t total t F 1 = 1 + t Sch t F O η
Figure imgb0012
Since the aforementioned pumps (II) generally have only one control spool, the switching time is shorter than in the case of a pump (I) with several spools.

Im vorgenannten praktischen Beispiel ist die Schaltzeit mit tsch = 0,5 (sec) anzusetzen, womit sich für f2 ein Wert ergibt in Höhe von f2 = 1,4113.

Figure imgb0013
Der Vergleich von f1 und f2 besagt, daß die max. Kolbenlaufgeschwindigkeit (Saugen/Komprimieren) bei einer kontinuierlich fördernden Pumpe (I) nach dem Stand der Technik (B) gegenüber einer gattungsgemäßen Pumpe (II) um den Faktor f3 nach der Gleichung ƒ 3 = ƒ 1 ƒ 2
Figure imgb0014
relativ erhöht ist. In dem beschriebenen praktischen Beispiel also um den Faktor ƒ 3 = 2,342 1,4113 = 1,659.
Figure imgb0015
In the aforementioned practical example, the switching time should be set at t sch = 0.5 (sec), which results in a value of f for f2 = 1.4113.
Figure imgb0013
The comparison of f 1 and f 2 means that the max. Piston running speed (suction / compression) in a continuously pump (I) according to the prior art (B) compared to a generic pump (II) by a factor of f 3 according to the equation ƒ 3rd = ƒ 1 ƒ 2nd
Figure imgb0014
is relatively increased. So in the practical example described by the factor ƒ 3rd = 2,342 1.4113 = 1.659.
Figure imgb0015

Aus den vorgenannten Darlegungen ist erkennbar, daß bei sonst gleichen Voraussetzungen hinsichtlich geforderter Fördermenge (Qo), Förderzylindervolumen (Vo) und volumetrischem Wirkungsgrad (η) die Laufgeschwindigkeit der Kolben wesentlich/erheblich und allein durch die Schaltzeit tSch bestimmt wird.From the above explanations it can be seen that the running speed of the pistons is substantially / significantly determined solely by the switching time tSch, given otherwise the same requirements with regard to the required delivery rate (Q o ), delivery cylinder volume (V o ) and volumetric efficiency (η).

Hohe Kolbengeschwindigkeiten führen zu erhöhtem Verschleiß der Förderkolben und wegen des höheren Fließwiderstandes des Saugstromes des Dickstoffes in den Förderzylindern zu einem erhöhten Vakuum, was den Füllungsgrad der Förderzylinder reduziert und damit den volumetrischen Wirkungsgrad weiter herabsetzt.High piston speeds lead to increased wear of the delivery pistons and, due to the higher flow resistance of the suction flow of the thick matter in the delivery cylinders, to an increased vacuum, which reduces the filling level of the delivery cylinders and thus further reduces the volumetric efficiency.

Erfindungsgemäß ergibt sich, daß ein Förderhub des Ausgleichszylinders unmittelbar an den Förderhub eines Förderzylinders anschließt, und die bisher auftretende Förderpause in dieser Phase also vermieden wird. Ferner wird erfindungsgemäß an den Förderhub des Ausgleichszylinders unmittelbar der Förderhub des anderen Förderzylinders angeschlossen, so daß insgesamt keine Förderpausen mehr auftreten können. Dies gewährleistet die Erfindung ferner dadurch, daß während des Förderhubes des Ausgleichszylinders die Umschaltung des Steuerschiebers einschließlich der verschiedenen hydraulischen Ventile sowie der Verdichtungshub erfolgen.According to the invention, it follows that a conveying stroke of the compensating cylinder directly adjoins the conveying stroke of a conveying cylinder, and the conveying break that has occurred so far is thus avoided in this phase. Furthermore, according to the invention, the delivery stroke of the other delivery cylinder is connected directly to the delivery stroke of the compensating cylinder, so that overall delivery pauses can no longer occur. This also ensures the invention in that the switching of the control slide including the various hydraulic valves and the compression stroke take place during the delivery stroke of the compensating cylinder.

Demnach sind für die erfindungsgemäße Pumpe (III) zwei getrennte Zeit- und Volumenäquivalenzbetrachtungen durchzuführen, wobei zum Vergleich mit dem Stand der Technik die folgenden Auslegungsdaten vorzugeben sind:

Figure imgb0016
Accordingly, two separate time and volume equivalence considerations are to be carried out for the pump (III) according to the invention, with comparison to the state of the The following design data must be specified for the technology:
Figure imgb0016

Durch die erste Zeit- und Volumenäquivalenzbetrachtung, die sich auf die Pumpphase des Ausgleichszylinders bezieht, wird das Volumen (VA) des Ausgleichszylinders bestimmt.The volume (V A ) of the compensating cylinder is determined by the first time and volume equivalence consideration, which relates to the pumping phase of the compensating cylinder.

Die Zeitdauer der Pumpphase des Ausgleichszylinders (tA) ist gleich der Summe aus Schaltzeit (tSch) und Kompressionszeit (tK) also t A = t Sch + t K

Figure imgb0017
bzw. ausgehend von der Forderung, daß die Betonfördermenge des Ausgleichszylinders gleich Qo sein muß t A = V A Q o · 3,6
Figure imgb0018
Das Volumen VA des Ausgleichszylinders errechnet sich somit zu V A = Q o 3,6 · (t Sch + t K )
Figure imgb0019
The duration of the pumping phase of the compensating cylinder (t A ) is equal to the sum of the switching time (t Sch ) and the compression time (t K ) t A = t Sch + t K
Figure imgb0017
or based on the requirement that the concrete delivery volume of the compensating cylinder must be Q o t A = V A Q O · 3.6
Figure imgb0018
The volume V A of the compensating cylinder is thus calculated V A = Q O 3.6 · (T Sch + t K )
Figure imgb0019

Durch die zweite Zeit- und Volumenäquivalenzbetrachtung soll die Laufzeit bzw. Laufgeschwindigkeit des Kolbens der Förderzylinder während des Pumphubes bestimmt werden.The second consideration of time and volume equivalence is intended to determine the running time or running speed of the piston of the delivery cylinder during the pumping stroke.

Das vom Kolben eines Förderzylinders während des effektiven Pumphubes abgefahrene Volumen (VP) ist V P = V o · η

Figure imgb0020
wobei das dabei effektiv in die Förderleitung abgegebene Volumen verringert ist, nämlich durch die Entnahme des AAusgleichsvolumens VA während dieser Phase, also V P eff = V o · η - V A
Figure imgb0021
The volume (V P ) driven by the piston of a delivery cylinder during the effective pumping stroke V P = V O · Η
Figure imgb0020
the volume effectively discharged into the delivery line being reduced, namely by removing the A compensation volume V A during this phase, ie V P eff = V O · Η - V A
Figure imgb0021

Wie im ersten Teil der erfindungsgemäßen Merkmalskombination dargelegt, erfolgt zur Kompensation der Verringerung des effektiven Fördervolumens des pumpenden Förderzylinders eine Beschleunigung der effektiven Laufgeschwindigkeit des Kolbens in diesem pumpenden Förderzylinder, woraus sich eine Pump-Fördermenge Q*** ergibt, die soweit erhöht ist und sein muß, daß die effektiv an die Förderleitung abgegebene Fördermenge gleich Qo ist.As explained in the first part of the combination of features according to the invention, the compensation takes place Reduction of the effective delivery volume of the pumping delivery cylinder an acceleration of the effective running speed of the piston in this pumping delivery cylinder, which results in a pump delivery rate Q ***, which is increased and must be such that the delivery rate effectively delivered to the delivery line is equal to Q o is.

In einer Funktionsgleichung zur Bestimmung der sich aus der Fördermenge Q*** ergebenden Zeit tF *** für den effektiven Pumphub drückt sich das wie folgt aus: t F *** = V o · η - V A Q o · 3,6

Figure imgb0022
und, verglichen mit Gleichung (2) t F 1 = V o · η · 3,6 Q o
Figure imgb0023
ergibt sich, da Zeiten und Geschwindigkeiten und somit Zeiten und Fördermengen umgekehrt proportional sind, ein Faktor f4 zu ƒ 4 = t F 1 t F *** = Q*** Qo = 1 1 - V A Vo·η
Figure imgb0024
um den die Laufgeschwindigkeit des Kolbens des pumpenden Förderzylinders der Pumpe (III) bei Entnahme von Fördergut aus der Förderleitung durch den Ausgleichzylinder größer ist, als ohne diese Entnahme.This is expressed as follows in a functional equation for determining the time t F *** resulting from the delivery quantity Q *** for the effective pump stroke: t F *** = V O · Η - V A Q O · 3.6
Figure imgb0022
and, compared to equation (2) t F 1 = V O · Η · 3.6 Q O
Figure imgb0023
since times and speeds and thus times and delivery rates are inversely proportional, a factor f 4 results ƒ 4th = t F 1 t F *** = Q *** Qo = 1 1 - V A Vo · η
Figure imgb0024
by which the running speed of the piston of the pumping delivery cylinder of the pump (III) is greater when removing material to be conveyed from the delivery line through the compensating cylinder than without this removal.

Auch hier zeigt sich die Abhängigkeit der Kolbengeschwindigkeit, mittelbar über VA, von der Schaltzeit tSch.Here, too, the dependence of the piston speed, indirectly via V A , on the switching time t Sch is shown .

Legt man das vorgenannte praktische Beispiel für Pumpe (I) und Pumpe (II) zugrunde und nimmt dazu für den Kompressionshub der Pumpe (III) eine Fördermenge QK = 1,5 . Qo an, dann errechnet sich tK zu t K = V o 1-η Q K · 3,6

Figure imgb0025
also t K = 0,25 (sec)
Figure imgb0026
und darausfolgend VA nach Gleichung (14) zu V A = 25 (dm 3 )
Figure imgb0027
woraus sich ein Wert für den Faktor f4 ergibt in Höhe von f 4 = 1,543.
Figure imgb0028
On the basis of the aforementioned practical example for pump (I) and pump (II) and takes a delivery quantity Q K = 1.5 for the compression stroke of the pump (III). Q o an, then t K is calculated t K = V O 1-η Q K · 3.6
Figure imgb0025
so t K = 0.25 (sec)
Figure imgb0026
and consequently V A according to equation (14) V A = 25 (dm 3rd )
Figure imgb0027
which results in a value for the factor f 4 of f 4 = 1.543.
Figure imgb0028

Der relative Erhöhungsfaktor f5 im Vergleich zur Pumpe (II) ist somit ƒ 5 = ƒ 4 ƒ 2

Figure imgb0029
und errechnet sich in dem beschriebenen praktischen Beispiel zu ƒ 5 = 1,543 1,4113 = 1,0933.
Figure imgb0030
The relative increase factor f 5 compared to the pump (II) is thus ƒ 5 = ƒ 4th ƒ 2nd
Figure imgb0029
and is calculated in the practical example described ƒ 5 = 1,543 1.4113 = 1.0933.
Figure imgb0030

Die vorangegangenen Ableitungen zeigen, daß es der Erfindung gelungen ist, mit den erfindungsgemäßen Maßnahmen des Anspruches 1, sowohl die gewünschte Kontinuität der Förderung zu erzielen, als auch die Kolbengeschwindigkeit gemäß Faktor f5 = 1,0933 nur unwesentlich zu erhöhen, im Gegensatz zum Stand der Technik (Pumpe (I)), bei dem die Kolbengeschwindigkeit um Faktor f3 = 1,659 erhöht ist, und somit die Nachteile dieses Standes der Technik zu vermeiden.The preceding derivations show that the invention has succeeded in using the measures according to the invention of claim 1 to achieve both the desired continuity of the conveyance and the piston speed according to factor f 5 = 1.0933 to be increased only insignificantly, in contrast to the state the technology (pump (I)), in which the piston speed is increased by a factor of f 3 = 1.659, and thus to avoid the disadvantages of this prior art.

Die Einzelheiten, weiteren Merkmale und andere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer Ausführungsform anhand der Figuren in der Zeichnung.

Fig. 1
eine Verknüpfungsschaltung gemäß der Erfindung,
Fig. 2
eine Einzelheit der Verknüpfungsschaltung,
Fig. 3-4
weitere Einzelheiten der Verknüpfungsschaltung,
Fig. 5
eine weitere Verknüpfungsschaltung in der Fig. 1 entsprechender Darstellung und
Fig. 6
eine weitere Ausführungsform in den Fig. 1 und 4 entsprechender Darstellung.
The details, further features and other advantages of the invention result from the following description of an embodiment with reference to the figures in the drawing.
Fig. 1
a logic circuit according to the invention,
Fig. 2
a detail of the logic circuit,
Fig. 3-4
further details of the logic circuit,
Fig. 5
a further logic circuit in Fig. 1 corresponding representation and
Fig. 6
another embodiment in FIGS. 1 and 4 corresponding representation.

Den Darstellungen der Figuren liegt eine Zweizylinderbetonpumpe zugrunde. Die beiden Förderzylinder sind mit L und R bezeichnet. Der Buchstabe A bezeichnet dagegen einen Ausgleichszylinder, der in die Förderleitung 105 mündet. Die Förderzylinder und der Ausgleichszylinder werden jeweils mit einem hydraulischen Arbeitszylinder angetrieben, wobei sich die Buchstaben jeweils auf die Einheit aus Förderzylinder und Antriebszylinder beziehen. Die Endlagen der Kolben in den Zylindern werden der Verknüpfungsschaltung durch Impulse von Sensoren vermittelt, die mit den Buchstaben a-f bezeichnet sind. Diese Sensoren steuern Ventile, die mit arabischen Zahlen identifiziert sind. Die Steuerimpulse der Sensoren können elektrisch, hydraulisch, mechanisch oder pneumatisch sein.The representations of the figures are based on a two-cylinder concrete pump. The two feed cylinders are labeled L and R. The letter A, on the other hand, denotes a compensating cylinder which opens into the delivery line 105. The feed cylinder and the compensating cylinder are each driven by a hydraulic working cylinder, the letters each referring to the unit consisting of the feed cylinder and drive cylinder. The end positions of the pistons in the cylinders are conveyed to the logic circuit by pulses from sensors which are identified by the letters a-f. These sensors control valves that are identified with Arabic numbers. The control pulses of the sensors can be electrical, hydraulic, mechanical or pneumatic.

Die bei der Erfindung vorgesehene Betonflußsteuerung erfolgt mit einem Schwenkrohr 100, welches an gegenüberliegenden Seiten seiner Eintrittsöffnung je eine Steuerplatte 101 und 102 aufweist und daher als Steuerschieber (104) bezeichnet ist. Zur Bewegungsvermittlung dient ein hydraulischer Antrieb, welcher allgemein mit B bezeichnet ist. Dieser wird ebenalls über ein Wegeventil gesteuert, das bei 3 dargestellt ist. Ein Einfülltrichter weist an seiner den Öffnungen der Förderzylinder L und R gegenüberliegenden Seite ein Schwenklager 103 für den Steuerschieber 104 sowie den drehfesten Anschluß des pumpenseitigen Endes einer Betonförderleitung 105 auf.The concrete flow control provided in the invention is carried out with a swivel tube 100 which has a control plate 101 and 102 on opposite sides of its inlet opening and is therefore referred to as a control slide (104). A hydraulic drive is used to impart motion is generally designated B. This is also controlled via a directional valve, which is shown at 3. A hopper has on its side opposite the openings of the delivery cylinders L and R a pivot bearing 103 for the control slide 104 and the rotationally fixed connection of the pump-side end of a concrete delivery line 105.

Während des Pumpens beschleunigt die Verknüpfungsschaltung den Antriebskolben des gerade fördernden Förderzylinders, so daß dessen Förderkolben schneller läuft und dadurch in dieser Phase mehr fördert, was dem Maße der vorn Ausgleichszylinder A aus dem Füll-trichter entnommenen Betonmenge entspricht. Das geschieht durch die Zuführung von zusätzlichem hydraulischem Medium (Öl). Wenn das Flächenverhältnis des Ausgleichszylinderantriebskolbens zum Ausgleichszylinderförderkolben das gleiche, wie bei den Förderzylindern ist, genügt das hydraulische Antriebs-medium, welches der Ausgleichszylinderantriebskolben mit seiner Rückseite beim Ansaugen des Betons aus der Förderleitung durch den Austrittszylinderförderkolben verdrängt.During pumping, the combination circuit accelerates the drive piston of the conveying cylinder currently being conveyed, so that its conveying piston runs faster and thereby conveys more in this phase, which corresponds to the size of the amount of concrete removed from the filling funnel at the front of the equalizing cylinder. This is done by adding additional hydraulic medium (oil). If the area ratio of the compensating cylinder drive piston to the compensating cylinder feed piston is the same as that of the feed cylinders, the hydraulic drive medium which the rear of the compensating cylinder drive piston displaces through the outlet cylinder feed piston when the concrete is sucked in from the delivery line is sufficient.

Der Steuerschieber 104 wird zwischen den Kolbenspielen der Förderzylinder R und L umgeschaltet. In der Ausführungsform nach Fig. 1 erfolgt das Umschalten in zwei aufeinanderfolgenden Schritten, von denen der erste den Steuerschieber in eine Mittelstellung zwischen den Öffnungen der beiden Förderzylinder festhält. In dieser Stellung verschließt eine der Schieberplatten 101 bzw. 102 die Förderzylinderöffnung des von Saugen auf Förderung umgeschalteten Förderzylinders. Das ermöglicht dem Kolben dieses Förderzylinders die Kompression des zuvor angesaugten Betons. Am Ende dieses Kompressionshubes veranlaßt die Verknüpfungsschaltung den zweiten Schaltschritt des Steuerschiebers 104 in die jeweilige Endstellung. Dadurch wird die Eintrittsöffnung 106 des Steuerschiebers 104 mit der Öffnung des fördernden Zylinders ausgefluchtet und der zuvor verdichtete Beton wird in die Förderleitung 105 gedrückt.The control slide 104 is switched between the piston clearances of the delivery cylinders R and L. In the embodiment according to FIG. 1, the switching takes place in two successive steps, the first of which holds the control slide in a central position between the openings of the two delivery cylinders. In this position, one of the slide plates 101 and 102 closes the delivery cylinder opening of the delivery cylinder switched from suction to delivery. This enables the piston of this feed cylinder to compress the previously sucked concrete. At the end of this compression stroke, the logic circuit causes the second switching step of the control slide 104 into the respective end position. Thereby the inlet opening 106 of the control slide 104 is aligned with the opening of the conveying cylinder and the previously compacted concrete is pressed into the conveying line 105.

In einer ersten Ausführungsform der Erfindung wird die mittlere Schaltstellung des Steuerschiebers 104 durch das Wegeventil 7 gesteuert. Dabei wird in der mittleren Schaltstellung die Steuerbohrung für das Rücköl verschlossen, wodurch der Steuerschieber in der mittleren Schaltstellung zum Stillstand kommt. Mit zeitlichem Abstand wird das Ventil 7 weitergeschaltet und gelangt in die andere Schaltstellung. Dadurch wird eine Rücklaufsteuerbohrung am Ende des Antriebszylinders frei. Somit kann die Schaltung des Steuerschiebers in die Endstellung erfolgen.In a first embodiment of the invention, the middle switching position of the control slide 104 is controlled by the directional valve 7. The control hole for the return oil is closed in the middle switch position, causing the control slide to come to a standstill in the middle switch position. Valve 7 is switched on at intervals and moves to the other switching position. This will clear a return control bore at the end of the drive cylinder. Thus, the control spool can be switched to the end position.

In einer weiteren Ausführungsform der Erfindung ist die mittlere Schaltstellung des Steuerschiebers dadurch festgelegt, daß für den Antrieb des Steuerschiebers zwei hintereinander geschaltete Antriebszylinder nach Fig. 5 vorgesehen sind. Mit der Betätigung des ersten Zylinders 107 wird die Mittelstellung hergestellt. Im zeitlichen Abstand erfolgt die Betätigung des zweiten Zylinders 108, durch den der Steuerschieber 104 seine Endstellung erreicht. Dabei erfolgt die Ansteuerung des ersten Zylinders 107 durch das Ventil 3 und die des zweiten Zylinders 108 durch das Ventil 31.In a further embodiment of the invention, the middle switching position of the control slide is determined by the fact that two drive cylinders according to FIG. 5 are connected in series for driving the control slide. With the actuation of the first cylinder 107, the middle position is established. The second cylinder 108 is actuated at intervals, by means of which the control slide 104 reaches its end position. The first cylinder 107 is actuated by the valve 3 and the second cylinder 108 by the valve 31.

Bei einer anderen bevorzugten Ausführung der Erfindung erfolgt die Umschaltung des Steuerschiebers parallel zum Kompressionshub, was zu einer erheblichen Verringerung der gesamten Unterbrechungszeit zwischen den Pumphüben der Förderzylinder führt entsprechend Gleichung (12) tA = tSch + tK und damit zu einer Verringerung des Hubvolumens des Ausgleichszylinders VA und der Faktoren f4 und f5 (s. Gleichun14, 18, 20) und infolgedessen zu einer Verringerung der Geschwindigkeit des Kolbens des pumpenden Förderzylinders. Diese Möglichkeit ergibt sich daraus, daß zu Beginn des Kompressionshubes noch kein Ausstoß von Dickstoff in die Förderleitung erfolgt, weil sich zunächst wegen des Ausgleichs von Vakuum und Luft noch kein Druck aufbaut und bis dahin der Steuerschieber schnell seine Mittelstellung erreicht hat während nachfolgend in dem Zeitbereich, in dem der komprimierende Förderkolben den Dickstoff effektiv verdichtet, also Druck aufbaut, der Steuerschieber seinen Mittelstellungsbereich mehr oder weniger stark verzögert durchläuft bis die Kompression nahezu beendet ist und danach der Steuerschieber den Rest seines Schaltweges wieder beschleunigt zurücklegt (Fig. 6).In another preferred embodiment of the invention, the switching of the control slide takes place parallel to the compression stroke, which leads to a considerable reduction in the total interruption time between the pumping strokes of the delivery cylinders in accordance with equation (12) t A = t Sch + t K and thus to a reduction in the stroke volume the compensating cylinder V A and the factors f 4 and f 5 (see Equation 14, 18, 20) and consequently a reduction in the speed of the piston of the pumping delivery cylinder. This possibility arises from the fact that at the beginning of the compression stroke there is still no discharge of thick matter into the delivery line, because initially no pressure builds up due to the equalization of vacuum and air and by then the control slide has quickly reached its central position while subsequently in the time range , in which the compressing delivery piston effectively compresses the thick matter, i.e. builds up pressure, the control spool passes through its central position range more or less delayed until the compression is almost complete and then the control spool accelerates the rest of its switching path again (Fig. 6).

Aus praktischen Gründen der Konstruktion, nämlich den Ausgleichszylinder so klein wie möglich zu halten, aber auch aus Gründen der Justierung der Steuerung im Leerlauf ist es sinnvoll, den Kompressionshub zu begrenzen. Das Maß der Begrenzung ergibt sich aus dem minimalen volumetrischen Wirkungsgrad ηvol, der dem allgemeinen Kenntnisstand des Betonfließverhaltens, also der Ansaugbarkeit des Betons entspricht. Mit ηvol = 0,85 wird der überwiegende Bereich aller Pumpbetone und anderer Dickstoffe abgedeckt.For practical reasons of construction, namely to keep the compensating cylinder as small as possible, but also for reasons of adjusting the control system when idling, it makes sense to limit the compression stroke. The extent of the limitation results from the minimum volumetric efficiency η vol , which corresponds to the general level of knowledge of the concrete flow behavior, i.e. the concrete's suction ability. With η vol = 0.85 the predominant range of all pumped concrete and other thick materials is covered.

Gemäß der Darstellung der Fig. 3 geschieht die erforderliche Begrenzung des Kompressionshubes mit einem Zylinder 33, in dem ein Kolben 38 angeordnet ist. Das Hubvolumen 40 entspricht der gewählten Kompressionshubbegrenzung. Ein Ventil 51 steuert den Zylinder in der Weise, daß in der Phase des Kompressionshubes das Ventil 51 durch einen der Sensoren a, b geschaltet wird. Dadurch beaufschlagt Drucköl aus einem Speicher 60 die Seite 36 des Kolbens 38 über die Leitung 35. Die von der Kolbenseite 37 verdrängte Ölmenge wird über eine Leitung 34, 28 zum komprimierenden Förderzylinder geleitet, bis der Kolben 38 seine Endstellung erreicht hat. Das Rückschalten des Ventils 51 durch einen Sensor beaufschlagt der Speicher Seite 37 des Kolbens 38. Das von der Seite 36 verdrängte Öl fließt zum Tank ab. Damit kann der Kolben 38 in seiner Ausgangsstellung für die nächste Kompression zurückgeführt werden.3, the required limitation of the compression stroke is done with a cylinder 33 in which a piston 38 is arranged. The stroke volume 40 corresponds to the selected compression stroke limitation. A valve 51 controls the cylinder in such a way that in the phase of the compression stroke the valve 51 is switched by one of the sensors a, b. As a result, pressure oil from a reservoir 60 acts on the side 36 of the piston 38 via the line 35. The amount of oil displaced by the piston side 37 becomes via a line 34, 28 to the compressing feed cylinder until the piston 38 has reached its end position. The switching back of the valve 51 by a sensor acts on the accumulator side 37 of the piston 38. The oil displaced from the side 36 flows out to the tank. The piston 38 can thus be returned in its starting position for the next compression.

Bei der Ausführungsform nach Fig. 4 ist vorgesehen, daß während des Kompressionshubes eines Förderzylinders der Kolben im anderen Förderzylinder stillsteht, d. h. seinen Saughub noch nicht beginnt. Dabei erfolgt die Kompressionshubbegrenzung mit einem Mehrkammerzylinder 41. Dieser entspricht hinsichtlich der Hubbegrenzung in Abmessung, Funktion und Steuerung dem Zylinder 33 nach Fig. 3. Er weist jedoch eine weitere Kammer 42 auf, die so bemessen ist, daß sie das während des Kompressionshubes vom Antriebszylinder des komprimierenden Förderzylinders in die Brückenleitung verdrängte Hydrauliköl über die Leitung 43 aufnimmt und es im Verlauf des folgenden Förderhubes wieder in die Brücke einspeist und damit die Synchronisation des Laufs der Förderzylinder wieder herstellt.In the embodiment according to FIG. 4 it is provided that during the compression stroke of one delivery cylinder the piston in the other delivery cylinder stands still, i. H. its suction stroke does not start yet. The compression stroke limitation takes place with a multi-chamber cylinder 41. This corresponds in terms of stroke limitation in terms of dimension, function and control to the cylinder 33 according to FIG. 3. However, it has a further chamber 42 which is dimensioned in such a way that it does so during the compression stroke of the drive cylinder of the compressing delivery cylinder displaces hydraulic oil displaced into the bridge line via line 43 and feeds it back into the bridge in the course of the following delivery stroke and thus restores the synchronization of the running of the delivery cylinders.

Ein kontinuierlicher Betonfluß wird dadurch erreicht, daß für die verschiedenen Zylinder L, R und A gleiche Kolbenflächenverhältnisse, sowie gleiche Hydraulikmengen für den Förderhub, zur Verfügung stehen. Die Kontinuität der Betonförderung gewährleistet die Hydraulikpumpe P1. Es ist deswegen vorteilhaft, für alle anderen Antriebe der Ventile bzw. Steuerschieber, den Saughub des Ausgleichszylinders A, usw. eine oder mehrere separate andere Antriebsquellen vorzusehen. Dazu dient ein zweiter Hydraulikkreis, der einen von einer Pumpe P2 gespeisten Speicher 60 aufweist.A continuous concrete flow is achieved in that the same piston area ratios as well as the same hydraulic quantities for the delivery stroke are available for the different cylinders L, R and A. The hydraulic pump P1 ensures the continuity of the concrete delivery. It is therefore advantageous to provide one or more separate other drive sources for all other drives of the valves or control slides, the suction stroke of the compensating cylinder A, etc. A second hydraulic circuit, which has a reservoir 60 fed by a pump P2, is used for this purpose.

Er ist mit einem Sicherheits- und Druckabschaltventil 70 versehen.It is provided with a safety and pressure shut-off valve 70.

Für den Saughub des Ausgleichszylinder ist eine Hilfspumpe P3 vorgesehen, die so geschaltet ist, daß in der Phase, in der der Ausgleichszylinder den Beton fördert, die Pumpe P3 nicht abgeschaltet ist, sondern das von ihr gelieferte hydraulische Medium über die Leitung 9 zusätzlich dem Speicher 60 zugeführt wird.For the suction stroke of the compensating cylinder, an auxiliary pump P3 is provided, which is switched so that in the phase in which the compensating cylinder conveys the concrete, the pump P3 is not switched off, but the hydraulic medium supplied by it via line 9 additionally to the reservoir 60 is supplied.

Anstelle der Hilfspumpe P3 kann eine entsprechend vergrößerte Pumpe P2 in Verbindung mit einem arbeitsvolumenmäßig größeren Speicher vorgesehen werden.Instead of the auxiliary pump P3, a correspondingly enlarged pump P2 can be provided in connection with a larger working volume storage.

Es empfiehlt sich ferner, alle hydraulischen Schaltventile in der Ausführung mit kürzester Ansprechzeit zu verwenden. Bei der hydraulischen Betätigung des Ventils 2 über den Sensorsteuerpunkt (e) mittels des Pumpenmediums P1 wird die Herabsetzung der Schaltzeit auf ein Minimum durch Ersatz des Ventils 2 einschließlich des Rückschlagventils 30 mit Hilfe eines hydraulischen entsperrbaren Rückschlagventils erreicht.It is also advisable to use all hydraulic switching valves with the shortest response time. When the valve 2 is hydraulically actuated via the sensor control point (e) by means of the pump medium P1, the switching time is reduced to a minimum by replacing the valve 2 including the check valve 30 with the aid of a hydraulic unlockable check valve.

Claims (15)

  1. A pump for viscous materials having delivery cylinders (R, L), in particular a two cylinder concrete pump with a viscous material flow control between a filling hopper, the delivery cylinders (R, L) and a delivery pipeline (105), together with a linking switch system controlling the drive mechanisms of the delivery cylinders (R, L) and the viscous material flow, wherein the viscous material flow runs through a control slide valve (104) which is connected continuously to the delivery pipeline (105) by means of its outlet aperture and is provided with at least one inlet aperture which alternates in position in front of the apertures of the delivery cylinder, wherein a compensating cylinder (A) prevents interruptions to the viscous material during the switching over of the control slide valve (104) and the linking switch is constructed in such a way that the compensating cylinder (A) forces viscous material into the delivery pipeline during the switching over of the control slide valve (104) and, during the subsequent delivery stroke of one of the delivery cylinders (R, L), is filled with viscous material, and wherein slide valve plates arranged to each side respectively of the inlet aperture of the control slide valve are aligned along a plane to fit onto a surface between the delivery cylinder apertures in such a way that, in the intermediate switching position of the control slide valve (104), the apertures of the delivery cylinders (R, L) are sealed off by the slide valve plates from the inlet apertures within the control slide valve (104) along the surface between the delivery cylinders (R, L), characterised in that the linking switch system causes the drive mechanism of the respective delivery cylinder (R, L) during delivery to convey its load more quickly depending on the mass of the quantity of viscous material taken up by the compensating cylinder (A) and delays the switching over of the control slide valve (104) in such a way that one of the slide valve plates (101, 102), closes off the aperture of the delivery cylinder associated with it in order for a partial stroke to be carried out by the delivery cylinder piston as it compacts the induced viscous material.
  2. A pump for viscous materials according to claim 1, characterised in that the compensating cylinder (A) is connected continuously to the delivery pipeline (105) by means of its outlet aperture and is filled with viscous material from said delivery pipeline.
  3. A pump for viscous materials according to one of the claims 1 and 2, characterised in that the linking switch system comprises control elements in the form of position-identifying sensors and valves controlled by these sensors, wherein the switching signals are capable of being conveyed electrically, hydraulically, mechanically or pneumatically.
  4. A pump for viscous materials according to one of the claims 1 to 3, characterised in that, in order to accelerate the drive mechanisms of a particular delivery cylinder (R, L) in its delivery operation, hydraulic medium can additionally be supplied to the piston of a drive cylinder of the delivering cylinder from the return flow from a drive cylinder of the compensating cylinder (A).
  5. A pump for viscous materials according to one of the claims 1 to 4, characterised in that ratio of the surface areas of the drive piston of the compensating cylinder and the delivery piston of the compensating cylinder is the same as for the delivery cylinders (R, L).
  6. A pump for viscous materials according to one of the claims 1 to 5, characterised in that, in order to establish the intermediate position of the control slide valve (104), a piston of the control slide valve drive mechanism (B) closes off an associated control orifice for reflux oil and brings the control slide valve (104) to a standstill in the intermediate switching position, whereby, by means of an additional and, after an interval, subsequently performed switching of the valve (7) into a further switching position, a return flow control orifice is made available at the end of the drive cylinder and the switching of the control slide valve (104) into the terminal position is effected.
  7. A pump for viscous materials according to one of the claims 1 to 5, characterised by the establishment of the intermediate switching position of the control slide valve (104) by means of a control slide valve drive mechanism (B) having two consecutively switched drive cylinders (107, 108) which, on actuation of the first cylinder, effect the intermediate position and, subsequently, after an interval, on actuation of the second cylinder, effect the terminal position of the control slide valve (104), wherein a respective switching valve (3, 31) is associated with each drive cylinder for the control of the drive cylinders.
  8. A pump for viscous materials according to one of the claims 1 to 5, characterised in that the positions of the control slide valve (104) for compressing and conveying are established in such a way that, at a high initial speed of operation of the control slide valve (104), it is retarded throughout the intermediate phase and, towards the end of the control slide valve movement, the control slide valve (104) is accelerated once more to its initial speed, wherein the intermediate phase retardation is effected by locating throttle valves in the return flow of the control slide valve drive cylinder in order to perform the compression stroke.
  9. A pump for viscous materials according to one of the claims 1 to 8, characterised in that the control slide valve drive (B) is effected with differential, synchronising or plunger cylinders.
  10. A pump for viscous materials according to one of the claims 1 to 9, characterised in that, for limiting the compression stroke, a cylinder (33) is used having a stroke volume (40) suitably matched to the selected compression stroke limitation, said cylinder being controlled by means of a valve (51) in such a way that, in the compression phase, the valve (51) is actuated by means of one of the sensors (a, b) and reservoir oil then impinges on one side (36) of a piston (38) in the cylinder (33) by way of the pipeline (35), whereby the volume of hydraulic medium displaced from the other side (37) of the piston flows by way of pipelines (34, 39, 8) to the compressing delivery cylinder until the piston (38) has reached its terminal position, and that, by reverse switching of the valve (51), the reservoir oil impinges on the side (37) of the piston (38) and the displaced hydraulic medium from the side (36) flows away to the tank and the piston (38) returns to its initial position for the following compression.
  11. A pump for viscous materials according to one of the claims 1 to 9, characterised in that, for limiting the compression stroke, the delivery piston is stopped in the adjacent delivery cylinder and the induction stroke is delayed with the aid of a multi-chamber cylinder (41) which comprises an additional chamber (42) that is of such dimensions that it can contain, during the compression stroke, hydraulic medium equivalent to the compression stroke and which has been displaced from the drive cylinder of the compressing delivery cylinder into a bridging pipeline, and feed it back into the bridge again in the course of the subsequent delivery stroke so that the synchronisation of the operational cycle of the delivery cylinder piston can be re-established.
  12. A pump for viscous materials according to one of the claims 1 to 11, characterised in that, in order to carry out the delivery stroke of the delivery cylinder pistons and the delivery stroke of the compensating cylinder piston, an hydraulic pump (P1) is provided.
  13. A pump for viscous materials according to one of the claims 1 to 12, characterised in that, for the drive (B) of the control slide valve (104), for performing the compression stroke and for switching the valves, a separate hydraulic circuit is provided, for which a pump (P2) and a reservoir supplied by said pump, together with a security and pressure disengagement valve, are also provided.
  14. A pump for viscous materials according to one of the claims 1 to 13, characterised in that, for carrying out the induction stroke of the compensating cylinder (A), an additional auxiliary pump (P3) is provided which is switch operated in such a way that, during the delivery stroke of the compensating cylinder, it conveys the hydraulic medium which is supplied by said pump by means of a pipeline (29, 9) to the reservoir.
  15. A pump for viscous materials according to one of the claims 1 to 14, characterised in that, in order to reduce the switching time of the compensating cylinder (A), an hydraulically operated non-return valve is used to reduce to a minimum the switching time of the drive mechanism of the compensating cylinder.
EP93103802A 1992-03-19 1993-03-10 Pump for viscous materials having cylinders, in particular two cylinder concrete pump Expired - Lifetime EP0561262B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208754A DE4208754A1 (en) 1992-03-19 1992-03-19 DICKER PUMP WITH CONVEYOR CYLINDER, IN PARTICULAR TWO-CYLINDER CONCRETE PUMP
DE4208754 1992-03-19

Publications (2)

Publication Number Publication Date
EP0561262A1 EP0561262A1 (en) 1993-09-22
EP0561262B1 true EP0561262B1 (en) 1996-08-14

Family

ID=6454411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93103802A Expired - Lifetime EP0561262B1 (en) 1992-03-19 1993-03-10 Pump for viscous materials having cylinders, in particular two cylinder concrete pump

Country Status (12)

Country Link
US (1) US5316453A (en)
EP (1) EP0561262B1 (en)
JP (1) JPH0642454A (en)
KR (1) KR100298500B1 (en)
CN (1) CN1042258C (en)
AT (1) ATE141389T1 (en)
BR (1) BR9301249A (en)
CA (1) CA2092044A1 (en)
DE (2) DE4208754A1 (en)
ES (1) ES2090737T3 (en)
GR (1) GR3021480T3 (en)
RU (1) RU2127829C1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4127277A1 (en) * 1991-08-17 1993-02-18 Putzmeister Maschf HYDRAULIC CONTROL DEVICE FOR A FUEL PUMP
DE4336087A1 (en) * 1993-10-22 1995-04-27 Korthaus Ernst Thick-matter accumulator
DE19542258A1 (en) * 1995-11-13 1997-05-15 Putzmeister Maschf Method and device for controlling a two-cylinder thick matter pump
DE102004015181A1 (en) * 2004-03-25 2005-10-13 Putzmeister Ag Material feed container for a slurry pump
DE102004015415A1 (en) * 2004-03-26 2005-10-13 Putzmeister Ag Device and method for controlling a two-cylinder slurry pump
DE102004015419A1 (en) * 2004-03-26 2005-10-13 Putzmeister Ag Apparatus and method for controlling a slurry pump
KR100606203B1 (en) * 2004-04-19 2006-07-31 주식회사 디앤에스 A concrete-mortar transfer system of concrete pump car
DE102004025910B4 (en) * 2004-05-27 2009-05-20 Schwing Gmbh Drive device for a two-cylinder high-pressure pump and method for operating the same
GB2416569A (en) 2004-07-27 2006-02-01 Clarke Uk Ltd Method of and a pump for pumping drill cuttings
DE102005008938B4 (en) * 2005-02-26 2007-01-25 Schwing, Friedrich, Dipl.-Ing. Pumping device and method for the continuous delivery pulpy masses
US20060193738A1 (en) * 2005-02-26 2006-08-31 Friedrich Schwing Pump apparatus and method for continuously conveying a viscous material
DE102005024174A1 (en) * 2005-05-23 2006-12-07 Schwing, Friedrich, Dipl.-Ing. Method for controlling a pumping device for conveying mushy masses and controlling a pumping device for conveying mushy masses
WO2007111689A2 (en) * 2005-11-08 2007-10-04 Good Earth Tools, Inc. Sealing rings for abrasive slurry pumps
US8727740B2 (en) * 2007-01-05 2014-05-20 Schlumberger Technology Corporation Cylinder assembly for providing uniform flow output
DE102009005318B3 (en) * 2009-01-16 2010-09-30 Schwing, Friedrich, Dipl.-Ing. Process for conveying mushy masses and pumping device for conveying mushy masses
DE102009008517B4 (en) * 2009-02-11 2018-01-04 Götz Hudelmaier Hydraulic drive of a slurry pump with boost pressure device
KR101113142B1 (en) * 2010-04-20 2012-02-16 주식회사 데코엔지니어링 Air pump driving devices
DE102010046649A1 (en) 2010-09-27 2012-03-29 Schwing Gmbh Slurry pump, particularly concrete pump has pumping device for continuous feeding of slurry, particularly concrete, where piston-cylinder unit is concentrically arranged around conveying line section of conveying line
CN102297312B (en) * 2011-06-28 2013-01-09 北京市三一重机有限公司 Mechanism for lowering fluid pulse impact, double-cylinder reversing pumping system and concrete pump
DE102012107933B4 (en) * 2012-08-28 2017-09-21 Götz Hudelmaier Slurry pump for generating a continuous thick material flow and method for operating a sludge pump for generating a continuous thick material flow
DE102012216242A1 (en) * 2012-09-13 2014-03-13 Putzmeister Engineering Gmbh Device for drive control of a two-cylinder slurry pump
CN102979693B (en) * 2012-11-27 2015-08-19 长安大学 A kind of device and controlling method thereof realizing the pumping of concrete continuous constant flow
US10648462B2 (en) * 2013-10-29 2020-05-12 Thermtech Holdings As System for feeding and pumping of less pumpable material in a conduit line
CN103590996B (en) * 2013-11-22 2015-08-26 中联重科股份有限公司 Pumping equipment and pumping method
WO2015087337A1 (en) * 2013-12-12 2015-06-18 Amit Arun Gokhale Hydraulically operated but mechanically driven & mechanically reversed simple concrete pump
US9765768B2 (en) * 2014-01-15 2017-09-19 Francis Wayne Priddy Concrete pump system and method
CN103982411B (en) * 2014-05-20 2016-08-24 徐州徐工施维英机械有限公司 Lock cylinder method and apparatus and concrete pump
CN104329315B (en) * 2014-10-23 2017-04-12 徐州徐工施维英机械有限公司 Conveying equipment, conveying equipment metering device and method
CN104763154A (en) * 2014-11-25 2015-07-08 李树本 Trailer concrete pump truck
EP3273058A1 (en) 2016-07-22 2018-01-24 Putzmeister Engineering GmbH Viscous material pump
CN106545483B (en) * 2016-11-03 2019-12-20 中国建筑科学研究院建筑机械化研究分院 S valve pump with buffering function and buffering method thereof
US10001114B1 (en) * 2017-03-28 2018-06-19 Jessop Initiatives LLC Continuous flow pumping system
CN107218188A (en) * 2017-06-30 2017-09-29 嘉善凝辉新型建材有限公司 A kind of Concrete Double cylinder piston pump
NL2019357B1 (en) * 2017-07-27 2019-02-18 Weir Minerals Netherlands Bv Pump system for handling a slurry medium
CN107355358A (en) * 2017-08-04 2017-11-17 中铁工程装备集团隧道设备制造有限公司 The piston type pumping installations and its control method of gapless uninterrupted pumping
CN109113762B (en) * 2018-07-24 2019-09-24 山东科技大学 A kind of no pulse wet-spraying machine
CN108691557B (en) * 2018-07-24 2021-02-09 山东科技大学 No pulse S valve wet blasting machine
CN109113763B (en) * 2018-07-24 2019-09-24 山东科技大学 No pulse wet-spraying machine
RU191862U1 (en) * 2019-04-29 2019-08-26 АО Триада-Холдинг Installation for feeding highly viscous quick setting repair compounds
CN110409833B (en) * 2019-07-16 2021-04-02 江西鑫通机械制造有限公司 Control method of wet spraying machine
CN110701015B (en) * 2019-10-09 2020-12-15 湖南慧盟重工科技有限公司 Pneumatic pumping small-sized concrete conveying pump
CN110617191B (en) * 2019-10-09 2020-12-15 成都市恒辉商品混凝土有限责任公司 Pneumatic pumping method of concrete conveying pump
DE102021100981B3 (en) * 2021-01-19 2022-04-28 Putzmeister Engineering Gmbh Slurry valve and method of operating a slurring valve
CN113700476B (en) * 2021-09-10 2023-07-25 中海油田服务股份有限公司 Sample reciprocating pump device under while-drilling well

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033338A (en) * 1933-11-13 1936-03-10 Andrew Stewart Cement, grout, or concrete placer
GB1098338A (en) * 1966-04-20 1968-01-10 Eugene Lee Sherrod Reciprocating pump for semi-liquid materials
US3667869A (en) * 1970-03-04 1972-06-06 Karl Schlecht Dual cylinder-concrete pump
US3663129A (en) * 1970-09-18 1972-05-16 Leon A Antosh Concrete pump
DE2052583A1 (en) * 1970-10-27 1972-05-04 Bors, Heinz J., Campione (Schweiz) Device for conveying viscous substances, especially concrete, mortar and the like
US3963385A (en) * 1975-05-05 1976-06-15 Caban Angel M Valve assembly for concrete pumps
DE2909964A1 (en) * 1979-03-14 1980-09-25 Schwing Gmbh F DICKER PUMP, ESPECIALLY FOR CONCRETE
US4345883A (en) * 1979-06-11 1982-08-24 Westerlund Robert E High pressure pumping apparatus for semi-fluid material
US4343598A (en) * 1980-03-14 1982-08-10 Friedrich Wilh. Schwing Gmbh Viscous material pump, particularly for concrete
US5257912A (en) * 1990-10-10 1993-11-02 Schwing America, Inc. Sludge flow measuring system
DE3243738A1 (en) * 1982-11-26 1984-05-30 Karl Dipl.-Ing. 7000 Stuttgart Schlecht Hydraulic reversal for two-cylinder piston pump
SU1315651A1 (en) * 1985-11-12 1987-06-07 Научно-исследовательский институт строительства угольных и горнорудных предприятий "Кузниишахтострой" Concrete pump hydraulic drive
DE3738359A1 (en) * 1987-11-12 1989-05-24 Putzmeister Maschf FUEL PUMP

Also Published As

Publication number Publication date
JPH0642454A (en) 1994-02-15
KR100298500B1 (en) 2002-04-06
CN1088664A (en) 1994-06-29
BR9301249A (en) 1993-09-21
GR3021480T3 (en) 1997-01-31
EP0561262A1 (en) 1993-09-22
DE4208754A1 (en) 1993-09-23
US5316453A (en) 1994-05-31
RU2127829C1 (en) 1999-03-20
KR930020015A (en) 1993-10-19
CA2092044A1 (en) 1993-09-20
ATE141389T1 (en) 1996-08-15
ES2090737T3 (en) 1996-10-16
CN1042258C (en) 1999-02-24
DE59303394D1 (en) 1996-09-19

Similar Documents

Publication Publication Date Title
EP0561262B1 (en) Pump for viscous materials having cylinders, in particular two cylinder concrete pump
DE4215403C2 (en) Double piston pump for pumping liquid materials, especially concrete or mortar
EP1303700B1 (en) Thick matter pump
EP0861375B1 (en) Process and device for controlling a two-cylinder thick medium pump
EP0825348B1 (en) Fluid pressure intensifier, especially for hydraulic fluids
EP0409001B1 (en) Liquid injection device
WO1996024767A1 (en) Process and device for feeding concrete or other thick materials
DE3007116A1 (en) ROAD MARKING MACHINE WITH DISPLACEMENT PUMPS FOR CONVEYING THE MARKING MATERIAL
WO2005085636A1 (en) Thick matter piston pump
DE102006015845B3 (en) Method for operation of oscillating positive-displacement pump for simultaneous poor pulsation conveying of several liquids, involves accomplishment of pressure compensation between individual pump chambers during pre-compressions phase
EP0465474B1 (en) Control arrangement for a two-cylinder pump for thick materials
EP1003969B1 (en) Two-cylinder thick matter pump
DE4209471A1 (en) Thick matter pump for feed cylinders, especially two-cylinder concrete pumps
EP0402390A1 (en) Control arrangement for two-cylinder pumps for viscous liquids.
DE3525003A1 (en) Method and device for conveying concrete from a container into a delivery pipe
DE2909964A1 (en) DICKER PUMP, ESPECIALLY FOR CONCRETE
DE3428629A1 (en) DUPLEX PLUNGER PUMP
DE3448016C2 (en)
EP1599672B1 (en) Thick material pump
EP3894701B1 (en) Piston pump and method for operating a piston pump
DE102018132270A1 (en) Piston pump and method for operating a piston pump
DE3504107A1 (en) Hydraulic dosing and delivery system
EP1843040B1 (en) Method for operating an oscillating displacement pump and oscillating displacement pump
DE102018132309A1 (en) Piston pump and method for operating a piston pump
DE102019109083A1 (en) Method for controlling a thick matter pump and thick matter pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB GR IT

17P Request for examination filed

Effective date: 19940317

17Q First examination report despatched

Effective date: 19940516

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWING GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT

REF Corresponds to:

Ref document number: 141389

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59303394

Country of ref document: DE

Date of ref document: 19960919

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090737

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2090737

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3021480

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980331

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010323

Year of fee payment: 9

Ref country code: AT

Payment date: 20010323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010326

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010530

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020310

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

BERE Be: lapsed

Owner name: *SCHWING G.M.B.H.

Effective date: 20020331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050310