EP0549368A2 - Zündkerzenelektrode und sein Herstellungsverfahren - Google Patents
Zündkerzenelektrode und sein Herstellungsverfahren Download PDFInfo
- Publication number
- EP0549368A2 EP0549368A2 EP92311818A EP92311818A EP0549368A2 EP 0549368 A2 EP0549368 A2 EP 0549368A2 EP 92311818 A EP92311818 A EP 92311818A EP 92311818 A EP92311818 A EP 92311818A EP 0549368 A2 EP0549368 A2 EP 0549368A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- slug
- electrode
- firing tip
- spark plug
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000010304 firing Methods 0.000 claims abstract description 84
- 238000003466 welding Methods 0.000 claims abstract description 23
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000008188 pellet Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000009760 electrical discharge machining Methods 0.000 description 7
- 230000008646 thermal stress Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T21/00—Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
- H01T21/02—Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
Definitions
- This invention relates to an electrode for a spark plug and a method of manufacturing the electrode in which an erosion-resistant firing tip is welded to a front end of a composite the electrode.
- a firing tip is welded to a front end of a center electrode or a ground electrode.
- the front end of the electrode is made of nickel-based alloy, while the firing tip made of a noble metal such as platinum, palladium, iridium and alloys thereof.
- the firing tip is usually secured to the front end of the center electrode or the ground electrode by means of electrical resistance welding so as to form a dispersion layer at an interface between the firing tip and the front end of the center electrode.
- an object of the invention to provide an electrode for spark plug and a method of manufacturing the electrode in which a firing tip is secured to a front end of the electrode by means of laser welding to fuse the firing tip into the front end of the electrode sufficiently, and thus effectively preventing the firing tip from inadvertently falling off the electrode so as to contribute to an extended service life with relatively low cost.
- an electrode for spark plug and a method of making the electrode.
- a laser beam welding is applied on a firing tip to thermally melt whole the firing tip so that an end surface of metallic is partly fused into the firing tip in the range of 0.5 wt % to 80.0 wt %. This makes it possible to diminish the difference of the thermal expansion between the firing tip and the end surface of the metallic.
- the firing tip is positively fused into the end surface of the metallic to increase the welding strength between the firing tip and the end surface of the metallic.
- the laser beam welding is carried out such that the cone-shaped interface is formed between the firing tip and the end surface of the metallic so as to decentralize the thermal stress occurred at the interface between the firing tip and the end surface of the metallic when the electrode is alternately exposed to heat-and-cool cycle in a combustion chamber of an internal combustion engine.
- the center electrode 1 has a composite column 10 and a firing tip 4 secured to a front end of the composite column 10.
- the composite column 10 has a nickel-alloyed clad 2 (2.5 mm in diameter) which includes 15.0 wt % chromium iron and 8.0 wt % iron.
- a heat-conductor core 3 (1.3 mm in diameter) concentrically embedded which is made of copper or silver.
- a front end portion of the nickel-alloyed clad 2 is diametrically reduced to provide a straight neck portion 21 (1.0 mm in diameter).
- the firing tip 4 is concentrically place on a front end surface 21a of the straight neck portion 21, and secured to the front end surface 21a by means of a laser beam welding.
- the firing tip 4 is made of a platinum-based alloy which includes 20.0 wt % iridium. At the time of carrying out the laser beam welding, whole the firing tip 4 is thermally melted so that the straight neck portion 21 is partly fused into the firing tip 4 in the range of 0.5 wt % to 80.0 wt %.
- the firing tip may be made of an alloy of nickel (Ni) and iridium (Ir).
- the firing tip may be made of a cermet including platinum (Pt), iridium (Ir) and rare earth metal, or otherwise a cermet including platinum (Pt), iridium (Ir) and an oxide of rare earth metal. It is also noted that the firing tip may be made from pellet or powder.
- composite column 10 is integrally made of a single elongated blank metal.
- the center electrode 1 thus assembled is manufactured as follows:
- the firing tip 4 has a semi-spherical or frustoconical head 41 as shown at solid line and dotted lines in Fig. 4.
- the firing tip 4 further has a wedge-shaped base foundation 42 stuck in the front end surface 21a of the straight neck portion 21 to form a cone-shaped or bullet-shaped interface 45 between the base foundation 42 and the front end surface 21a of the straight neck portion 21. This makes it possible to enlarge a welding area between the base foundation 42 and the front end surface 21a of the straight neck portion 21 so as to increase the welding strength compared to a welding area made by means of electrical resistance welding.
- the straight neck portion 21 is partly fused into the firing tip 4 in the range of 0.5 wt % to 80.0 wt %.
- a dispersion layer 43 is formed at the interface 45, a thickness of which extends from several ⁇ m to several hundreds of ⁇ m.
- a dispersion degree of the noble metal of the firing tip 4 decreases as being away from the base foundation 42.
- the optimum range of 0.5 wt % to 80.0 wt % is obtained by alternately changing the laser welding condition and analysing the firing tip 4 repeatedly through an X-ray examination.
- the lower limit of the diameter (C) of the firing tip 4 is determined by considering endurance experiment test results as described in detail hereinafter.
- Fig.5 shows a front portion of a spark plug 100 into which the center electrode 1 is incorporated.
- the spark plug 100 has a metallic shell 6 in which a tubular insulator 7 is placed. Within an inner space of the insulator 7, is the center electrode located. From a front end of the metallic shell, is a ground electrode 5 extended to form a spark gap (G) between the ground electrode 5 and the firing tip 4.
- G spark gap
- the firing tip 4 is thermally transferable relationship with the heat-conductor core 3, a metallic packing (not shown), the metallic shell 6, a metallic gasket (not shown) and a cylinder head of the internal combustion engine.
- Figs. 6a, 6b show a second embodiment of the invention.
- the slug 4A is placed on the ground electrode 5, and laser welded to the ground electrode 5 so as to form the firing tip 4.
- Fig. 6c shows a third embodiment of the invention.
- the ground electrode 5 has a composite elongation 50 in which a metallic clad 51 is made of a nickel-based alloy which includes 15.0 wt % chromium and 8.0 wt % iron.
- a metallic clad 51 is made of a nickel-based alloy which includes 15.0 wt % chromium and 8.0 wt % iron.
- a heat-conductor core 52 coaxially embedded which is preferably made of copper, nickel and silver in an appropriate combination or alone.
- Fig. 6d shows a fourth embodiment of the invention.
- a plurality of ground electrodes 5 are provided around the front end of the center electrode 1.
- Each front end surface 5a of the ground electrodes 5 opposes an outer surface of the straight neck portion 21.
- the firing tip 4 is secured to each front end surface 5a of the ground electrodes 5 by means of the laser welding.
- To the outer surface of the straight neck portion 21, the firing tip 4 is welded so as to oppose each front end surface 5a of the ground electrodes 5.
- Fig. 7 shows a graph indicating how long the firing tip 4 endures depending on how much the nickel-alloyed clad 2 is fused into the firing tip 4.
- the spark plug 100 at shown Fig. 5 mounted on a 2000 cc, six-cylinder engine which is alternately run in accordance with heat-and-cool cycle from full throttle (5000 rpm ⁇ 1 min.) to an idle operation (rpm ⁇ 1 min.).
- Fig. 8 shows a graph indicating how the spark gap (G) changes depending on how much the nickel-alloyed clad 2 is fused into the firing tip 4.
- G spark gap
- Fig. 5 mounted on a 1600 cc, four-cylinder engine which is operated at full throttle (5500 rpm) with full load.
- Fig. 9 shows a graph indicating how the spark gap (G) changes due to spark erosion depending on how the diameter (C) of the firing tip 4 varies.
- an endurance experiment is carried out with the spark plug 100 at shown Fig. 5 mounted on a 2000 cc, six-cylinder engine which is operated at full throttle 5500 rpm with full load.
- Fig. 10a shows a graph indicating how long the firing tip 4 endures depending on how deep (B) the firing tip 4 is penetrated into the front end surface 21a of the straight neck portion 21 of the nickel-alloyd clad 2.
- the spark plug 100 at shown Fig. 5 mounted on a 2000 cc, six-cylinder engine which is alternately run in accordance with heat-and-cool cycle from full throttle (5000 rpm ⁇ 1 min.) to an idle operation (rpm ⁇ 1 min.).
- Fig. 10b shows a graph indicating a relationship between an amount of spark erosion (mm) and a time period (Hr) require for the firing tip to fall off.
- Fig. 10b It is found from Fig. 10b that the firing tip 4 does not fall off th ground electrode 5 with the elapse of 400 Hrs as opposed to the counterpart ground electrode in which a firing tip is secured to the ground electrode by means of the electrical resistance welding. It is also found from Fig. 10b that a counterpart firing tip falls off the ground electrode with the elapse of approx. 200 Hrs although an amount of spark erosion of the firing tip is slightly greater than that of the counterpart firing tip.
- heat-concuctor core 52 of the ground electrode 5 may be left off in the third embodiment of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Spark Plugs (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34690191 | 1991-12-27 | ||
JP346901/91 | 1991-12-27 | ||
JP4114809A JPH05234662A (ja) | 1991-12-27 | 1992-05-07 | スパークプラグ用電極およびその製造方法 |
JP114809/92 | 1992-05-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0549368A2 true EP0549368A2 (de) | 1993-06-30 |
EP0549368A3 EP0549368A3 (de) | 1994-02-16 |
EP0549368B1 EP0549368B1 (de) | 1998-05-27 |
Family
ID=26453473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920311818 Expired - Lifetime EP0549368B1 (de) | 1991-12-27 | 1992-12-24 | Zündkerzenelektrode und Herstellungsverfahren |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0549368B1 (de) |
DE (1) | DE69225686T2 (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0587446A1 (de) * | 1992-09-10 | 1994-03-16 | Ngk Spark Plug Co., Ltd | Herstellungsverfahren für Zündkerze |
EP0588495B1 (de) * | 1992-08-19 | 1997-10-22 | Ngk Spark Plug Co., Ltd | Zündkerze und sein Herstellungsverfahren |
US5736809A (en) * | 1994-03-10 | 1998-04-07 | Ngk Spark Plug Co., Ltd. | Method of making a spark plug including laser welding a noble metal layer to a firing end of electrode |
US6215235B1 (en) * | 1998-02-16 | 2001-04-10 | Denso Corporation | Spark plug having a noble metallic firing tip bonded to an electric discharge electrode and preferably installed in internal combustion engine |
DE10027651A1 (de) * | 2000-06-03 | 2001-12-13 | Bosch Gmbh Robert | Elektrode, Verfahren zu deren Herstellung und Zündkerze mit einer derartigen Elektrode |
DE10134671A1 (de) * | 2001-07-20 | 2003-02-06 | Bosch Gmbh Robert | Verfahren zur Anbringung einer Edelmetallspitze auf einer Elektrode, Elektrode und Zündkerze |
DE10149630C1 (de) * | 2001-10-09 | 2003-10-09 | Beru Ag | Zündkerze und Verfahren zu ihrer Herstellung |
US7589460B2 (en) | 2006-06-19 | 2009-09-15 | Federal-Mogul World Wide, Inc. | Small diameter/long reach spark plug with rimmed hemispherical sparking tip |
US7851984B2 (en) | 2006-08-08 | 2010-12-14 | Federal-Mogul World Wide, Inc. | Ignition device having a reflowed firing tip and method of construction |
CN103828151A (zh) * | 2011-09-26 | 2014-05-28 | 罗伯特·博世有限公司 | 具有侧面安装的火花塞搭铁电极的火花塞 |
WO2021253061A1 (en) * | 2020-06-18 | 2021-12-23 | Innio Jenbacher Gmbh & Co Og | Method for manufacturing an assembly for a spark plug and spark plug |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10015642A1 (de) * | 2000-03-29 | 2001-10-18 | Bosch Gmbh Robert | Zündkerze für eine Brennkraftmaschine |
DE10255187A1 (de) * | 2002-11-27 | 2004-06-24 | Robert Bosch Gmbh | Verfahren zum Verbinden einer Elektrode mit einem Edelmetallabschnitt |
US9130356B2 (en) | 2012-06-01 | 2015-09-08 | Federal-Mogul Ignition Company | Spark plug having a thin noble metal firing pad |
US9318879B2 (en) | 2012-10-19 | 2016-04-19 | Federal-Mogul Ignition Company | Spark plug having firing pad |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4699600A (en) * | 1981-04-30 | 1987-10-13 | Nippondenso Co., Ltd. | Spark plug and method of manufacturing the same |
US4904216A (en) * | 1983-09-13 | 1990-02-27 | Ngk Spark Plug Co., Ltd. | Process for producing the center electrode of spark plug |
DE3727526A1 (de) * | 1987-08-18 | 1989-03-02 | Bosch Gmbh Robert | Verfahren zum herstellen einer zuendkerze fuer brennkraftmaschinen |
-
1992
- 1992-12-24 EP EP19920311818 patent/EP0549368B1/de not_active Expired - Lifetime
- 1992-12-24 DE DE1992625686 patent/DE69225686T2/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0588495B1 (de) * | 1992-08-19 | 1997-10-22 | Ngk Spark Plug Co., Ltd | Zündkerze und sein Herstellungsverfahren |
EP0587446A1 (de) * | 1992-09-10 | 1994-03-16 | Ngk Spark Plug Co., Ltd | Herstellungsverfahren für Zündkerze |
US5736809A (en) * | 1994-03-10 | 1998-04-07 | Ngk Spark Plug Co., Ltd. | Method of making a spark plug including laser welding a noble metal layer to a firing end of electrode |
US6215235B1 (en) * | 1998-02-16 | 2001-04-10 | Denso Corporation | Spark plug having a noble metallic firing tip bonded to an electric discharge electrode and preferably installed in internal combustion engine |
DE10027651A1 (de) * | 2000-06-03 | 2001-12-13 | Bosch Gmbh Robert | Elektrode, Verfahren zu deren Herstellung und Zündkerze mit einer derartigen Elektrode |
DE10027651C2 (de) * | 2000-06-03 | 2002-11-28 | Bosch Gmbh Robert | Elektrode, Verfahren zu deren Herstellung und Zündkerze mit einer derartigen Elektrode |
DE10134671A1 (de) * | 2001-07-20 | 2003-02-06 | Bosch Gmbh Robert | Verfahren zur Anbringung einer Edelmetallspitze auf einer Elektrode, Elektrode und Zündkerze |
DE10149630C1 (de) * | 2001-10-09 | 2003-10-09 | Beru Ag | Zündkerze und Verfahren zu ihrer Herstellung |
US6791246B2 (en) | 2001-10-09 | 2004-09-14 | Beru Ag | Spark plug and method for its manufacture |
US7589460B2 (en) | 2006-06-19 | 2009-09-15 | Federal-Mogul World Wide, Inc. | Small diameter/long reach spark plug with rimmed hemispherical sparking tip |
US7851984B2 (en) | 2006-08-08 | 2010-12-14 | Federal-Mogul World Wide, Inc. | Ignition device having a reflowed firing tip and method of construction |
CN103828151A (zh) * | 2011-09-26 | 2014-05-28 | 罗伯特·博世有限公司 | 具有侧面安装的火花塞搭铁电极的火花塞 |
US9059571B2 (en) | 2011-09-26 | 2015-06-16 | Robert Bosch Gmbh | Spark plug having a side-mounted ground electrode |
WO2021253061A1 (en) * | 2020-06-18 | 2021-12-23 | Innio Jenbacher Gmbh & Co Og | Method for manufacturing an assembly for a spark plug and spark plug |
US12027828B2 (en) | 2020-06-18 | 2024-07-02 | Innio Jenbacher Gmbh & Co Og | Method for manufacturing an assembly for a spark plug and spark plug |
Also Published As
Publication number | Publication date |
---|---|
EP0549368A3 (de) | 1994-02-16 |
DE69225686D1 (de) | 1998-07-02 |
EP0549368B1 (de) | 1998-05-27 |
DE69225686T2 (de) | 1998-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5461210A (en) | Method of manufacturing a spark plug electrode | |
EP0575163B1 (de) | Zündkerze | |
US6819031B2 (en) | Spark plug and a method of producing the same | |
EP0549368A2 (de) | Zündkerzenelektrode und sein Herstellungsverfahren | |
US5574329A (en) | Spark plug and a method of making the same for an internal combustion engine | |
EP0587446B1 (de) | Herstellungsverfahren für Zündkerze | |
US6676468B2 (en) | Method of producing a spark plug | |
US6853116B2 (en) | Structure of spark plug designed to provide higher durability and ignitability of fuel | |
US5497045A (en) | Spark plug having a noble metal electrode portion | |
US20020021066A1 (en) | Spark plug for an engine for a cogeneration system | |
EP2704271B1 (de) | Zündkerze | |
CA2582461A1 (en) | Ignition device having noble metal fine wire electrodes | |
EP0583103B1 (de) | Herstellungsverfahren für Zündkerze | |
EP2073327B1 (de) | Zündkerze für Verbrennungsmotor | |
US5310373A (en) | Method for producing electrodes for spark plugs and spark plug electrodes | |
US20060103284A1 (en) | Spark plug with ground electrode having mechanically locked precious metal feature | |
EP0765017A1 (de) | Zündkerze für Verbrennungsmotor | |
EP2190084B1 (de) | Zündkerze | |
US6971937B2 (en) | Method of manufacturing a spark plug for an internal combustion engine | |
US7030544B2 (en) | Spark plug designed to enhance strength of joint of noble metal member to ground electrode | |
EP2933887B1 (de) | Zündkerze | |
JP2004079507A (ja) | 内燃機関用スパークプラグ及びその製造方法 | |
JP4092837B2 (ja) | 内燃機関用スパークプラグ | |
JP3364746B2 (ja) | スパークプラグの製造方法及びスパークプラグ | |
JPH05182742A (ja) | スパークプラグ用電極およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19940425 |
|
17Q | First examination report despatched |
Effective date: 19951221 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69225686 Country of ref document: DE Date of ref document: 19980702 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011227 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021224 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20021224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20111219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20111221 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69225686 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69225686 Country of ref document: DE |