EP0556480B1 - Verfahren zum Erzeugen dünner Schichten auf grossflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirm, durch Schleuderbeschichten - Google Patents

Verfahren zum Erzeugen dünner Schichten auf grossflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirm, durch Schleuderbeschichten Download PDF

Info

Publication number
EP0556480B1
EP0556480B1 EP92121666A EP92121666A EP0556480B1 EP 0556480 B1 EP0556480 B1 EP 0556480B1 EP 92121666 A EP92121666 A EP 92121666A EP 92121666 A EP92121666 A EP 92121666A EP 0556480 B1 EP0556480 B1 EP 0556480B1
Authority
EP
European Patent Office
Prior art keywords
coated
disc
coating
cathode ray
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92121666A
Other languages
English (en)
French (fr)
Other versions
EP0556480A1 (de
Inventor
Nanning Dr. Arfsten
Hermann Piehlke
Reinhard Kaufmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Publication of EP0556480A1 publication Critical patent/EP0556480A1/de
Application granted granted Critical
Publication of EP0556480B1 publication Critical patent/EP0556480B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/221Applying luminescent coatings in continuous layers
    • H01J9/223Applying luminescent coatings in continuous layers by uniformly dispersing of liquid

Definitions

  • the outer surface of the screen of a picture tube is usually mirror-like and has a very high electrical resistance.
  • the bare, smooth surface often causes annoying reflections, and the high electrical resistance leads to electrostatic charging of the screen surface during operation of the tube.
  • an antistatic or anti-reflective coating by applying one or more thin layers, for which numerous methods are known. It is widespread, for example, to apply an alcoholic solution of organosilicon compounds, in particular silicon alcoholates, together with organotitanium compounds in a thin layer to adjust the refractive index, which after drying and baking form an SiO2 film that has antistatic and antireflective properties . Sometimes several layers, possibly with different refractive indices, are applied after each intermediate drying and then baked together. Excellent layers of anti-reflective effects can be created, especially with multiple layers.
  • spin coating is used in particular as a coating method for producing thin layers on large domed bodies.
  • the coating solution is applied to the object to be coated, distributed by rotating the object to be coated and any excess is thrown off at the edges.
  • the centrifugal process is simple in terms of process technology and also works very quickly, but in particular in the outer and corner areas of large-area screens, different layer thicknesses can occur, which can cause undesirable effects, for example interference.
  • the screen surface to be coated to be arranged facing downwards in an inclined drum, which has an opening facing upwards, then spraying the coating solution on the screen surface and, while rotating by means of a warm air blower, part of the liquid film formed in and around the center of the screen by targeted blowing with warm air to dry.
  • a warm air blower part of the liquid film formed in and around the center of the screen by targeted blowing with warm air to dry.
  • the object of the invention is to find a method for spin coating in which very homogeneous coatings can be achieved even with large bodies, in which only a relatively small outlay on equipment is required and in which the consumption of coating material can be kept low.
  • the generation of a particularly uniform layer thickness over the entire surface to be coated is achieved in that a disc approximately adapted to the shape of the surface to be coated with approximately the spin speed is used in the same direction during the spinning process at a distance of 1-10 mm above the surface to be coated the surface to be coated can rotate. If the distance between the pane and the surface to be coated is less than 1 mm, the outlay on equipment rises sharply due to the high precision that is then required. If the distance of the rotating disk from the surface to be coated is greater than 10 mm, inhomogeneities in the layer thickness could occur, particularly in the case of large parts to be coated. A distance of 2-4 mm for the disk is preferred. Furthermore, it is preferred if the rotating disk follows the contour of the edge at the edges of the surface to be coated, ie is drawn down about 0.5-2 cm deep at a distance of 1 to 10 mm around the edges of the object to be coated.
  • the addition of the coating solution takes place most advantageously during the rotation through a central opening in the disk rotating concentrically to the coating surface.
  • the known addition of the coating solution during the rotation has the advantage that very little coating solution is used.
  • the size of the central opening is largely uncritical, but in practice it is preferred not to let the diameter of this opening be larger than 15 cm, preferably not larger than 3 cm.
  • the smallest diameter of the feed opening is limited by the need to let the coating agent or a nozzle supplying the coating agent pass through. Of course, it is also possible to close the opening after the coating solution has been supplied.
  • the nozzle can also be firmly connected to the disk and connected to a feed system for the coating solution via a rotating seal.
  • the distance of the pane from the surface to be coated should be 1-10 mm, preferably 2-4 mm, whereby an approximately the shape of the pane to be coated is achieved. It is further preferred if, for a given average distance of the pane in the area under stress, the difference in the distance of the pane between the shortest and furthest distance from the top surface to be coated is at most 4 mm. It is further preferred if the distance of the pane from the coating surface in the outer third of the edge area is between 1 and 4, preferably 2 and 3 mm.
  • the speeds at which the disk and the surface to be coated rotate during spin coating are known per se and range from less than 300 revolutions / minute to about 1,500 revolutions. About 500-700 revolutions / minute are preferred.
  • the speed of the rotating disc should not differ significantly from the speed at which the surface to be coated rotates. It is preferred if the rotating disk and the surface to be coated run at the same speed, which is also the simplest solution to implement in terms of apparatus. However, it is also entirely possible to allow speed differences of up to about 10%.
  • Figure 1 shows a cathode ray tube 1, which is held in a holding device 2 and 2 '.
  • the screen page 3 to be coated faces upwards.
  • the disc is a short distance above the surface to be coated 4 arranged, which essentially follows the shape of the surface to be coated.
  • the disc 4 is provided with a nozzle 5, around which the disc 4 is rotatable and which at the same time forms the central opening 6 for the supply of the coating material.
  • the disc 4 is provided on its sides with a collar 7 which overlaps the outer edges of the surface 3 to be coated.
  • the picture tube 1 with the holder 2 and 2 and the disk 4 are preferably rotated synchronously about the axis 9 and the coating solution is introduced onto the surface 3 through the central opening 6 coating surface 3 completely uniform coating film.
  • FIG. 2 shows a top view of a disk 24 with a centrally arranged feed opening 26 for applying the coating solution.
  • a disc is provided, which is provided with a collar and is thus drawn 0.5 cm around the edge of the surface to be coated.
  • the disc is provided with a central opening of 0.2-1 cm in diameter for the supply of the coating agent.
  • the axes of rotation of screen 1 and disc 4 are of course concentric. Now the screen and screen are rotated in the same direction at 800 revolutions / minute and 5 ml of coating solution are added at once through the central opening.
  • the coating solution has the composition: 32 g (OCH3) 4Si (OCH3) 4, 88 ml of ethanol, 1 ml of HCL and 27 ml of H2O.
  • the disk and screen are rotated for about 10 seconds, the screen is removed from the holding device, it is dried at 150 ° C. and then the coating is baked at 400-450 ° C.
  • the layer produced on the screen surface had a thickness of 91 nm ⁇ 2 nm over the entire area.
  • the coating solution can also be dried on the screen surface if the picture tube is still clamped in the holder, for example by the pane is tilted away and the entire pane surface is blown with warm or hot air.
  • the screen can rotate or stand still. After the first layer has dried, corresponding further layers can be applied, so that a layer package is obtained which is finally baked together in one firing process. In this way, an excellent anti-reflective coating or antistatic finish can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Chemically Coating (AREA)

Description

  • Üblicherweise ist die äußere Oberfläche des Bildschirms einer Bildröhre spiegelblank und besitzt einen sehr hohen elektrischen Widerstand. Die blanke, glatte Oberfläche verursacht häufig störende Reflexe, und der hohe elektrische Widerstand führt zu einer elektrostatischen Aufladung der Bildschirmoberfläche während des Betriebs der Röhre. Um diese Nachteile zu vermeiden, ist es bekannt, durch Aufbringen einer oder mehrerer dünner Schichten die Oberfläche des Bildschirms antistatisch oder antireflektierend auszurüsten, wozu zahlreiche Methoden bekannt sind. Weit verbreitet ist es z.B., auf die Bildschirmoberfläche eine alkoholische Lösung von siliziumorganischen Verbindungen, insbesondere Siliziumalkoholaten, gegebenenfalls zusammen mit titanorganischen Verbindungen zur Anpassung des Brechungsindex in dünner Schicht aufzubringen, die nach Trocknen und Ausheizen einen SiO₂-Film bilden, der antistatische und antireflexive Eigenschaften aufweist. Mitunter werden auch mehrere Schichten, gegebenenfalls mit unterschiedlichen Brechungsindices, nach jeweiligem Zwischentrocknen aufgebracht und anschließend gemeinsam eingebrannt. Insbesondere mit mehreren Schichten lassen sich ganz ausgezeichnete antireflexive Wirkungen erzeugen.
  • Bei der Ausbildung der Schichten ist es besonders wichtig, daß diese über die gesamte Fläche des zu beschichtenden Gegenstandes eine gleichmäßige Dicke aufweisen. Als Beschichtungsverfahren zum Erzeugen dünner Schichten auf großflächigen gewölbten Körpern kommt insbesondere das Schleuderbeschichten zur Anwendung. Bei diesem Verfahren wird die Beschichtungslösung auf den zu beschichtenden Gegenstand aufgegeben, durch Rotation des zu beschichtenden Gegenstandes verteilt und ein etwaiger Überschuß an den Rändern abgeschleudert. Das Schleuderverfahren ist verfahrenstechnisch einfach und arbeitet auch sehr schnell, jedoch können insbesondere im Außen-und Eckenbereich großflächiger Bildschirme unterschiedliche Schichtdicken auftreten, die unerwünschte Wirkungen, z.B. Interferenz, hervorrufen können. Zur Erzeugung einer gleichmäßigen Schichtdicke ist es z.B. aus EP-A- 286 129 bekannt, die zu beschichtende Bildschirmoberfläche nach unten weisend in einer schräg gestellten Trommel anzuordnen, die eine nach oben weisende Öffnung besitzt, anschließend die Bildschirmoberfläche mit der Beschichtungslösung zu besprühen und während des Rotierens durch ein Warmluftgebläse einen Teil des gebildeten Flüssigkeitsfilmes in und um das Zentrum des Bildschirms durch gezieltes Anblasen mit Warmluft zu trocknen. Ein solches Verfahren ist verhältnismäßig aufwendig. Aus JP 2-12736 A ist ein Verfahren bekannt, bei dem der zu beschichtende Bildschirm mit der zu beschichtenden Fläche nach oben weisend in einen Trog eingesetzt wird, dessen Halteplatten für den Bildschirm so gestaltet sind, daß sie praktisch eine Fortsetzung der Bildschirmoberfläche bilden. Ferner ist in dieser Schrift beschrieben, mit Abstand über der Bildschirmoberfläche zwei bis etwa zur Mitte verlaufende diagonal angeordnete sehr hohe Stege vorzusehen, die während der Beschichtung synchron mit der Bildröhre rotieren. Durch diese Anordnungen soll eine gleichmäßige Schichtdicke der aufgebrachten Schicht erreicht werden. Diese Verfahren arbeiten jedoch, insbesondere bei großen Bildschirmen, nicht immer zufriedenstellend.
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren zum Schleuderbeschichten zu finden, bei dem auch bei großflächigen Körpern sehr homogene Beschichtungen erzielt werden können, bei dem nur ein verhältnismäßig geringer apparativer Aufwand erforderlich ist und bei dem der Verbrauch von Beschichtungsmaterial gering gehalten werden kann.
  • Diese Aufgabe wird durch das in Patentanspruch 1 beschriebene Verfahren gelöst.
  • Die Erzeugung einer besonders gleichmäßigen Schichtdicke über die gesamte zu beschichtende Fläche wird dadurch erreicht, daß man während des Schleudervorganges im Abstand von 1 - 10 mm über der zu beschichtenden Oberfläche eine in etwa der Form der zu beschichtenden Oberfläche angepaßte Scheibe mit etwa der Schleuderdrehzahl gleichsinnig mit der zu beschichtenden Oberfläche rotieren läßt. Wird der Abstand der Scheibe zu der zu der beschichtenden Oberfläche kleiner als 1 mm, so steigt der apparative Aufwand wegen der dann erforderlichen hohen Präzision stark an, darüber hinaus kann es im rauhen Alltagsbetrieb zu Störungen kommen. Wird der Abstand der rotierenden Scheibe von der zu beschichtenden Oberfläche größer als 10 mm, so könnten, insbesondere bei großen zu beschichtenden Teilen, Inhomogenitäten in der Schichtdicke auftreten. Bevorzugt wird ein Abstand für die Scheibe von 2-4 mm. Weiterhin wird es bevorzugt, wenn die rotierende Scheibe an den Rändern der zu beschichtenden Oberfläche der Kontur des Randes folgt, d.h. etwa 0,5-2 cm tief in einem Abstand von 1 bis 10 mm um die Kanten des zu beschichtenden Gegenstandes heruntergezogen ist.
  • Die Zugabe der Beschichtungslösung erfolgt am vorteilhaftesten während der Rotation durch eine zentrale Öffnung in der konzentrisch zu der beschichtenden Oberfläche rotierende Scheibe. Die an sich bekannte Zugabe der Beschichtungslösung während der Rotation hat den Vorteil, daß ganz besonders wenig Beschichtungslösung verbraucht wird. Die Größe der zentralen Öffnung ist weitgehend unkritisch, in der Praxis wird jedoch bevorzugt, den Durchmesser dieser Öffnung nicht größer als 15 cm, bevorzugt nicht größer als 3 cm, werden zu lassen. Der kleinste Durchmesser der Zufuhröffnung wird durch die Notwendigkeit, das Beschichtungsmittel bzw. einen das Beschichtungsmittel zuführenden Stutzen durchtreten zu lassen, begrenzt. Natürlich ist es auch möglich, nach der Zufuhr der Beschichtungslösung die Öffnung zu verschließen.
    Der Stutzen kann auch fest mit der Scheibe verbunden und über eine rotierende Dichtung an ein Zuführsystem für die Beschichtungslösung angeschlossen sein. Der Abstand der Scheibe von der zu beschichtenden Oberfläche soll 1-10 mm, bevorzugt 2-4 mm betragen, wodurch eine in etwa der Form der zu beschichtenden Oberfläche angepaßte Scheibenform erzielt wird. Es wird weiterhin bevorzugt, wenn bei einem gegebenen mittleren Abstand der Scheibe in dem beanspuchten Bereich die Differenz des Abstandes der Scheibe zwischen dem kürzesten und weitesten Abstand von der zu beschichtenden Obenfläche maximal 4 mm beträgt. Weiterhin wird es bevorzugt, wenn der Abstand der Scheibe zu der beschichtenden Oberfläche im äußeren Drittel des Randbereichs zwischen 1 und 4, bevorzugt 2 und 3 mm beträgt.
  • Die Drehzahlen, mit denen Scheibe und zu beschichtende Oberfläche während der Schleuderbeschichtung rotieren, sind an sich bekannt und reichen von unter 300 Umdrehungen/Minute bis zu etwa 1.500 Umdrehungen. Bevorzugt werden etwa 500-700 Umdrehungen/Minute. Die Drehzahl der rotierenden Scheibe sollte von der Drehzahl, mit der die zu beschichtende Oberfläche rotiert, nicht wesentlich abweichen. Bevorzugt wird es, wenn die rotierende Scheibe und die zu beschichtende Oberfläche mit gleicher Drehzahl laufen, das ist auch die apparativ am einfachsten zu verwirklichende Lösung. Es ist jedoch durchaus auch möglich, Drehzahldifferenzen bis zu etwa 10 % zuzulassen.
  • Die Erfindung wird anhand der Abbildung weiter erläutert. Es zeigen
  • Figur 1
    in schematischer Weise einen Schnitt durch eine eingespannte Bildröhre mit darüber angeordneter rotierender Scheibe und
    Figur 2
    eine Aufsicht auf eine rotierende Scheibe mit zentraler Öffnung.
  • Figur 1 zeigt eine Kathodenstrahlbildröhre 1, die in einer Haltevorrichtung 2 und 2′ gehaltert ist. Die zu beschichtende Bildschirmseite 3 weist nach oben. In geringem Abstand oberhalb der zu beschichtenden Oberfläche ist die Scheibe 4 angeordnet, die im wesentlichen der Form der zu beschichtenden Oberfläche folgt. Die Scheibe 4 ist mit einem Stutzen 5 versehen, um den die Scheibe 4 drehbar ist und der gleichzeitig die zentrale Öffnung 6 für die Zufuhr des Beschichtungsmaterials bildet. Die Scheibe 4 ist an ihren Seiten mit einem Kragen 7 versehen, der die Außenkanten der zu beschichtenden Fläche 3 überlappt. Zum Schleuderbeschichten läßt man die Bildröhre, 1 mit der Halterung 2 und 2-sowie die Scheibe 4 bevorzugt synchron um die Achse 9 rotieren und gibt durch die zentrale Öffnung 6 die Beschichtungslösung auf die Oberfläche 3. Es bildet sich ein bis in die Randbereiche der zu beschichtenden Fläche 3 völlig gleichmäßiger Beschichtungsfilm aus. Die Antriebsmechanismen für die in der Halterung 2 und 2′ eingespannte Bildröhre 1 sowie für die Scheibe 4 sind nicht besonders dargestellt. Statt über den Stutzen 5 kann die Scheibe natürlich auch in geeigneter Weise an den Halterungen 2 und 2- befestigt sein und von dort mit angetrieben werden. Figur 2 zeigt eine Aufsicht auf eine Scheibe 24 mit einer zentral angeordneten Zufuhröffnung 26 zum Aufbringen der Beschichtungslösung.
  • Beispiel: Eine Kathodenstrahlbildröhre mit den Abmessungen 25 × 32 cm² wird in eine Vorrichtung ähnlich Figur 1 eingespannt. Im Abstand von 2 mm von der zu beschichtenden Oberfläche wird eine Scheibe, die mit einem Kragen versehen ist und dadurch 0,5 cm um die Kante der zu beschichtenden Oberfläche herumgezogen ist, angeordnet. Die Scheibe ist mit einer zentralen Öffnung von 0,2-1 cm Durchmesser zur Zufuhr des Beschichtungsmittels versehen. Die Drehachsen von Bildschirm 1 und Scheibe 4 sind selbstverständlich konzentrisch. Nun werden Scheibe und Bildschirm gleichsinnig mit 800 Umdrehungen/Minute in Rotation versetzt und durch die zentrale Öffnung wird 5 ml Beschichtungslösung auf einmal zugegeben. Die Beschichtungslösung hat die Zusammensetzung: 32 g (OCH₃)₄Si(OCH₃)₄, 88 ml Ethanol, 1 ml HCL und 27 ml H₂O.
  • Nach der Zugabe der Beschichtungslösung läßt man Scheibe und Bildschirm noch zirka 10. sec. rotieren, entnimmt den Bildschirm der Haltevorrichtung, trocknet ihn bei 150 °C und brennt anschließend die Beschichtung bei 400-450°C ein. Die auf der Bildschirmoberfläche erzeugte Schicht hatte über die gesamte Fläche eine Dicke von 91 nm ± 2 nm. Die Trocknung der Beschichtungslösung auf der Bildschirmoberfläche kann auch erfolgen, wenn die Bildröhre noch in der Halterung eingespannt ist, indem z.B. die Scheibe weggekippt und die gesamte Scheibenoberfläche mit Warm-oder Heißluft angeblasen wird. Der Bildschirm kann dabei rotieren oder stillstehen. Nach dem Trocknen der ersten Schicht können entsprechende weitere Schichten aufgebracht werden, so daß man ein Schichtenpaket erhält, das abschließend gemeinsam in einem Brennvorgang eingebrannt wird. Auf diese Weise läßt sich eine ganz vorzügliche Entspiegelung oder antistatische Ausrüstung erreichen.

Claims (5)

  1. Verfahren zum Erzeugen dünner Schichten auf großflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirmen, durch Schleuderbeschichten
    dadurch gekennzeichnet,
    daß man während des Schleudervorganges im Abstand von 1 bis 10 mm über der zu beschichtenden Fläche eine in etwa der Form der zu beschichtenden Fläche angepaßte Scheibe (4) mit etwa der Schleuderdrehzahl gleichsinnig mit der zu beschichtenden Fläche (3) rotieren läßt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß man die Scheibe (4) im Abstand von 2 bis 4 mm über der zu beschichtenden Fläche (3) rotieren läßt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß man eine Scheibe (4) rotieren läßt, die etwa 0,5 bis 2 cm tief in einem Abstand von 1 bis 10 mm um die Kanten der zu beschichtenden Fläche (3) heruntergezogen ist.
  4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß man die Beschichtungslösung während der Rotation durch eine zentrale Öffnung (6) in der Scheibe (4), die nicht größer als 15 cm ist, zugibt.
  5. Verfahren nach wenigstens einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß man den Schleudervorgang bei einer Drehzahl von 300 bis 1500 pro Minute vornimmt.
EP92121666A 1992-02-15 1992-12-19 Verfahren zum Erzeugen dünner Schichten auf grossflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirm, durch Schleuderbeschichten Expired - Lifetime EP0556480B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4204637A DE4204637C1 (de) 1992-02-15 1992-02-15
DE4204637 1992-02-15

Publications (2)

Publication Number Publication Date
EP0556480A1 EP0556480A1 (de) 1993-08-25
EP0556480B1 true EP0556480B1 (de) 1994-09-14

Family

ID=6451853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92121666A Expired - Lifetime EP0556480B1 (de) 1992-02-15 1992-12-19 Verfahren zum Erzeugen dünner Schichten auf grossflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirm, durch Schleuderbeschichten

Country Status (6)

Country Link
US (1) US5314715A (de)
EP (1) EP0556480B1 (de)
JP (1) JP2592034B2 (de)
AT (1) ATE111634T1 (de)
DE (2) DE4204637C1 (de)
ES (1) ES2060445T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545573A1 (de) * 1995-12-07 1997-06-12 Leybold Ag Vorrichtung zum gleichmäßigen Aufbringen einer Lackschicht auf ein Substrat

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824955A (en) * 1972-05-15 1974-07-23 A Marks Apparatus for coating television viewing tubes
JP2653429B2 (ja) * 1986-10-16 1997-09-17 株式会社東芝 陰極線管用バルブホルダー
JP2695823B2 (ja) * 1987-04-10 1998-01-14 株式会社東芝 陰極線管の表示面外表面に薄膜を形成する方法
JPH0654634B2 (ja) * 1988-02-08 1994-07-20 株式会社東芝 塗布装置
JPH07109747B2 (ja) * 1988-06-30 1995-11-22 旭硝子株式会社 グラウン管用パネルフェースの表面処理装置
FR2636546B1 (fr) * 1988-09-15 1991-03-15 Sulzer Electro Tech Procede et dispositif pour l'application uniformement reguliere d'une couche de resine sur un substrat
JPH0294335A (ja) * 1988-09-30 1990-04-05 Mitsubishi Electric Corp 帯電防止処理型陰極線管の製造方法
JPH02195629A (ja) * 1989-01-25 1990-08-02 Hitachi Ltd 陰極線管パネル面処理液の回転塗布方法
JP2760551B2 (ja) * 1989-03-15 1998-06-04 株式会社東芝 陰極線管のフェース外表面に薄膜を形成する方法
JPH03152827A (ja) * 1989-11-08 1991-06-28 Toshiba Corp 陰極線管のフェース外表面に薄膜を形成する方法
JPH0675367B2 (ja) * 1989-12-05 1994-09-21 旭硝子株式会社 ブラウン管用パネルフェースの表面処理方法及びその装置

Also Published As

Publication number Publication date
DE59200507D1 (de) 1994-10-20
JPH0612981A (ja) 1994-01-21
ATE111634T1 (de) 1994-09-15
EP0556480A1 (de) 1993-08-25
DE4204637C1 (de) 1993-03-11
ES2060445T3 (es) 1994-11-16
US5314715A (en) 1994-05-24
JP2592034B2 (ja) 1997-03-19

Similar Documents

Publication Publication Date Title
DE69326706T2 (de) Verfahren zur Herstellung einer Schicht auf einem Halbleiterkörper
DE2744752C2 (de) Verfahren zum Aufbringen eines gleichförmigen Überzugs auf einer Oberfläche
DE68919326T3 (de) Verfahren und Vorrichtung zur gleichmässigen Beschichtung eines Substrats mit einer Photolackschicht.
CH663912A5 (de) Verfahren zum ausbilden eines gleichfoermigen schutzfilms auf einem substrat.
DE69006870T2 (de) Vorrichtung zum Überziehen einer ebenen Oberfläche mit einer Schicht von einheitlicher Dicke.
EP0556480B1 (de) Verfahren zum Erzeugen dünner Schichten auf grossflächigen gewölbten Körpern, insbesondere Kathodenstrahlbildschirm, durch Schleuderbeschichten
DE3424530A1 (de) Verfahren zur herstellung einer orientierungsschicht auf einer ebenen oberflaeche einer platte und vorrichtung zur durchfuehrung des verfahrens
DE102018206474B3 (de) Gleichförmigkeitssteuerung metallbasierter Fotolacke
EP0368202B1 (de) Verfahren zum Beschichten einer Substratplatte für einen flachenAnzeigeschirm
DE19511191C2 (de) Verfahren zum Auftragen eines lichtempfindlichen Gemisches sowie Vorrichtung hierfür
DE3044977A1 (de) Verfahren und vorrichtung zur herstellung von magnetbeschichtungen
DE60125006T2 (de) Verfahren zur gleichmäßigen optischen Beschichtung
EP0383192B1 (de) Verfahren und Vorrichtung zum Herstellen von Flüssigkristallzellen
DE3875644T2 (de) Vorrichtung und verfahren zur herstellung von sicherheitsscheiben mit einer kunststoffbeschichtung auf der oberflaeche.
DE4423833A1 (de) Organische Schicht zur späteren Beschichtung mit einer gegenüber der organischen Schicht härteren Deckschicht und Verfahren zur Oberflächenbehandlung einer organischen Schicht
DE69711818T2 (de) Verfahren und Vorrichtung zum Polieren einer dünnen Platte
WO1995005901A1 (de) Vorrichtung zur belackung von substraten in der halbleiterfertigung
DE19908235C2 (de) Dekorative Wand-, Decken- oder Fassadenbeschichtung mit strukturierter, aufgerauhter Oberfläche und Verfahren zu deren Herstellung
DE69432989T2 (de) Verfahren zum aufschleudern von glas in kontrollierter umgebung
EP0368200B1 (de) Verfahren zum Beschichten einer Substratplatte für eine Flüssigkristallzelle
DE102018204068A1 (de) Verfahren zum Beschichten einer Rohrinnenfläche und Rohr mit einer beschichteten Rohrinnenfläche
EP0421190A2 (de) Verfahren zum Herstellen einer Flüssigkristallzelle
EP0764975B1 (de) Verfahren zur Erzeugung einer stapelfehlerinduzierenden Beschädigung auf der Rückseite von Halbleiterscheiben
DE2157650C3 (de) Verfahren zum Herstellen der Magnetschichten von Magnetplatten und Vorrichtung zur Durchführung des Verfahrens
DE3418163A1 (de) Verfahren und vorrichtung zum auftragen einer gleichmaessig duennen schicht einer niedrigviskosen fluessigkeit auf eine flaechige unterlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930904

17Q First examination report despatched

Effective date: 19940126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL-ZEISS-STIFTUNG TRADING AS SCHOTT GLASWERKE

Owner name: SCHOTT GLASWERKE

REF Corresponds to:

Ref document number: 111634

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59200507

Country of ref document: DE

Date of ref document: 19941020

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941007

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2060445

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021205

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021218

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031219

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

BERE Be: lapsed

Owner name: *SCHOTT GLASWERKE

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219