EP0547120B1 - Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement - Google Patents

Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement Download PDF

Info

Publication number
EP0547120B1
EP0547120B1 EP91916278A EP91916278A EP0547120B1 EP 0547120 B1 EP0547120 B1 EP 0547120B1 EP 91916278 A EP91916278 A EP 91916278A EP 91916278 A EP91916278 A EP 91916278A EP 0547120 B1 EP0547120 B1 EP 0547120B1
Authority
EP
European Patent Office
Prior art keywords
turns
transformer
core
coupled inductor
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91916278A
Other languages
German (de)
English (en)
Other versions
EP0547120A1 (fr
Inventor
Peter David Evans
William John Baxter Heffernan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrotech Instruments Ltd
Original Assignee
Electrotech Instruments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrotech Instruments Ltd filed Critical Electrotech Instruments Ltd
Publication of EP0547120A1 publication Critical patent/EP0547120A1/fr
Application granted granted Critical
Publication of EP0547120B1 publication Critical patent/EP0547120B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/16Toroidal transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2814Printed windings with only part of the coil or of the winding in the printed circuit board, e.g. the remaining coil or winding sections can be made of wires or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias

Definitions

  • This invention relates to the concept, design, construction and deployment of electrical power transformers and coupled inductors primarily for application in switch-mode power supplies, and in particular to the concept and methods of making such components whereby high frequency eddy current loss mechanisms are minimised. These devices can be used to overcome the problems of low efficiency and excessive power dissipation in high frequency switching applications.
  • the two main mechanisms contributing to a. c. winding loss are well known.
  • the skin effect is caused by the current flowing within a conductor setting up a magnetic field which then induces eddy currents in the conductor.
  • the direction of eddy current flow is such as to cancel out the main current in the centre of the conductor but reinforce it as the edges (Fig. 2).
  • the proximity effect (1) is caused by the leakage flux due to all the windings (as in Fig. 1) inducing eddy currents in each winding in such a direction as to cancel the main current at the outer edge and to reinforce it at the inner edge (Fig. 3).
  • eddy current losses can be mimimized by using conductors less than two skin depths thick, or multiple stranded conductors such as Litz wire.
  • a bifilar winding arrangement is used in which the primary and secondary windings are twisted together prior to winding. This ensures that, for an N turn winding, the peak mmf is never greater than one Nth of its value in a single layer conventional arrangement; i.e. each primary turn is interleaved with a secondary turn.
  • Such transformers are usually wound on a toroidal core to give a closed main-flux path and have unity turns ratio.
  • US-A-4536733 discloses a conventional toroidal transformer which has been modified to incorporate a low-voltage, high-current secondary winding constituted by a number of copper segments placed over a conventionally-wound primary. Inter-connections between the segments are made through PCB tracks: these interconnections achieve different turns ratios.
  • the purpose of this earlier invention is to reduce leakage inductance.
  • US-A-4103267 discloses a process of manufacturing a transformer directly onto a substrate, for signal processing applications.
  • FR-A-2556493 discloses the interleaving of entire windings over an asymmetric core.
  • the purpose of that invention was to remove heat from the windings, but the interleaving of the windings appears to be accidental, without any indication of purpose.
  • EP-A-0071008 discloses a conventional sandwich type of power transformer, as acknowledged in the second paragraph of page 1 of the present description. Windings are interleaved on the same layer and also between layers, in a multiple winding transformer wound on a bobbin. This form of winding has the effect of reducing leakage inductance.
  • each winding consists of N physical turns of conductive material around a core which may be of soft magnetic material (e.g. ferrite or iron powder), the electrical turns ratio being determined by series or parallel, or combination series-parallel, connections of the physical turns of each winding.
  • ferrite or iron powder soft magnetic material
  • the invention allows the electrical turns ratio to take any desired value, including non-integral values.
  • the conductors for each physical turn are preferably optimally dimensioned to minimize or control winding losses.
  • More than one layer of interleaved windings may be employed, the primary/secondary interleaving preferably being both in each of the layers and also from layer to superimposed layer.
  • Any series, parallel, or series/parallel combination or array of such transformers or coupled inductors, may be used so as to optimise heat transfer or to control stray magnetic fields.
  • a portion of each or any physical turn is preferably formed by a printed, etched, plated or otherwise formed conductor on a substrate material.
  • the substrate may be a flexible or a preformed substrate. Multiple layer substrates are advantageous for more complex windings.
  • a portion of each or any physical turn is preferably formed by an ultrasonically or thermosonically welded, soldered, silver soldered or otherwise welded or attached conductor looped over a core.
  • a portion of at least one physical turn is constituted by a conductor formed on a substrate material, and each winding consists of physical turns of a conductive material (e.g. metal wire or ribbon) around a core, including the step of forming a portion of each physical turn as a loop of the conductive material over the core and bonding it at its ends to the conductors which are formed on the substrate (e.g. by ultrasonic welding, welding, soldering, or another appropriate method).
  • a conductive material e.g. metal wire or ribbon
  • the looped conductors may be positioned in an insulating former designed to give compliance with national and international standards for insulation and safety isolation.
  • this portion of each or any physical turn may be formed by a printed, etched, plated or otherwise formed conductor on the core material.
  • a portion of each or any physical turn may advantageously consist of a punched, pressed, plated, or otherwise manufactured preform.
  • each transformer or coupled inductor or array thereof it is preferred that a toroidal core or cores is/are used.
  • any or all of the windings are preferably terminated in the centre of the core, allowing optimal current distribution in the winding and reducing losses. This is especially advantageous in the case of windings employing parallelled turns.
  • Secondary side rectifier diode/s and/or any other components may be situated in the centre of the core, and the windings adapted for connection thereto. This is particularly relevant to a step-down transformer/coupled inductor. Additionally, where parallelled secondary turns are employed, individual rectifier diodes may be used with each turn, or group of turns, with inherent current sharing.
  • Primary side switching device/s and/or any other component/s may be situated in the centre of the core. Again, this is particularly relevant to a step-up transformer/coupled inductor.
  • the core material is advantageously a permeable ferrite, optionally with distributed 'air' gaps, where 'air' means any material of permeability lower than the said ferrite.
  • the core may however be of a powdered iron or other powdered permeable material (e.g. Moly-permalloy) construction; or of amorphous metal material, strip-wound or solid.
  • a powdered iron or other powdered permeable material e.g. Moly-permalloy
  • amorphous metal material strip-wound or solid.
  • the transformer or coupled inductor or array thereof may be air-cored or wound on a non-permeable former.
  • the core cross section is ideally arranged so as to facilitate manufacture of the component, e.g. by use of a domed shape or other convex shape.
  • the primary or primaries and secondary or secondaries of the transformer may be interleaved as in a bifilar or multifilar arrangement, i.e. one primary turn is adjacent to two secondary turns and vice versa (see Fig. 5).
  • a bifilar or multifilar arrangement i.e. one primary turn is adjacent to two secondary turns and vice versa (see Fig. 5).
  • the optimum shape for the core of the transformer (which is likely to be of a soft magnetic permeable material, possibly ferrite) is a toroid.
  • the physical relationship of any one turn to all the others is ideally identical, i.e. the sum of the mutual leakage flux linkages between any given turn and all other turns is identical.
  • current will be shared perfectly between each turn of every parallel connected winding; thus winding resistance will be minimized.
  • primary or secondary turns are not symmetrically positioned. In these cases good current sharing can still be achieved.
  • the technique may also be advantageous in any other core shape including E-cores employing conventional or planar spiral windings (see Fig. 6).
  • the interleaved planar spiral transformer of Fig. 6(d) is particularly interesting; the conductor width may be varied to give exact current sharing in the secondary turns despite variations in turn length.
  • the device thus far described is a transformer consisting of only one layer of winding.
  • this mmf cancelling technique can be applied to any number of layers (see Fig. 7); here primary and secondary turns are interposed both on each layer and also on alternate layers resulting in minimal leakage flux in either axis.
  • this method is applicable to coupled inductors (also known as flyback transformers).
  • coupled inductors also known as flyback transformers.
  • the core may preferably be made of low permeability magnetic material, e.
  • the optimal shape is a toroid, although any shape is possible (e.g. shape c) of Fig. 6 in which the centre of the core is of low permeability material with a highly permeable 'magnetic shunt' round the outside).
  • the physical size of typical transformers and inductors becomes such that the main (core) flux density has to be kept well below the saturation level of the material, for acceptable core temperature rise in operation. This is because total core losses, for a given flux density, are proportional to core volume, whereas heat transfer from the core is related directly to core surface area.
  • the surface area for a given volume can be increased and the material can be used more effectively.
  • the 12:1 arrangement is a simple matter of connecting the secondary turns (N p of them) in parallel as shown in Fig. 8(b).
  • the 12:2 ratio is a matter of paralleling up six turns, twice, and connecting the parallel sets in series.
  • There are numerous alternatives for selecting the turns to be connected in parallel and two examples are shown in Fig. 8(c). Physical convenience in laying out the substrate is likely to be a major influence in choosing the most suitable interconnection pattern. Similar series-parallel systems are available for other integer turns ratios, namely 12:3, 12:4 and 12:6 for the present case, as shown in Fig. 8(d).
  • N p N p .
  • N k 1, 2, 3, 4, 6, 12, ie factors of N p .
  • each winding segment contains turns from all windings. This provides for good current sharing among turns and serves to minimise the a.c. resistance.
  • An example of this type of arrangement is given in Fig. 10 with a twelve turn primary and one, three and eight turns secondaries. There is mmf cancellation every 30 . ( ⁇ /6).
  • Fig. 11 for a twelve turn primary with a 5 turn secondary, a centre tapped 2 turn secondary and a centre tapped one turn secondary.
  • the windings are usually arranged symmetrically to ensure good current sharing, but leakage flux within each winding segment and a.c. winding resistance are not minimized; instead the mmf driving leakage flux is minimized every ⁇ winding segments, where ⁇ is an integer, ⁇ being equal to three in the example in Fig. 11. In general therefore mmf is minimized every ( ⁇ /S).
  • a transformer or inductor as described can be made by thick film printing, plating or etching a pattern of conductors (e.g. copper) on a substrate material which is electrically insulating but preferably thermally conductive (e.g. Alumina, Beryllia, Aluminium Nitride). If the substrate is not a good thermal conductor, such as FR4 or Kapton, then thermally conducting vias may be provided for good thermal properties.
  • a pattern or multi-layered patterns may include the terminations for the transformer or inductor and determine the series or parallel connections of the individual turns. A suitabl insulation layer(s) may then be placed on top of these conductors on which is placed the core itself.
  • the turn are then completed over the core - these may take the form of conductive wire, ribbon or foil bonding leads, or of printed, plated or etched conductors which may be attached directly to the core or to a flexible substrate; additionally, particularly in the case of a single electrical turn primary or secondary winding, the parallel turns may be formed by a single conductive pressing or an etched, plated or printed preform.
  • the cross section of the core over which the windings are placed may advantageously be shaped so as to facilitate "winding" the device, for example, with a domed profile (Fig. 12).
  • an insulating former or formers in which to run the "winding/s" may be used, shaped so as to fit over the core, which may not only aid routing of conductors during manufacture, but also provide electrical insulation (e.g. Fig. 13).
  • Such a former can be designed to provide the necessary creepage and clearance distances for safety and other isolation/insulation standards.
  • a number of such formers placed on top of each other may be used in the case of multiple layers.
  • the former described may be incorporated as part of the core itself although this is likely to be less satisfactory electromagnetically. In some cases it may be advantageous to place one or more winding/s directly on to the core or former, with conventional techniques, prior to attachment to the substrate, particularly where many electrical turns are involved.
  • a pattern of etched, plated or printed conductive tracks (in this case etched copper) is formed on a substrate material (e.g. alumina).
  • the thickness of the conductor material is typically 1.5 to 2 times the skin depth at the desired frequency (in this case 70 ⁇ m copper, equivalent to 1.5 skin depths at 2 MHz).
  • the secondary turns may all be connected inside the toroid by circular conductors (rings) as shown.
  • the outer of the three rings, labelled C may be printed, plated or etched on a different layer from ring B, possibly with vias (inter-layer connections) at points D.
  • sprayed or adhesive insulation may be used either over the whole substrate (except for connection pads) or just at the crossovers marked E (at which the conductive paths cross each other). Otherwise ring C may be formed by wire or ribbon bonds with or without insulation at the crossover points E.
  • One other option is to dispense with these rings altogether and to run multiple bond conductors from each paralleled radial conductor to appropriate bonding pads in the centre of the toroid (e.g. direct bond to rectifier diodes).
  • conductor ring/s may be used on paralleled conductors outside the toroid; this may be useful for bonding purposes where a preformed secondary winding is employed.
  • the size of the conductive pattern depends on the desired winding resistance, the dimensions of the core and the required minimum spacing (for electrical isolation) between primary and secondary conductors. (Currently for safety isolation from mains supply this must be greater than 400 ⁇ m).
  • a permeable soft magnetic core in this case a commercially available toroid of ferrite coated with insulation
  • the core may be adhesively attached (e.g. with thermally conductive adhesive) to the substrate to give mechanical strength and good heat transfer.
  • Means for completing the turns e.g.
  • ultrasonic, thermosonic, thermocompression wire or ribbon bonder or solder/silver soldering, resistance or laser welding equipment are then employed (in this case soldered copper wire is used).
  • foil or ribbon conductors are used the thickness is again typically 1.5 to 2 times skin depth.
  • the width of conductors depends on required resistance and minimum spacing.
  • conductor diameter is typically twice skin depth (overall diameter with enamel insulation being roughly 130 ⁇ m in this case). Note that in order to reduce resistance with circular wire, (Fig. 15(a)) multiple strands can be connected in parallel within a single turn to approximate to a wide foil or ribbon (Fig. 15(b)).
  • each turn should be a single wire with alternate primary and secondary turns; however this ofter becomes impractical because of minimum spacing requirements and the added complexity of a combination of series and parallel primary turns. In the present case the reduction of the peak mmf, driving leakage flux, to one twelfth of its usual value is sufficient to render proximity effect losses negligible).
  • a combination of the techniques of Figures 15(a) and 15(b) could be used.
  • the completed transformer (Fig. 16(a) now consists of 12 primary turns P all connected in series, with connections outside the toroid, and two secondary windings, S 1 , S 2 , each with 12 paralleled turns, interleaved with the primary, with a common centre tap connection C, terminated in the centre of the toroid to give optimum current sharing in each secondary turn.
  • Rectifier diodes (not shown) may be placed in the centre of the transformer so that the space is used and D.C. can be led out.
  • the planar transformer has six primary turns and one secondary turn. Hence the square of the primary to secondary turns ratio, which determines leakage inductance, is 36 as opposed to 144 for the present device. Nevertheless, at 1MHz, the leakage inductance of the present transformer is only twice that of the planar structure, showing a two-to-one improvement.
  • FIG. 20 Overall dimensional drawings of the two transformers are given (Fig. 20). These drawings indicate a footprint area of 1210 mm 2 and a volume of 11492 mm 3 for the planar part with the present device occupying 707 mm 2 (or 900 mm 2 if considering square area) and 5656 mm 3 (or 7200 mm 3 if considering cube volume). Furthermore, the area/volume in the centre of the present device (included in figures) can be used for other components (e.g. rectifier diodes). Both transformers are designed to operate at frequencies around 1 MHz with a power throughput of about 150 W. Taking the circuit of Fig. 21 with a secondary RMS voltage of 6V for a 5V output, assuming 0.
  • planar transformer has a core volume of 4920 mm 3 , the present core volume being 2140 mm 3 .
  • total core losses are 116 mW and 885 mW respectively.
  • Total winding losses (I 2 R) are 6.08 and 2. 56 W giving overall losses of 6.2 and 3.45 W respectively.
  • the present transformer is clearly more efficient in this application and, despite its smaller footprint, has a similar heat dissipation to footprint ratio (about 5 mW per mm 2 ).
  • a power transformer or coupled inductor employing interleaving of individual primary and secondary physical turns on one or more layers around a permeable or air core to give optimal coupling and minimal magnetic leakage, with the resultant virtual elimination of proximity effect losses.
  • the physical turns thereof are appropriately sized so as to eliminate skin effect losses.
  • Such a transformer or coupled inductor preferably employs a toroidal core on which the sum of the mutual magnetic couplings between any one physical turn, and all the other turns, is identical for each turn, leading to optimal current distribution in the windings.
  • the core is preferably shaped to facilitate 'winding', and preferably printed, etched, plated or otherwise formed conducting tracks on a substrate form part of the windings, the turns being completed by conducting wire or ribbon bonds (which may or may not be placed on an insulating former) or by conducting punched, etched or otherwise formed preforms or by printed, etched, plated or otherwise formed conductors on a shaped or flexible substrate.
  • conducting wire or ribbon bonds which may or may not be placed on an insulating former
  • conducting punched, etched or otherwise formed preforms or by printed, etched, plated or otherwise formed conductors on a shaped or flexible substrate Alternatively, part or all of each or any turn are formed by printed, etched, placed or otherwise devised conductors on the core itself.
  • a step-down transformer or coupled inductor embodying the invention may have a multi-turn primary (e.g. N turns in series) and a single turn secondary (e.g. N turns in parallel) with the secondary terminated (e. g. by rectifier diode/s) in the centre of the toroid to give optimal current sharing in the paralleled secondary turns.
  • multi-turn and multiple secondary windings can also be made, using series and parallel combinations of turns with minimized leakage flux and a.c. resistance. Non-optimal solutions also exist, which may be more suitable for practical implementation.
  • the primary is driven (e.g. by a switching device/s) in the centre of the core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Un transformateur ou un inducteur couplé, avec n'importe quel rapport de transformation arbitraire (par exemple non intégral), et éventuellement avec des enroulements secondaires multiples (S1, S2), comprend des enroulements primaires et secondaires entrelacés (P, S1, S2; P, S1, S2) sur la même couche d'enroulement, de préférence autour d'un noyau sans fer ou magnétiquement perméable. Ceci permet d'obtenir un couplage magnétique optimal, des champs de dispersion minimaux et des pertes par effet de proximité négligeables. Le rapport de transformation électrique est déterminé par des connexions en série ou parallèles, ou en série-parallèle combinées, des spires physiques de chaque enroulement.

Claims (18)

  1. Transformateur présentant un rapport de spires arbitraire dans lequel les spires physiques de primaire (P) et de secondaire (S) ne sont pas bifilaires et dans lequel les spires de primaire et de secondaire sont distribuées sur des parties d'un noyau du transformateur, caractérisé en ce que les spires physiques de primaire et de secondaire sont entrelacées sur la même couche d'enroulement, chaque dite partie du noyau contenant des spires provenant de tous les enroulements du transformateur de telle sorte que dans chaque partie, en utilisation, la force magnétomotrice qui pilote un flux de fuite soit minimisée.
  2. Inducteur couplé présentant un rapport de spires arbitraire, dans lequel les spires physiques de primaire et de secondaire ne sont pas bifilaires et sont entrelacées sur la même couche d'enroulement et dans lequel les spires de primaire (P) et de secondaire (S) sont distribuées sur des parties d'un noyau de l'inducteur, chaque partie contenant des spires provenant de tous les enroulements de l'inducteur de telle sorte que dans chaque partie, si l'inducteur devait être utilisé en tant que transformateur, la force magnétomotrice qui pilote un flux de fuite soit minimisée.
  3. Transformateur selon la revendication 1, dans lequel le noyau est toroïdal et les parties sont des secteurs équi-angulaires de celui-ci.
  4. Inducteur couplé selon la revendication 2, dans lequel le noyau est toroïdal et les parties sont des secteurs équi-angulaires de celui-ci.
  5. Transformateur ou inducteur couplé selon la revendication 1 ou 2, dans lequel le rapport de spires est non entier.
  6. Transformateur ou inducteur couplé selon la revendication 1 ou 2, dans lequel le rapport de spires est autre que l'unité.
  7. Transformateur ou inducteur couplé selon la revendication 1 ou 2, dans lequel les spires de primaire et de secondaire sont entrelacées autour d'un noyau magnétiquement perméable ou d'un noyau d'air.
  8. Transformateur ou inducteur couplé selon la revendication 1 ou 2, dans lequel chaque enroulement est constitué par des spires physiques d'un matériau conducteur autour d'un noyau et dans lequel le rapport des spires électriques est déterminé par des connexions de montage série, de montage parallèle ou de montage combinaison série-parallèle des spires physiques de chaque enroulement.
  9. Transformateur ou inducteur couplé selon la revendication 1 ou 2, dans lequel plus d'une telle couche de spires entrelacées sont prévues.
  10. Transformateur ou inducteur couplé selon la revendication 9, dans lequel les spires physiques de primaire et de secondaire sont entrelacées à la fois dans chacune des couches et également depuis une couche jusqu'à une couche superposée.
  11. Transformateur ou inducteur couplé selon la revendication 1, 2 ou 10, dans lequel une partie d'au moins une spire physique est constituée par un conducteur formé sur un matériau de substrat.
  12. Transformateur ou inducteur couplé selon la revendication 1, 2 ou 10, dans lequel au moins l'un des enroulements est terminé dans une région entourée par son noyau autour duquel les spires de primaire et de secondaire de ces enroulements sont entrelacées.
  13. Transformateur ou inducteur couplé selon l'une quelconque des revendications précédentes, comprenant en outre un composant ou des composants de circuit électronique supplémentaire(s) situé(s) dans une région entourée par un noyau du transformateur ou de l'inducteur couplé et dans lequel les enroulements incluant lesdites spires sont adaptés pour une connexion au composant de circuit ou à chaque composant de circuit.
  14. Procédé de fabrication d'un transformateur ou inducteur couplé selon la revendication 1, 2, 10 ou 13, incluant l'étape de formation d'une partie de chaque spire physique sur un matériau de substrat par impression, gravure ou placage d'un matériau conducteur.
  15. Procédé de fabrication d'un transformateur ou inducteur couplé selon la revendication 1, 2, 10 ou 13, incluant l'étape de formation d'une partie de chaque spire physique sur chacune d'un certain nombre de couches de substrat et de constitution de vias thermiquement conductrices (D, figure 14(a)) pour connecter les différentes couches.
  16. Procédé de fabrication d'un transformateur ou inducteur couplé selon la revendication 1, 2, 10 ou 13, incluant l'étape de formation d'une partie d'au moins une spire physique en tant que conducteur sur un noyau autour duquel les spires de primaire et de secondaire sont entrelacées.
  17. Procédé de fabrication d'un transformateur ou inducteur couplé selon la revendication 11, incluant l'étape de formation d'une partie de la spire physique en tant que boucle en un matériau conducteur sur le noyau, où ce matériau est lié à chaque extrémité au conducteur respectif qui est formé sur le substrat.
  18. Transformateur ou inducteur couplé selon la revendication 1, 2, 10 ou 13, dans lequel une pluralité des enroulements secondaires sont formés à partir de certaines correspondantes interconnectées de façon appropriée des spires physiques de secondaire entrelacées.
EP91916278A 1990-09-07 1991-09-04 Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement Expired - Lifetime EP0547120B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB909019571A GB9019571D0 (en) 1990-09-07 1990-09-07 Power transformers and coupled inductors with optimally interleaved windings
GB9019571 1990-09-07
PCT/GB1991/001505 WO1992004723A1 (fr) 1990-09-07 1991-09-04 Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement

Publications (2)

Publication Number Publication Date
EP0547120A1 EP0547120A1 (fr) 1993-06-23
EP0547120B1 true EP0547120B1 (fr) 1996-06-05

Family

ID=10681836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91916278A Expired - Lifetime EP0547120B1 (fr) 1990-09-07 1991-09-04 Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement

Country Status (5)

Country Link
US (1) US5543773A (fr)
EP (1) EP0547120B1 (fr)
DE (1) DE69120085T2 (fr)
GB (1) GB9019571D0 (fr)
WO (1) WO1992004723A1 (fr)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151179A (ja) * 1992-11-02 1994-05-31 Murata Mfg Co Ltd コイル
DE4242295A1 (de) * 1992-12-15 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Transformator
JPH06290972A (ja) * 1993-03-31 1994-10-18 Mitsubishi Electric Corp 金属プリント基板上で製作するリアクトル及びそのリアクトルを使用したインバータ装置
US5847947A (en) * 1998-01-29 1998-12-08 Industrial Technology Research Institute High voltage transformer
US6144276A (en) * 1998-04-02 2000-11-07 Motorola, Inc. Planar transformer having integrated cooling features
KR100530871B1 (ko) * 1998-08-14 2006-06-16 이해영 본딩와이어인덕터와그것을이용한본딩와이어인덕터배열구조,칩인덕터,커플러및변압기
DE19944741C2 (de) * 1999-09-17 2001-09-13 Siemens Ag Monolitisch integrierter Transformator
US6586309B1 (en) * 2000-04-24 2003-07-01 Chartered Semiconductor Manufacturing Ltd. High performance RF inductors and transformers using bonding technique
US6850144B1 (en) 2001-03-30 2005-02-01 Intel Corporation Coil for use on a substrate
US6577219B2 (en) 2001-06-29 2003-06-10 Koninklijke Philips Electronics N.V. Multiple-interleaved integrated circuit transformer
DE10157590A1 (de) * 2001-11-23 2003-06-05 Abb T & D Tech Ltd Wicklung für einen Transformator oder eine Spule
US8749054B2 (en) 2010-06-24 2014-06-10 L. Pierre de Rochemont Semiconductor carrier with vertical power FET module
US6870475B2 (en) * 2002-07-08 2005-03-22 Draeger Medical Systems Inc. Electrically isolated power and data coupling system suitable for portable and other equipment
US7009486B1 (en) * 2003-09-18 2006-03-07 Keithley Instruments, Inc. Low noise power transformer
US6998952B2 (en) * 2003-12-05 2006-02-14 Freescale Semiconductor, Inc. Inductive device including bond wires
DE102004025076B4 (de) * 2004-05-21 2006-04-20 Minebea Co., Ltd. Spulenanordnung und Verfahren zu deren Herstellung
US8902034B2 (en) 2004-06-17 2014-12-02 Grant A. MacLennan Phase change inductor cooling apparatus and method of use thereof
US8624702B2 (en) 2004-06-17 2014-01-07 Grant A. MacLennan Inductor mounting apparatus and method of use thereof
US8203411B2 (en) * 2004-06-17 2012-06-19 Maclennan Grant A Potted inductor apparatus and method of use thereof
US7973632B2 (en) 2004-06-17 2011-07-05 CTM Magnetics, Inc Methods and apparatus for electromagnetic component
US7973628B1 (en) 2004-06-17 2011-07-05 Ctm Magnetics, Inc. Methods and apparatus for electrical components
US8624696B2 (en) * 2004-06-17 2014-01-07 Grant A. MacLennan Inductor apparatus and method of manufacture thereof
US8830021B2 (en) 2004-06-17 2014-09-09 Ctm Magnetics, Inc. High voltage inductor filter apparatus and method of use thereof
US8519813B2 (en) * 2004-06-17 2013-08-27 Grant A. MacLennan Liquid cooled inductor apparatus and method of use thereof
US8009008B2 (en) 2004-06-17 2011-08-30 Ctm Magnetics, Inc. Inductor mounting, temperature control, and filtering method and apparatus
US8902035B2 (en) * 2004-06-17 2014-12-02 Grant A. MacLennan Medium / high voltage inductor apparatus and method of use thereof
US9257895B2 (en) 2004-06-17 2016-02-09 Grant A. MacLennan Distributed gap inductor filter apparatus and method of use thereof
US7471181B1 (en) * 2004-06-17 2008-12-30 Ctm Magnetics, Inc. Methods and apparatus for electromagnetic components
US8130069B1 (en) 2004-06-17 2012-03-06 Maclennan Grant A Distributed gap inductor apparatus and method of use thereof
US8373530B2 (en) 2004-06-17 2013-02-12 Grant A. MacLennan Power converter method and apparatus
US8089333B2 (en) * 2004-06-17 2012-01-03 Maclennan Grant A Inductor mount method and apparatus
CN101390253B (zh) 2004-10-01 2013-02-27 L.皮尔·德罗什蒙 陶瓷天线模块及其制造方法
US7426780B2 (en) * 2004-11-10 2008-09-23 Enpirion, Inc. Method of manufacturing a power module
US8947187B2 (en) 2005-06-17 2015-02-03 Grant A. MacLennan Inductor apparatus and method of manufacture thereof
US8350657B2 (en) 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
WO2007005642A2 (fr) 2005-06-30 2007-01-11 Derochemont L Pierre Composants electriques et leur procede de fabrication
US8701272B2 (en) 2005-10-05 2014-04-22 Enpirion, Inc. Method of forming a power module with a magnetic device having a conductive clip
US7688172B2 (en) * 2005-10-05 2010-03-30 Enpirion, Inc. Magnetic device having a conductive clip
US8631560B2 (en) 2005-10-05 2014-01-21 Enpirion, Inc. Method of forming a magnetic device having a conductive clip
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
US7524731B2 (en) * 2006-09-29 2009-04-28 Freescale Semiconductor, Inc. Process of forming an electronic device including an inductor
KR101240269B1 (ko) * 2006-10-18 2013-03-07 엘지전자 주식회사 키입력회로의 절연변압기
US7298238B1 (en) * 2006-12-15 2007-11-20 The United States Of America As Represented By The Secretary Of The Navy Programmable microtransformer
US7675365B2 (en) * 2007-01-10 2010-03-09 Samsung Electro-Mechanics Systems and methods for power amplifiers with voltage boosting multi-primary transformers
US7821374B2 (en) * 2007-01-11 2010-10-26 Keyeye Communications Wideband planar transformer
WO2009008740A1 (fr) * 2007-07-09 2009-01-15 Power Concepts Nz Limited Transformateur
US8816808B2 (en) 2007-08-22 2014-08-26 Grant A. MacLennan Method and apparatus for cooling an annular inductor
US8125777B1 (en) * 2008-07-03 2012-02-28 Ctm Magnetics, Inc. Methods and apparatus for electrical components
US7920042B2 (en) 2007-09-10 2011-04-05 Enpirion, Inc. Micromagnetic device and method of forming the same
TW200929277A (en) * 2007-12-19 2009-07-01 Delta Electronics Inc Composite inductor
US7576607B2 (en) * 2008-01-03 2009-08-18 Samsung Electro-Mechanics Multi-segment primary and multi-turn secondary transformer for power amplifier systems
US7812701B2 (en) 2008-01-08 2010-10-12 Samsung Electro-Mechanics Compact multiple transformers
US8044759B2 (en) * 2008-01-08 2011-10-25 Samsung Electro-Mechanics Overlapping compact multiple transformers
US20090201115A1 (en) * 2008-02-13 2009-08-13 Sajol Ghoshal Inductance element in an integrated circuit package
JP2009260080A (ja) * 2008-04-17 2009-11-05 Fujitsu Ltd インダクタ装置
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8266793B2 (en) * 2008-10-02 2012-09-18 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US8339802B2 (en) 2008-10-02 2012-12-25 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US9054086B2 (en) 2008-10-02 2015-06-09 Enpirion, Inc. Module having a stacked passive element and method of forming the same
US20100253459A1 (en) * 2009-04-03 2010-10-07 Zimmerman Alan W Inductor Having Separate Wire Segments
TWM366158U (en) * 2009-04-14 2009-10-01 Domintech Co Ltd Miniature inductance
EP2242067B1 (fr) 2009-04-16 2013-01-23 SEPS Technologies AB Transformateur
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
WO2011106455A1 (fr) * 2010-02-23 2011-09-01 Pulse Electronics Corporation Fil tressé, dispositifs inductifs et procédés de fabrication
US8125276B2 (en) * 2010-03-12 2012-02-28 Samsung Electro-Mechanics Sharing of inductor interstage matching in parallel amplification system for wireless communication systems
US8552708B2 (en) 2010-06-02 2013-10-08 L. Pierre de Rochemont Monolithic DC/DC power management module with surface FET
US9023493B2 (en) 2010-07-13 2015-05-05 L. Pierre de Rochemont Chemically complex ablative max-phase material and method of manufacture
CN109148425B (zh) 2010-08-23 2022-10-04 L·皮尔·德罗什蒙 具有谐振晶体管栅极的功率场效应晶体管
EP2636069B1 (fr) 2010-11-03 2021-07-07 L. Pierre De Rochemont Porte-puces à semi-conducteurs présentant des dispositifs à points quantiques intégrés de manière monolithique, et leur procédé de fabrication
US9136054B1 (en) 2010-11-22 2015-09-15 Universal Lighting Technologies, Inc. Reduced leakage inductance transformer and winding methods
US20130027170A1 (en) * 2011-06-30 2013-01-31 Analog Devices, Inc. Isolated power converter with magnetics on chip
DE102011086403A1 (de) * 2011-11-15 2013-05-16 Würth Elektronik eiSos Gmbh & Co. KG Induktionsbauteil
CN103578706B (zh) * 2012-08-07 2016-02-10 伊顿公司 一种通过电感绕组实现分流测量的功率电感装置和方法
US9871448B2 (en) 2012-12-31 2018-01-16 Nvidia Corporation Super N-phase switching mode power supply
US20140203902A1 (en) * 2013-01-18 2014-07-24 Geoffrey D. Shippee Cards, devices, electromagnetic field generators and methods of manufacturing electromagnetic field generators
FR3002034B1 (fr) * 2013-02-12 2015-03-20 Continental Automotive France Capteur de position inductif
US9831198B2 (en) * 2013-08-22 2017-11-28 Nvidia Corporation Inductors for integrated voltage regulators
US9306776B2 (en) 2013-09-10 2016-04-05 Nvidia Corporation Filtering high speed signals
EP2991085B1 (fr) * 2014-08-28 2020-08-26 Ampleon Netherlands B.V. Transformateur
US9539435B2 (en) 2014-09-08 2017-01-10 Medtronic, Inc. Transthoracic protection circuit for implantable medical devices
US9579517B2 (en) 2014-09-08 2017-02-28 Medtronic, Inc. Transformer-based charging circuits for implantable medical devices
US9861828B2 (en) 2014-09-08 2018-01-09 Medtronic, Inc. Monitoring multi-cell power source of an implantable medical device
US9861827B2 (en) 2014-09-08 2018-01-09 Medtronic, Inc. Implantable medical devices having multi-cell power sources
US9643025B2 (en) 2014-09-08 2017-05-09 Medtronic, Inc. Multi-primary transformer charging circuits for implantable medical devices
US9604071B2 (en) 2014-09-08 2017-03-28 Medtronic, Inc. Implantable medical devices having multi-cell power sources
US9724528B2 (en) 2014-09-08 2017-08-08 Medtronic, Inc. Multiple transformer charging circuits for implantable medical devices
TWI544668B (zh) * 2015-04-07 2016-08-01 矽品精密工業股份有限公司 電子裝置
US10056184B2 (en) 2015-10-20 2018-08-21 Madison Daily Segmented core cap system for toroidal transformers
WO2017123525A1 (fr) 2016-01-13 2017-07-20 Bigfoot Biomedical, Inc. Interface utilisateur pour système de gestion du diabète
CN113101448B (zh) 2016-01-14 2024-01-23 比格福特生物医药公司 调整胰岛素输送速率的系统
WO2017141838A1 (fr) * 2016-02-15 2017-08-24 株式会社村田製作所 Partie bobine et procédé de fabrication de partie bobine
CN107134358A (zh) * 2016-02-26 2017-09-05 艾默生网络能源有限公司 一种电感绕制方法及装置
JP6583542B2 (ja) * 2016-04-01 2019-10-02 株式会社村田製作所 コモンモードチョークコイル
EP3497706B1 (fr) 2016-11-08 2020-02-12 Koninklijke Philips N.V. Inducteur pour haute fréquence et applications de grande puissance
WO2018132765A1 (fr) 2017-01-13 2018-07-19 Mazlish Bryan Procédés, systèmes et dispositifs d'administration d'insuline
MX2017004361A (es) 2017-04-03 2018-11-09 Prolec Ge Int S De R L De C V Arreglo de devanados secundarios intercalados para transformadores monofásicos.
USD874471S1 (en) 2017-06-08 2020-02-04 Insulet Corporation Display screen with a graphical user interface
WO2019158967A1 (fr) * 2018-02-14 2019-08-22 Hinde Matthew Ainsley Dispositif et procédé d'amplification de puissance
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
CN110415945A (zh) * 2018-04-29 2019-11-05 深南电路股份有限公司 变压器及其制作方法和电磁器件
CN110415944A (zh) * 2018-04-29 2019-11-05 深南电路股份有限公司 变压器及其制作方法和电磁器件
US11804456B2 (en) * 2018-08-21 2023-10-31 Intel Corporation Wirebond and leadframe magnetic inductors
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface
US20220093314A1 (en) * 2020-09-18 2022-03-24 Intel Corporation Package embedded magnetic power transformers for smps

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263191A (en) * 1964-06-30 1966-07-26 Edward N Arvonio Broad band toroid r.f. transformer
US4103267A (en) * 1977-06-13 1978-07-25 Burr-Brown Research Corporation Hybrid transformer device
US4258467A (en) * 1979-08-06 1981-03-31 Rca Corporation Method of making transformer
DE3129381A1 (de) * 1981-07-25 1983-02-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Schaltnetzteil-transformator, insbesondere fuer einen fernsehempfaenger
US4577175A (en) * 1982-09-13 1986-03-18 Marelco Power Systems Transformer with fluid cooled windings
US4536733A (en) * 1982-09-30 1985-08-20 Sperry Corporation High frequency inverter transformer for power supplies
FR2556493B1 (fr) * 1983-12-09 1987-05-29 Inf Milit Spatiale Aeronaut Bobinage electromagnetique et transformateur comportant un tel bobinage
JPS6261305A (ja) * 1985-09-11 1987-03-18 Murata Mfg Co Ltd 積層チツプコイル
US5039964A (en) * 1989-02-16 1991-08-13 Takeshi Ikeda Inductance and capacitance noise filter
JPH02118314U (fr) * 1989-03-09 1990-09-21
US5257000A (en) * 1992-02-14 1993-10-26 At&T Bell Laboratories Circuit elements dependent on core inductance and fabrication thereof
US5331536A (en) * 1992-11-05 1994-07-19 Opt Industries, Inc. Low leakage high current transformer

Also Published As

Publication number Publication date
EP0547120A1 (fr) 1993-06-23
US5543773A (en) 1996-08-06
WO1992004723A1 (fr) 1992-03-19
DE69120085D1 (de) 1996-07-11
GB9019571D0 (en) 1990-10-24
DE69120085T2 (de) 1997-02-06

Similar Documents

Publication Publication Date Title
EP0547120B1 (fr) Transfomateurs de puissance et inducteurs couples avec entrelacement optimal d'enroulement
US6087922A (en) Folded foil transformer construction
CA2150953C (fr) Enroulement souple de transformateur, adapte surtout au fonctionnement a haute tension
US3483499A (en) Inductive device
KR101248499B1 (ko) 평면 코일
EP1547100B1 (fr) Dispositifs electroniques de type transformateur/inducteur et leurs procedes de production
JP2001085248A (ja) トランス
GB2083952A (en) Microcoil Assembly
JPH09213530A (ja) 平面トランス
US6606022B1 (en) Planar transformer winding
US6369680B1 (en) Transformer
EP3457416A1 (fr) Dispositif d'induction électromagnétique et son procédé de fabrication
US20030234436A1 (en) Semiconductor device with a spiral inductor and magnetic material
JPH1116751A (ja) トランス
JPH0653055A (ja) 導電体と導電ランで構成された電磁巻線
JPH03126204A (ja) 高周波コイル
US20190180922A1 (en) Egg-shaped continuous coils for inductive components
JPH1022139A (ja) 平面トランス
EP0352924A2 (fr) Dispositif inductif
KR100260845B1 (ko) 플라이백 트랜스포머의 코일구조
WO1996017360A1 (fr) Transformateur d'impulsions de forme plane
JPH07135117A (ja) 薄形トランス,電源装置あるいは情報処理装置
JPH08306540A (ja) プレーナ空芯トランス
Holmes et al. Flat Transformers for Low Voltage, High Current, High Frequency Power Converters
CN116721846A (zh) 一种基于ic载板的片上功率变压器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19940309

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69120085

Country of ref document: DE

Date of ref document: 19960711

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

ET Fr: translation filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990901

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990906

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990909

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050904