EP0546947A1 - Indirect plate-type heat exchanger - Google Patents
Indirect plate-type heat exchanger Download PDFInfo
- Publication number
- EP0546947A1 EP0546947A1 EP92403363A EP92403363A EP0546947A1 EP 0546947 A1 EP0546947 A1 EP 0546947A1 EP 92403363 A EP92403363 A EP 92403363A EP 92403363 A EP92403363 A EP 92403363A EP 0546947 A1 EP0546947 A1 EP 0546947A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- passages
- heat exchanger
- liquid
- annex
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04884—Arrangement of reboiler-condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04624—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
- F25J5/005—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
- F25J5/007—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
- F28D9/0068—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
- F28F9/0268—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/04—Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/32—Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0033—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/108—Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
Definitions
- the present invention relates to indirect plate heat exchangers, that is to say of the type comprising a series of parallel plates delimiting between them passages of generally flat shape containing spacer waves, a first set of these passages, constituting heat exchange passages, comprising means for entering / leaving fluids intended to exchange heat with one another.
- heat exchangers are particularly rational to build. Indeed, it suffices to stack all their elements (plates, waves serving as spacers and fins, bars for closing the passages) and to connect them to one another in a single operation by brazing in an oven.
- the invention aims to reduce the boiler work associated with the implementation of plate heat exchangers.
- the subject of the invention is an indirect heat exchanger of the aforementioned type, characterized in that it comprises, over at least part of its length and width, additional passages, in reduced or almost zero heat exchange relationship with the heat exchange passages and arranged to fulfill at least one additional function of the heat exchanger, in particular a liquid storage and / or liquid recirculation function and / or liquid / vapor separation.
- the heat exchanger shown in Figures 1 to 4 is a liquid vaporizer, of the thermosyphon type. It will be described in its application as the main evaporator-condenser of a double air distillation column, bringing the nitrogen gas at the top of the medium pressure column into heat exchange relationship, at about 6 bar absolute, and liquid oxygen from the low pressure column tank, at around 1 bar absolute, in order to vaporize the oxygen by condensing the nitrogen.
- the exchanger 1 comprises a parallelepipedic body 2 of aluminum, assembled in a single operation by brazing in the furnace, three semi-cylindrical boxes 3 to 5 for inlet / outlet of fluids, and an upper dome 6, the elements 3 to 6 being attached to watertight seal on body 2 by welding.
- the body 2 consists of a large number of parallel vertical plates 7 between which are delimited passages 8 of generally flat shape containing spacer waves 9 with vertical generatrices. These passages are delimited by closing bars 10 indicated by strong lines in FIGS. 2 to 4.
- the vertical dimension of the body 2 will be called “length”, “thickness” its horizontal dimension perpendicular to the plates 7, and “width” its horizontal dimension parallel to these plates.
- the body 2 is made up of two juxtaposed parts: on the left in FIG. 1, a part 2A for heat exchange, and on the right an annex part 2B ensuring the additional functions of liquid recirculation, liquid / vapor separation, storage liquid and uniform liquid supply from part 2A.
- the passages 8B of part 2B, shown in FIG. 4 have the same constitution as the oxygen vaporization passages 8A-2, their lower windows 17B also communicating with the box 5. However, their vertical waves 9B are less dense that the waves 9A-1 of the passages 8A-1 and that the waves 9A-2 of the passages 8A-2, by virtue of a greater wave pitch, and / or their thickness is greater than that of the passages 8A-1 than that of the passages 8A-2.
- box 5 extends over the entire thickness of the body of the exchanger, that is to say covers its two parts 2A and 2B, while the boxes 3 and 4 only extend over that of part 2A.
- the dome 6 is connected all along the four sides of the upper base of the parallelepiped formed by the body 2. It is provided with a pipe 19 for supplying liquid oxygen and a pipe 20 for discharging gaseous oxygen which leaves from its summit.
- the nitrogen gas is condensed under approximately 6 bar absolute down into passages 8A-1, and passages 8A-2 and 8B are filled with liquid oxygen under approximately 1 bar absolute, up to a level situated in dome 6, as seen in Figure 1.
- the passages 8B therefore ensure the recirculation of the excess liquid oxygen, the separation of the two phases of the oxygen, and a storage of liquid oxygen making it possible to feed smoothly and in a manner uniform liquid oxygen vaporization passages 8A-2.
- passages 8B In most passages 8B, the downward circulation of liquid oxygen is not hampered by any vaporization phenomenon, since these passages are not in heat exchange relationship with the nitrogen passages. The situation is slightly different for passage 8B adjacent to part 2A of body 2, but the heat exchange is reduced there considerably on the one hand by the proximity of passage 8A-2, on the other hand by the greater thickness of the passages 8B and / or by the lower density of the wave 9B, leading to a reduced fin effect.
- Figure 5 differs from that which has just been described only in that the part 2B of the body 2 is divided into two sub-parts 2B-1 and 2B-2 surrounding the heat exchange part 2A. This shows that the auxiliary passages 8B can be distributed in different ways. However, the arrangement of FIG. 1 is currently preferred, where the heating of the passages 8B is minimal.
- the embodiment of the heat exchanger shown in FIGS. 6 to 8 differs essentially from the previous one in that the parts 2A and 2B of the body 2 are no longer distributed according to the thickness of the exchanger, but according to its width, that is to say that part of each passage 8 is used for heat exchange and the rest for additional functions.
- one passage in two consists, over most of its width (FIG. 7), of a nitrogen condensation passage 8A-1 having the constitution described above with regard to FIG. 2, and, on the rest of its length, of an annex passage 8B-1 open at the top and bottom and containing a simple vertical wave 9B, the passages 8A-1 and 8B-1 being sealed over the entire length of the body 2 by a vertical bar 10.
- the other passages consist ( Figure 8) of an oxygen vaporization passage 8A-2 open at its two ends, of the same width as the passages 8A-1 and located opposite these, this passage 8A-2 containing a simple vertical wave, and an annex passage 8B-2 similar to passages 8B-1, with the interposition of a vertical bar 10 between passages 8A-2 and 8B-2.
- the box 5 of FIG. 1, intended for the supply of liquid oxygen to the passages 8A-2, is eliminated and replaced by a lower dome 21 connected to a watertight seal at the four lower sides of the body 2.
- the passages 8A-2 are supplied with liquid oxygen directly from below.
- each passage 8B-1 has at its base an outlet window 17B-1 and an oblique wave 18B as in Figures 1 to 4
- each of the passages 8B-2 has at its base an inlet window 17B-2.
- the box 5 of Figures 2 to 4 covers all the windows 17B-1 and 17B-2.
- the lower part of passages 8B-2 comprises a wave 23 with horizontal generators, for example, as shown, of the "serrated" type, that is to say comprising at intervals regular punctures decaved vertically by a quarter of a wave.
- the vertical bars 10 may only be provided between the passages 8A-1 and 8B-1, no partition separating the passages 8A-2 and 8B-2, which comprise only one non-perforated vertical common wave and, in their lower part, a horizontal wave 24 of triangular shape which extends over the entire width of the exchanger.
- the liquid oxygen in one passage out of two, the liquid oxygen follows a downward path in the zone 8B-2, horizontal along the wave 24 then ascending in the zone 8A-2.
- the liquid oxygen is in an indirect heat exchange relationship with the nitrogen which condenses in the passages 8A-1, and the passages 8B-1 are dead zones, which can be opened upwards. and therefore filled with liquid oxygen, as shown, or alternatively, closed at both ends.
- Figure 15 shows schematically an application of a plate heat exchanger serving as a dephlegmator, for example to produce nitrogen.
- the air introduced at approximately 6 bar absolute, is partially condensed upward, as illustrated by the arrows 25, which produces at the bottom of these passages "rich liquid” (air enriched in oxygen) LR and, at the top of the same passages, nitrogen gas NG.
- the rich liquid is expanded to 1 bar absolute in an expansion valve 26, which produces a flash.
- the upper part of the aforementioned passages is used to separate the two phases, which are then recombined in the remaining passages, where the low-pressure two-phase refrigerant rich liquid circulates from top to bottom and is then discharged in the form of a vaporized rich liquid. LRV.
- the remaining passages 60 have, from top to bottom, a vaporized rich liquid entry zone communicating with a side entry window. 52 and containing an oblique wave 53, a zone containing a vertical wave 54, a zone without wave, of low height, into which the holes emerge 43, a heat exchange zone with vertical wave 55, and a liquid outlet zone rich vaporized containing an oblique wave 56 which leads to an outlet window 57.
- the box 51 also communicates with the windows 52, and an outlet box 58 communicates with the windows 57.
- phase separation zone 42 it is possible to use the phase separation zone 42 to return the separated vapor phase, via the box 51 and the passages containing the wave 54, to a different level of the exchanger, for example at its end. lower.
- the vapor phase is released laterally at said level, taken up by an outlet box and sent by the latter in other passages of the exchanger.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
La présente invention est relative aux échangeurs de chaleur indirects à plaques, c'est-à-dire du type comprenant une série de plaques parallèles délimitant entre elles des passages de forme générale plate contenant des ondes-entretoises, un premier ensemble de ces passages, constituant des passages d'échange thermique, comportant des moyens d'entrée/sortie de fluides destinés à échanger entre eux de la chaleur.The present invention relates to indirect plate heat exchangers, that is to say of the type comprising a series of parallel plates delimiting between them passages of generally flat shape containing spacer waves, a first set of these passages, constituting heat exchange passages, comprising means for entering / leaving fluids intended to exchange heat with one another.
Ces échangeurs de chaleur sont particulièrement rationnels à construire. En effet, il suffit d'empiler tous leurs éléments (plaques, ondes servant d'entretoises et d'ailettes, barrettes de fermeture des passages) et de les relier les uns aux autres en une seule opération par brasage dans un four.These heat exchangers are particularly rational to build. Indeed, it suffices to stack all their elements (plates, waves serving as spacers and fins, bars for closing the passages) and to connect them to one another in a single operation by brazing in an oven.
Cependant, cet avantage est en pratique partiellement perdu par la nécessité de raccorder à l'échangeur de nombreux accessoires, tels que des tuyauteries ou des séparateurs de phases, assurant les fonctions auxiliaires de l'échangeur : recirculation du liquide, stabilisation de l'alimentation en liquide, séparation des phases des fluides diphasiques, etc. De plus, dans de nombreux cas, il est nécessaire de positionner l'échangeur dans une enceinte de rétention de liquide telle que la cuve d'une colonne de distillation. Toutes ces opérations constituent des travaux de chaudronnerie, moins performants que le brasage au four.However, this advantage is in practice partially lost by the need to connect to the exchanger many accessories, such as pipes or phase separators, ensuring the auxiliary functions of the exchanger: recirculation of the liquid, stabilization of the supply. in liquid, phase separation of two-phase fluids, etc. In addition, in many cases, it is necessary to position the exchanger in a liquid retention enclosure such as the tank of a distillation column. All these operations constitute sheet metal work, less efficient than brazing in the oven.
L'invention a pour but de réduire le travail de chaudronnerie associé à la mise en oeuvre des échangeurs de chaleur à plaques.The invention aims to reduce the boiler work associated with the implementation of plate heat exchangers.
A cet effet, l'invention a pour objet un échangeur de chaleur indirect du type précité, caractérisé en ce qu'il comprend, sur au moins une partie de sa longueur et de sa largeur, des passages annexes, en relation d'échange thermique réduite ou à peu près nulle avec les passages d'échange thermique et agencés pour remplir au moins une fonction annexe de l'échangeur de chaleur, notamment une fonction de stockage de liquide et/ou de recirculation de liquide et/ou de séparation liquide/vapeur.To this end, the subject of the invention is an indirect heat exchanger of the aforementioned type, characterized in that it comprises, over at least part of its length and width, additional passages, in reduced or almost zero heat exchange relationship with the heat exchange passages and arranged to fulfill at least one additional function of the heat exchanger, in particular a liquid storage and / or liquid recirculation function and / or liquid / vapor separation.
Suivant d'autres caractéristiques :
- les passages annexes sont plus épais que les passages d'échange thermique;
- les passages annexes contiennent des ondes moins denses que celles des passages d'échange thermique;
- tous les passages annexes sont adjacents les uns aux autres;
- les passages annexes sont distincts des passages d'échange thermique et, de même que ces derniers, s'étendent chacun sur toute la longueur et sur toute la largeur de l'échangeur;
- au moins certains passages de l'échangeur constituent sur une partie de la largeur de celui-ci un passage d'échange thermique et sur le reste de sa largeur un passage annexe;
- au moins certains passages de l'échangeur constituent sur une partie de la longueur de celui-ci un passage d'échange thermique et sur le reste de sa longueur un passage annexe;
- les passages annexes comprenant des passages de séparation liquide/vapeur, ces passages de séparation contiennent un garnissage de séparation liquide/vapeur disposé en regard d'une fenêtre d'entrée de fluide diphasique;
- le garnissage est constitué par une onde "serrated" à génératrices obliques;
- les passages de séparation liquide/vapeur comportent à leur extrémité supérieure une fenêtre de sortie de vapeur coiffée par une boîte de sortie, cette dernière communiquant avec des passages de renvoi de vapeur à un niveau différent de l'échangeur.
- the annex passages are thicker than the heat exchange passages;
- the annex passages contain less dense waves than those of the heat exchange passages;
- all the annex passages are adjacent to each other;
- the annex passages are separate from the heat exchange passages and, like the latter, each extend over the entire length and over the entire width of the exchanger;
- at least certain passages of the exchanger constitute over a part of the width thereof a heat exchange passage and over the rest of its width an annex passage;
- at least certain passages of the exchanger constitute over a part of the length thereof a heat exchange passage and over the rest of its length an annex passage;
- the annex passages comprising liquid / vapor separation passages, these separation passages contain a liquid / vapor separation lining disposed opposite a two-phase fluid inlet window;
- the lining consists of a "serrated" wave with oblique generatrices;
- the liquid / vapor separation passages have at their upper end a vapor outlet window capped by an outlet box, this last communicating with steam return passages at a different level from the exchanger.
Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
- la Figure 1 représente en perspective, avec arrachements, un échangeur de chaleur conforme à l'invention;
- les Figures 2 à 4 représentent respectivement, en coupe verticale, les trois types de passages de cet échangeur;
- la Figure 5 illustre schématiquement une variante du même échangeur;
- la Figure 6 est une vue analogue à la Figure 1 d'un deuxième mode de réalisation de l'échangeur de chaleur suivant l'invention;
- les Figures 7 et 8 représentent respectivement, en coupe verticale, les deux types de passages de cet échangeur;
- les Figures 9 et 10 sont des vues analogues respectivement aux Figures 7 et 8 d'une variante de l'échangeur de chaleur de la Figure 6;
- les Figures 11 et 12 sont des vues analogues respectivement aux Figures 7 et 8 d'une autre variante de l'échangeur de chaleur de la Figure 6;
- les Figures 13 et 14 sont des vues analogues respectivement aux Figures 7 et 8 d'encore une autre variante de l'échangeur de chaleur de la Figure 6;
- la Figure 15 illustre schématiquement une application d'un troisième mode de réalisation de l'échangeur de chaleur suivant l'invention;
- la Figure 16 est une vue analogue à la Figure 1 de ce troisième mode de réalisation; et
- les Figures 17 et 18 représentent respectivement, en coupe verticale, les deux types de passages de l'échangeur de la Figure 16.
- Figure 1 shows in perspective, with cutaway, a heat exchanger according to the invention;
- Figures 2 to 4 show respectively, in vertical section, the three types of passages of this exchanger;
- Figure 5 schematically illustrates a variant of the same exchanger;
- Figure 6 is a view similar to Figure 1 of a second embodiment of the heat exchanger according to the invention;
- Figures 7 and 8 show respectively, in vertical section, the two types of passages of this exchanger;
- Figures 9 and 10 are views similar to Figures 7 and 8 respectively of a variant of the heat exchanger of Figure 6;
- Figures 11 and 12 are views similar to Figures 7 and 8 respectively of another variant of the heat exchanger of Figure 6;
- Figures 13 and 14 are views similar to Figures 7 and 8 respectively of yet another variant of the heat exchanger of Figure 6;
- Figure 15 schematically illustrates an application of a third embodiment of the heat exchanger according to the invention;
- Figure 16 is a view similar to Figure 1 of this third embodiment; and
- Figures 17 and 18 show respectively, in vertical section, the two types of passages of the exchanger of Figure 16.
L'échangeur de chaleur représenté aux Figures 1 à 4 est un vaporiseur de liquide, du type à thermosiphon. On le décrira dans son application en tant que vaporiseur-condenseur principal d'une double colonne de distillation d'air, mettant en relation d'échange thermique l'azote gazeux de tête de la colonne moyenne pression, sous environ 6 bars absolus, et l'oxygène liquide de cuve de la colonne basse pression, sous environ 1 bar absolu, afin de vaporiser l'oxygène en condensant l'azote.The heat exchanger shown in Figures 1 to 4 is a liquid vaporizer, of the thermosyphon type. It will be described in its application as the main evaporator-condenser of a double air distillation column, bringing the nitrogen gas at the top of the medium pressure column into heat exchange relationship, at about 6 bar absolute, and liquid oxygen from the low pressure column tank, at around 1 bar absolute, in order to vaporize the oxygen by condensing the nitrogen.
L'échangeur 1 comprend un corps parallélépipédique 2 en aluminium, assemblé en une seule opération par brasage au four, trois boîtes semi-cylindriques 3 à 5 d'entrée/sortie de fluides, et un dôme supérieur 6, les éléments 3 à 6 étant fixés à joint étanche sur le corps 2 par soudage.The exchanger 1 comprises a
Le corps 2 est constitué d'un grand nombre de plaques verticales parallèles 7 entre lesquelles sont délimités des passages 8 de forme générale plate contenant des ondes-entretoises 9 à génératrices verticales. Ces passages sont délimités par des barrettes de fermeture 10 indiquées par des traits forts sur les Figures 2 à 4. Dans ce qui suit, on appellera "longueur" la dimension verticale du corps 2, "épaisseur" sa dimension horizontale perpendiculaire aux plaques 7, et "largeur" sa dimension horizontale parallèle à ces plaques.The
Le corps 2 est constitué de deux parties juxtaposées : à gauche sur la Figure 1, une partie 2A d'échange de chaleur, et à droite une partie annexe 2B assurant les fonctions annexes de recirculation de liquide, de séparation liquide/vapeur, de stockage de liquide et d'alimentation uniforme en liquide de la partie 2A.The
Les passages 8A de la partie 2A sont alternativement de deux types différents, représentés respectivement sur les Figures 2 et 3 :
- (1) des
passages 8A-1 de condensation d'azote, fermés sur toute leur largeur en haut et en bas, qui comportent latéralement à leur extrémité supérieure unefenêtre 11 d'entrée d'azote gazeux et, en regard de celle-ci, une onde oblique 12 de répartition de cet azote gazeux sur toute la largeur du passage. Laboîte 3 précitée recouvre toutes lesfenêtres 11 et est alimentée en azote gazeux par une conduite d'alimentation 13. Lespassages 8A-1 comportent latéralement, du même côté et à leur extrémité inférieure, unefenêtre 14 de sortie d'azote liquide et, en regard de celle-ci, une onde oblique 15 de collection de cet azote liquide débouchant sur lafenêtre 14. Laboîte 4 précitée recouvre toutes lesfenêtres 14 pour collecter l'azote liquide sortant de celles-ci et l'évacuer via uneconduite 16. - (2) Des
passages 8A-2 de vaporisation d'oxygène, fermés sur toute leur largeur en bas mais ouverts sur toute leur largeur en haut, qui comportent latéralement à leur extrémité inférieure unefenêtre 17A d'entrée d'oxygène liquide, et en regard de celle-ci, une onde oblique 18A de répartition de cet oxygène liquide sur toute la largeur du passage. Laboîte 5 précitée recouvre toutes lesfenêtres 17A.
- (1)
nitrogen condensation passages 8A-1, closed over their entire width at the top and bottom, which laterally have at their upper end awindow 11 for the entry of nitrogen gas and, opposite it , anoblique wave 12 for distributing this gaseous nitrogen over the entire width of the passage. Theaforementioned box 3 covers all thewindows 11 and is supplied with gaseous nitrogen by asupply line 13. Thepassages 8A-1 have laterally, on the same side and at their lower end, awindow 14 for exit of liquid nitrogen and , opposite this, anoblique wave 15 of collection of this liquid nitrogen opening onto thewindow 14. The above-mentionedbox 4 covers all thewindows 14 to collect the liquid nitrogen leaving them and evacuate it via a driving 16. - (2)
Oxygen vaporization passages 8A-2, closed over their entire width at the bottom but open over their entire width at the top, which laterally have at their lower end awindow 17A for the entry of liquid oxygen, and look of it, anoblique wave 18A of distribution of this liquid oxygen over the entire width of the passage. Theaforementioned box 5 covers all thewindows 17A.
Les passages 8B de la partie 2B, représentés sur la Figure 4, ont la même constitution que les passages de vaporisation d'oxygène 8A-2, leurs fenêtres inférieures 17B communiquant également avec la boîte 5. Toutefois, leurs ondes verticales 9B sont moins denses que les ondes 9A-1 des passages 8A-1 et que les ondes 9A-2 des passages 8A-2, grâce à un pas d'onde supérieur, et/ou leur épaisseur est supérieure à celle des passages 8A-1 à celle des passages 8A-2.The
Il résulte de la description ci-dessus que la boîte 5 s'étend sur toute l'épaisseur du corps de l'échangeur, c'est-à-dire recouvre ses deux parties 2A et 2B, tandis que les boîtes 3 et 4 ne s'étendent que sur celle de la partie 2A.It follows from the above description that the
Le dôme 6 se raccorde tout le long des quatre côtés de la base supérieure du parallélépipède formé par le corps 2. Il est muni d'une conduite 19 d'alimentation en oxygène liquide et d'une conduite 20 d'évacuation d'oxygène gazeux qui part de son sommet.The
En fonctionnement, l'azote gazeux est condensé sous environ 6 bars absolus en descendant dans les passages 8A-1, et les passages 8A-2 et 8B sont emplis d'oxygène liquide sous environ 1 bar absolu, jusqu'à un niveau situé dans le dôme 6, comme on le voit sur la Figure 1.In operation, the nitrogen gas is condensed under approximately 6 bar absolute down into
La chaleur de condensation de l'azote met en ébullition l'oxygène liquide contenu dans les passages 8A-1, ce qui provoque une circulation ascendante de l'oxygène liquide dans ces passages par effet de thermosiphon. Des bulles d'oxygène gazeux se forment progressivement de bas en haut des mêmes passages, de sorte que c'est un mélange diphasique qui déborde à l'extrémité supérieure de ces passages.The heat of condensation of nitrogen boils the liquid oxygen contained in the
L'oxygène liquide ne pouvant descendre ni dans les passages 8A-2, où règne une circulation ascendante, ni dans les passages 8A-1, fermés en haut, descend dans les passages 8B et, à l'extrémité inférieure de ceux-ci, pénètre dans la boîte 5, via leurs fenêtres latérales 17B (Figure 4). Cet oxygène liquide coule ensuite le long de la boîte 5 jusqu'aux fenêtres 17A d'entrée des passages 8A-2 (Figure 3), de sorte que ceux-ci sont alimentés en oxygène liquide.Liquid oxygen which cannot descend either in
Les passages 8B assurent donc la recirculation de l'oxygène liquide en excès, la séparation des deux phases de l'oxygène, et un stockage d'oxygène liquide permettant d'alimenter sans à-coup et de manière uniforme en oxygène liquide les passages de vaporisation 8A-2.The
Dans la plupart des passages 8B, la circulation descendante de l'oxygène liquide n'est entravée par aucun phénomène de vaporisation, puisque ces passages ne sont pas en relation d'échange thermique avec les passages d'azote. La situation est un peu différente pour le passage 8B adjacent à la partie 2A du corps 2, mais l'échange thermique y est réduit de façon importante d'une part par la proximité d'un passage 8A-2, d'autre part par la plus grande épaisseur des passages 8B et/ou par la moindre densité de l'onde 9B, conduisant à un effet d'ailette réduit.In
La variante de la Figure 5 ne diffère de celle qui vient d'être décrite que par le fait que la partie 2B du corps 2 est divisée en deux sous-parties 2B-1 et 2B-2 encadrant la partie d'échange thermique 2A. Ceci montre que les passages auxiliaires 8B peuvent être répartis de différentes manières. Toutefois, on préfère actuellement l'agencement de la Figure 1, où le chauffage des passages 8B est minimal.The variant of Figure 5 differs from that which has just been described only in that the
Le mode de réalisation de l'échangeur de chaleur représenté aux Figures 6 à 8 diffère essentiellement du précédent par le fait que les parties 2A et 2B du corps 2 sont réparties non plus suivant l'épaisseur de l'échangeur, mais suivant sa largeur, c'est-à-dire qu'une partie de chaque passage 8 sert à l'échange thermique et le reste aux fonctions annexes.The embodiment of the heat exchanger shown in FIGS. 6 to 8 differs essentially from the previous one in that the
Ainsi, un passage sur deux est constitué, sur la majeure partie de sa largeur (Figure 7), d'un passage de condensation d'azote 8A-1 ayant la constitution décrite plus haut en regard de la Figure 2, et, sur le reste de sa longueur, d'un passage annexe 8B-1 ouvert en haut et en bas et contenant une simple onde verticale 9B, les passages 8A-1 et 8B-1 étant séparés de façon étanche sur toute la longueur du corps 2 par une barrette verticale 10.Thus, one passage in two consists, over most of its width (FIG. 7), of a
Les autres passages sont constitués (Figure 8) d'un passage de vaporisation d'oxygène 8A-2 ouvert à ses deux extrémités, de même largeur que les passages 8A-1 et situé en regard de ceux-ci, ce passage 8A-2 contenant une simple onde verticale, et d'un passage annexe 8B-2 analogue aux passages 8B-1, avec interposition d'une barrette verticale 10 entre les passages 8A-2 et 8B-2.The other passages consist (Figure 8) of an
La boîte 5 de la Figure 1, destinée à l'alimentation en oxygène liquide des passages 8A-2, est supprimée et remplacée par un dôme inférieur 21 relié à joint étanche aux quatre côtés inférieurs du corps 2. Ainsi, les passages 8A-2 sont alimentés en oxygène liquide directement par le bas.The
En variante (Figures 9 et 10), les passages 8B-1 sont fermés en bas, et le dôme inférieur 21 est remplacé par des perforations 22 prévues dans la partie inférieure des plaques 7, dans les passages 8B-1. L'oxygène liquide passe alors dans les passages de vaporisation 8A-2 via une fenêtre latérale inférieure 17A prévue à la base d'une barrette 10 sur deux, puis est réparti par une onde oblique 18A sur la longueur des passages 8A-2, de la même manière qu'à la Figure 3.Alternatively (Figures 9 and 10), the
Cette variante peut être modifiée de la manière illustrée aux Figures 11 et 12 : les trous 22 sont supprimés; chaque passage 8B-1 comporte à sa base une fenêtre de sortie 17B-1 et une onde oblique 18B comme aux Figures 1 à 4, et chacun des passages 8B-2 comporte à sa base une fenêtre d'entrée 17B-2. On retrouve la boîte 5 des Figures 2 à 4, qui coiffe toutes les fenêtres 17B-1 et 17B-2. De plus, la partie inférieure des passages 8B-2 comporte une onde 23 à génératrices horizontales, par exemple, comme représenté, du type "serrated", c'est-à-dire comportant à intervalles réguliers des crevés décavés verticalement d'un quart de pas d'onde.This variant can be modified as illustrated in Figures 11 and 12: the
En variante encore (Figures 13 et 14), les barrettes verticales 10 peuvent n'être prévues qu'entre les passages 8A-1 et 8B-1, aucune cloison ne séparant les passages 8A-2 et 8B-2, lesquels comportent seulement une onde commune verticale non perforée et, dans leur partie inférieure, une onde horizontale 24 de forme triangulaire qui s'étend sur toute la largeur de l'échangeur.In another variant (Figures 13 and 14), the
Dans une telle variante, dans un passage sur deux, l'oxygène liquide suit un trajet descendant dans la zone 8B-2, horizontal suivant l'onde 24 puis ascendant dans la zone 8A-2. Dans cette dernière zone, l'oxygène liquide se trouve en relation d'échange thermique indirect avec l'azote qui se condense dans les passages 8A-1, et les passages 8B-1 sont des zones mortes, qui peuvent être ouvertes vers le haut et par conséquent emplies d'oxygène liquide, comme représenté, ou bien, en variante, fermées à leurs deux extrémités.In such a variant, in one passage out of two, the liquid oxygen follows a downward path in the
La Figure 15 représente schématiquement une application d'un échangeur à plaques servant de déphlegmateur, par exemple pour produire de l'azote. Dans un passage sur deux, l'air, introduit sous environ 6 bars absolus, est partiellement condensé en montant, comme illustré par les flèches 25, ce qui produit au bas de ces passages du "liquide riche" (air enrichi en oxygène) LR et, en haut des mêmes passages, de l'azote gazeux NG.Figure 15 shows schematically an application of a plate heat exchanger serving as a dephlegmator, for example to produce nitrogen. In one passage out of two, the air, introduced at approximately 6 bar absolute, is partially condensed upward, as illustrated by the
Pour assurer la condensation de l'air, le liquide riche est détendu vers 1 bar absolu dans une vanne de détente 26, ce qui produit un flash. La partie supérieure des passages précités est utilisée pour séparer les deux phases, lesquelles sont ensuite recombinées dans les passages restants, où le liquide riche basse pression diphasique frigorigène circule de haut en bas puis est évacué sous forme de liquide riche vaporisé LRV.To ensure the condensation of air, the rich liquid is expanded to 1 bar absolute in an
La constitution de l'échangeur de chaleur est représentée sur les Figures 16 à 18.The constitution of the heat exchanger is shown in Figures 16 to 18.
Un passage sur deux (Figure 17) est subdivisé en deux parties par une barrette horizontale 27 :
- (1) Une partie principale d'échange thermique 28, s'étendant à partir du bas de l'échangeur, qui comporte, de bas en haut,
une zone 29 de distribution d'air et de collection de liquide riche, une zone de déphlegmation 30 et unezone 31 de collection et d'évacuation d'azote gazeux.La zone 29 contient une ondeoblique 32 perforée débouchant sur une fenêtre latérale 33 d'entrée d'air et, sous cette onde, une onde verticale 34 qui débouche sur une fenêtre inférieure 35 de sortie de liquide riche.La zone 30 contient une onde verticale 36, et lazone 31 contient une ondeoblique 37 débouchant sur une fenêtre latérale 38 d'évacuation d'azote.Des boîtes 39 d'entrée d'air, 40 de sortie de liquide riche et 41 de sortie d'azote communiquent respectivement avec les fenêtres 33, 35et 38. - (2) Une partie annexe supérieure 42 formant séparateur de phases. Cette partie contient, de bas en haut, une zone de faible hauteur, sans onde, où chaque plaque verticale présente une rangée horizontale de trous 43, une première zone contenant une onde verticale 44, une zone contenant une onde "serrated" 45 à génératrices obliques, communiquant avec une fenêtre latérale d'entrée 46, une seconde zone contenant une onde verticale 47, et une zone contenant une onde
oblique 48 débouchant sur une fenêtre latérale de sortie 49.Des boîtes 50 d'entrée de liquide riche diphasique et 51 de sortie de liquide riche vaporisé recouvrent les fenêtres 46 et 49 respectivement.
- (1) A main
heat exchange part 28, extending from the bottom of the exchanger, which comprises, from bottom to top, azone 29 for air distribution and collection of rich liquid, a zone fordephlegmation 30 and azone 31 for collecting and discharging nitrogen gas. Thezone 29 contains aperforated oblique wave 32 opening onto aside window 33 for air inlet and, under this wave, avertical wave 34 which opens onto alower window 35 for outlet of rich liquid.Zone 30 contains avertical wave 36, andzone 31 contains anoblique wave 37 opening onto aside window 38 for discharging nitrogen.Boxes 39 for air inlet, 40 for rich liquid outlet and 41 for nitrogen outlet communicate respectively with 33, 35 and 38.windows - (2) An
upper annex part 42 forming a phase separator. This part contains, from bottom to top, a zone of low height, without wave, where each vertical plate presents a horizontal row ofholes 43, a first zone containing avertical wave 44, a zone containing a wave "serrated" 45 with generatrices obliques, communicating with alateral entry window 46, a second zone containing avertical wave 47, and a zone containing anoblique wave 48 leading to alateral exit window 49.Boxes 50 for entry of two-phase rich liquid and 51 vaporized rich liquid outlet covers 46 and 49 respectively.windows
Les passages restants 60 (Figure 18) comportent, de haut en bas, une zone d'entrée de liquide riche vaporisé communiquant avec une fenêtre latérale d'entrée 52 et contenant une onde oblique 53, une zone contenant une onde verticale 54, une zone sans onde, de faible hauteur, dans laquelle débouchent les trous 43, une zone d'échange thermique à onde verticale 55, et une zone de sortie de liquide riche vaporisé contenant une onde oblique 56 qui débouche sur une fenêtre de sortie 57. La boîte 51 communique également avec les fenêtres 52, et une boîte de sortie 58 communique avec les fenêtres 57.The remaining passages 60 (FIG. 18) have, from top to bottom, a vaporized rich liquid entry zone communicating with a side entry window. 52 and containing an
Lorsque le liquide riche détendu pénètre sous forme diphasique dans la boîte 50 puis dans les zones 42 de la Figure 17, il y rencontre une forêt de petits obstacles créés par les crevés de l'onde "serrated" 46. Ceci provoque la séparation de ses deux phases. La phase liquide se rassemble sur la barrette 27 et, en traversant les trous 43, pénètre, sous la forme d'autant de jets, dans les passages 60 adjacents de la Figure 18. En même temps, la phase vapeur est renvoyée par la boîte 51 dans les fenêtres 52 de ces passages adjacents, de sorte que cette vapeur circule vers le bas le long des ondes 54 et se recombine avec le liquide au niveau des trous 43, pour former un fluide diphasique frigorigène qui se vaporise en descendant le long des ondes 55.When the relaxed rich liquid enters the two-phase form in the
Dans une variante non représentée, on peut utiliser la zone de séparation de phases 42 pour renvoyer la phase vapeur séparée, via la boîte 51 et les passages contenant l'onde 54, à un niveau différent de l'échangeur, par exemple à son extrémité inférieure. Dans ce cas, la phase vapeur est sortie latéralement audit niveau, reprise par une boîte de sortie et envoyée par celle-ci dans d'autres passages de l'échangeur.In a variant not shown, it is possible to use the
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9115381A FR2685071B1 (en) | 1991-12-11 | 1991-12-11 | INDIRECT PLATE TYPE HEAT EXCHANGER. |
FR9115381 | 1991-12-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0546947A1 true EP0546947A1 (en) | 1993-06-16 |
EP0546947B1 EP0546947B1 (en) | 1996-04-17 |
Family
ID=9419929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92403363A Revoked EP0546947B1 (en) | 1991-12-11 | 1992-12-11 | Indirect plate-type heat exchanger |
Country Status (7)
Country | Link |
---|---|
US (1) | US5333683A (en) |
EP (1) | EP0546947B1 (en) |
JP (1) | JPH05280881A (en) |
CN (1) | CN1041126C (en) |
CA (1) | CA2084920A1 (en) |
DE (1) | DE69209994T2 (en) |
FR (1) | FR2685071B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0694729A1 (en) * | 1994-07-28 | 1996-01-31 | Daimler-Benz Aktiengesellschaft | Vaporizing unit |
WO1998036212A1 (en) * | 1997-02-14 | 1998-08-20 | Aga Aktiebolag | Method and apparatus for cooling a product using a condensed gas |
FR2786858A1 (en) * | 1998-12-07 | 2000-06-09 | Air Liquide | HEAT EXCHANGER |
EP1179724A1 (en) * | 2000-08-08 | 2002-02-13 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger with multiple heat exchange blocks with fluid inlet manifold providing uniform distribution, and vaporizer-condenser comprising same |
US7093649B2 (en) | 2004-02-10 | 2006-08-22 | Peter Dawson | Flat heat exchanger plate and bulk material heat exchanger using the same |
DE10347880B4 (en) * | 2003-10-10 | 2007-10-31 | Gea Wtt Gmbh | Plate heat exchanger for drying a gaseous medium |
CN104482787A (en) * | 2014-12-17 | 2015-04-01 | 苏州协宏泰节能科技有限公司 | Spiral-plate heat exchanger |
EP3159648A1 (en) * | 2015-10-20 | 2017-04-26 | Linde Aktiengesellschaft | Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air |
WO2020239767A1 (en) * | 2019-05-29 | 2020-12-03 | L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude | Exchanger-reactor with improved distribution areas |
FR3096767A1 (en) * | 2019-05-31 | 2020-12-04 | Safran | DEFLECTION THERMAL EXCHANGER |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9405161D0 (en) * | 1994-03-16 | 1994-04-27 | Boc Group Plc | Method and apparatus for reboiling a liquified gas mixture |
FR2718836B1 (en) * | 1994-04-15 | 1996-05-24 | Maurice Grenier | Improved heat exchanger with brazed plates. |
US5438836A (en) * | 1994-08-05 | 1995-08-08 | Praxair Technology, Inc. | Downflow plate and fin heat exchanger for cryogenic rectification |
FR2728670B1 (en) * | 1994-12-23 | 1997-03-21 | Air Liquide | FLUID IN / OUT CHAMBER, AND CORRESPONDING FLUID CIRCULATION APPARATUS |
IL114613A (en) * | 1995-07-16 | 1999-09-22 | Tat Ind Ltd | Parallel flow condenser heat exchanger |
US5755279A (en) * | 1996-03-29 | 1998-05-26 | The Boc Group, Inc. | Heat exchanger |
JP3100371B1 (en) * | 1999-04-28 | 2000-10-16 | 春男 上原 | Evaporator |
FR2798599B1 (en) * | 1999-09-21 | 2001-11-09 | Air Liquide | THERMOSIPHON VAPORIZER-CONDENSER AND CORRESPONDING AIR DISTILLATION SYSTEM |
US6428627B1 (en) * | 2000-03-15 | 2002-08-06 | Hatco Corporation | Flow heater |
DE10021081A1 (en) | 2000-04-28 | 2002-01-03 | Linde Ag | Heat exchange method and apparatus |
US6349566B1 (en) | 2000-09-15 | 2002-02-26 | Air Products And Chemicals, Inc. | Dephlegmator system and process |
DE10151238A1 (en) | 2001-10-17 | 2003-04-30 | Autokuehler Gmbh & Co Kg | Refrigerant / air heat exchanger grid |
US7188492B2 (en) * | 2002-01-18 | 2007-03-13 | Linde Aktiengesellschaft | Plate heat exchanger |
DE10316712A1 (en) * | 2003-02-25 | 2004-09-02 | Linde Ag | Plate heat exchanger comprises a header forming a flow connection between heat exchanger passages and provided with a fluid connection arranged perpendicularly to the side of a heat exchanger block over which the header extends |
EP1471322B1 (en) * | 2003-02-25 | 2016-06-29 | Linde AG | Process of fabricating a heat exchanger |
US7100280B2 (en) * | 2003-02-25 | 2006-09-05 | Linde Aktiengesellschaft | Method for producing a heat exchanger |
US7051798B2 (en) * | 2003-02-25 | 2006-05-30 | Linde Aktiengesellschaft | Heat exchanger |
EP1452817A1 (en) * | 2003-02-25 | 2004-09-01 | Linde Aktiengesellschaft | Heat exchanger |
JP2005349299A (en) * | 2004-06-10 | 2005-12-22 | Mitsubishi Heavy Ind Ltd | Freshwater production apparatus |
JP2006064281A (en) * | 2004-08-26 | 2006-03-09 | Hisaka Works Ltd | Plate type heat exchanger |
US7481375B2 (en) * | 2005-03-04 | 2009-01-27 | Honeywell International Inc. | Apparatuses and methods for controlling the temperature of a process fluid |
CN1293350C (en) * | 2005-03-09 | 2007-01-03 | 西安交通大学 | Multi-channel plug-in heat regenerator |
WO2006104443A1 (en) * | 2005-04-01 | 2006-10-05 | Alfa Laval Corporate Ab | A plate heat exchanger |
DE202005015627U1 (en) * | 2005-09-28 | 2007-02-08 | Autokühler GmbH & Co. KG | Heat exchanger network and thus equipped heat exchanger |
FR2891901B1 (en) * | 2005-10-06 | 2014-03-14 | Air Liquide | METHOD FOR VAPORIZATION AND / OR CONDENSATION IN A HEAT EXCHANGER |
ITUD20070025A1 (en) * | 2007-02-07 | 2008-08-08 | Ohg Ind O M I S R L | HEAT EXCHANGER |
US8079508B2 (en) * | 2008-05-30 | 2011-12-20 | Foust Harry D | Spaced plate heat exchanger |
SE532907C2 (en) | 2008-09-23 | 2010-05-04 | Alfa Laval Corp Ab | A plate heat exchanger |
BE1018518A3 (en) | 2009-04-06 | 2011-02-01 | Atlas Copco Airpower Nv | IMPROVED HEAT EXCHANGER. |
DE102009057055A1 (en) * | 2009-12-04 | 2011-06-09 | Linde Ag | Process and apparatus for the evaporation of cryogenic media |
JP6001170B2 (en) * | 2012-06-26 | 2016-10-05 | エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー | Evaporator, waste heat utilization device for internal combustion engine, and internal combustion engine |
US10124452B2 (en) * | 2013-08-09 | 2018-11-13 | Hamilton Sundstrand Corporation | Cold corner flow baffle |
JP5913245B2 (en) * | 2013-09-24 | 2016-04-27 | 株式会社フィルテック | Laminating fluid heat exchanger |
CN104329832B (en) * | 2014-03-28 | 2017-04-26 | 海尔集团公司 | Heat exchange device and semiconductor refrigerator with heat exchange device |
EP2944909A1 (en) * | 2014-05-13 | 2015-11-18 | Linde Aktiengesellschaft | Heat exchanger with channels for damping movements of liquids |
US10161690B2 (en) * | 2014-09-22 | 2018-12-25 | Hamilton Sundstrand Space Systems International, Inc. | Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger |
CN105651085B (en) * | 2016-01-26 | 2017-10-27 | 睿能太宇(沈阳)能源技术有限公司 | A kind of full-welding plate-type heat exchanger |
CN105546935A (en) * | 2016-02-05 | 2016-05-04 | 江苏建筑职业技术学院 | Air separating membrane type main condensate liquid distributor |
CN105737647B (en) * | 2016-03-22 | 2017-11-03 | 江苏远卓设备制造有限公司 | A kind of plate type heat exchanger for steam-water separation |
JP6911469B2 (en) * | 2017-03-31 | 2021-07-28 | 株式会社Ihi | Heat treatment equipment |
FR3084739B1 (en) * | 2018-07-31 | 2020-07-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | HEAT EXCHANGER WITH IMPROVED PATHWAY CONFIGURATION, METHODS OF EXCHANGING HEAT |
FR3093170B1 (en) * | 2019-02-25 | 2022-04-15 | L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude | Matrix integrating at least one heat exchange function and one distillation function |
EP3931504A1 (en) * | 2019-02-25 | 2022-01-05 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Matrix integrating at least one heat exchange function and one distillation function |
EP4155653B1 (en) * | 2019-09-13 | 2024-03-20 | Alfa Laval Corporate AB | Heat exchanger plate and plate heat exchanger for treatment of a liquid feed |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3633661A (en) * | 1970-08-14 | 1972-01-11 | Trane Co | Crossflow plate-type heat exchanger with barrier space |
FR2237158A1 (en) * | 1973-07-03 | 1975-02-07 | Teal Procedes Air Liquide Tech | Heat exchanger module for several different coolants - esp. for gas liquefaction comprises one drum per coolant |
US3992168A (en) * | 1968-05-20 | 1976-11-16 | Kobe Steel Ltd. | Heat exchanger with rectification effect |
FR2431103A1 (en) * | 1978-07-12 | 1980-02-08 | Air Liquide | Low-temp. fractionation column for sepg. gaseous mixt. - superposed compartments interconnected by vaporiser-condenser circumscribed by column ensuring max. compactness |
EP0019508A1 (en) * | 1979-05-18 | 1980-11-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal-exchange assembly of the plate heat exchanger type |
EP0130122A1 (en) * | 1983-06-24 | 1985-01-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1152432B (en) * | 1962-04-21 | 1963-08-08 | Linde Eismasch Ag | Plate condenser evaporator, especially for gas and air separators |
BE789479A (en) * | 1971-10-01 | 1973-03-29 | Air Liquide | HEAT EXCHANGER AND ITS IMPLEMENTATION |
US4249595A (en) * | 1979-09-07 | 1981-02-10 | The Trane Company | Plate type heat exchanger with bar means for flow control and structural support |
GB2084308B (en) * | 1980-07-14 | 1983-11-30 | Cryoplants Ltd | Revapourising liquefied gas |
US4450903A (en) * | 1982-09-20 | 1984-05-29 | The Trane Company | Plate type heat exchanger with transverse hollow slotted bar |
US4715433A (en) * | 1986-06-09 | 1987-12-29 | Air Products And Chemicals, Inc. | Reboiler-condenser with doubly-enhanced plates |
US4715431A (en) * | 1986-06-09 | 1987-12-29 | Air Products And Chemicals, Inc. | Reboiler-condenser with boiling and condensing surfaces enhanced by extrusion |
US4721164A (en) * | 1986-09-04 | 1988-01-26 | Air Products And Chemicals, Inc. | Method of heat exchange for variable-content nitrogen rejection units |
JPH0788924B2 (en) * | 1986-12-05 | 1995-09-27 | 日本酸素株式会社 | Condensing evaporator |
GB8700801D0 (en) * | 1987-01-14 | 1987-02-18 | Marston Palmer Ltd | Heat exchanger |
JPH0789009B2 (en) * | 1988-08-31 | 1995-09-27 | 日本酸素株式会社 | Condensation evaporator and its operating method |
FR2665755B1 (en) * | 1990-08-07 | 1993-06-18 | Air Liquide | NITROGEN PRODUCTION APPARATUS. |
-
1991
- 1991-12-11 FR FR9115381A patent/FR2685071B1/en not_active Expired - Fee Related
-
1992
- 1992-12-03 JP JP4324158A patent/JPH05280881A/en active Pending
- 1992-12-09 CA CA002084920A patent/CA2084920A1/en not_active Abandoned
- 1992-12-11 US US07/989,387 patent/US5333683A/en not_active Expired - Fee Related
- 1992-12-11 EP EP92403363A patent/EP0546947B1/en not_active Revoked
- 1992-12-11 DE DE69209994T patent/DE69209994T2/en not_active Expired - Fee Related
- 1992-12-11 CN CN92113752A patent/CN1041126C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992168A (en) * | 1968-05-20 | 1976-11-16 | Kobe Steel Ltd. | Heat exchanger with rectification effect |
US3633661A (en) * | 1970-08-14 | 1972-01-11 | Trane Co | Crossflow plate-type heat exchanger with barrier space |
FR2237158A1 (en) * | 1973-07-03 | 1975-02-07 | Teal Procedes Air Liquide Tech | Heat exchanger module for several different coolants - esp. for gas liquefaction comprises one drum per coolant |
FR2431103A1 (en) * | 1978-07-12 | 1980-02-08 | Air Liquide | Low-temp. fractionation column for sepg. gaseous mixt. - superposed compartments interconnected by vaporiser-condenser circumscribed by column ensuring max. compactness |
EP0019508A1 (en) * | 1979-05-18 | 1980-11-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Thermal-exchange assembly of the plate heat exchanger type |
EP0130122A1 (en) * | 1983-06-24 | 1985-01-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 400 (M-756)24 Octobre 1988 & JP-A-63 143 486 ( NIPPON SANSO KK ) 15 Juin 1988 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0694729A1 (en) * | 1994-07-28 | 1996-01-31 | Daimler-Benz Aktiengesellschaft | Vaporizing unit |
US5823252A (en) * | 1994-07-28 | 1998-10-20 | Daimler-Benz Aktiengesellschaft | Two-stage evaporator unit |
WO1998036212A1 (en) * | 1997-02-14 | 1998-08-20 | Aga Aktiebolag | Method and apparatus for cooling a product using a condensed gas |
US6250088B1 (en) | 1997-02-14 | 2001-06-26 | Aga Ab | Method and apparatus for cooling a product using a condensed gas |
FR2786858A1 (en) * | 1998-12-07 | 2000-06-09 | Air Liquide | HEAT EXCHANGER |
EP1008826A1 (en) * | 1998-12-07 | 2000-06-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Falling film vaporizer and air distillation plant |
EP1179724A1 (en) * | 2000-08-08 | 2002-02-13 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger with multiple heat exchange blocks with fluid inlet manifold providing uniform distribution, and vaporizer-condenser comprising same |
FR2812935A1 (en) * | 2000-08-08 | 2002-02-15 | Air Liquide | MULTIPLE BLOCK HEAT EXCHANGER WITH A UNIFORM FLUID SUPPLY LINE, AND VAPORIZER-CONDENSER COMPRISING SUCH A EXCHANGER |
DE10347880B4 (en) * | 2003-10-10 | 2007-10-31 | Gea Wtt Gmbh | Plate heat exchanger for drying a gaseous medium |
US7789128B2 (en) | 2003-10-10 | 2010-09-07 | Gea Wtt Gmbh | Plate-type heat exchanger for drying a gaseous medium |
US7264039B2 (en) | 2004-02-10 | 2007-09-04 | Peter Dawson | Apparatus for cleaning heat exchanger plates and a bulk material heat exchanger using the same |
US7093649B2 (en) | 2004-02-10 | 2006-08-22 | Peter Dawson | Flat heat exchanger plate and bulk material heat exchanger using the same |
US8997841B2 (en) | 2004-02-10 | 2015-04-07 | Peter Dawson | Flat heat exchanger plate and bulk material heat exchanger using the same |
CN104482787A (en) * | 2014-12-17 | 2015-04-01 | 苏州协宏泰节能科技有限公司 | Spiral-plate heat exchanger |
CN104482787B (en) * | 2014-12-17 | 2016-09-07 | 苏州协宏泰节能科技有限公司 | A kind of spiral heat exchanger |
EP3159648A1 (en) * | 2015-10-20 | 2017-04-26 | Linde Aktiengesellschaft | Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air |
CN106595222A (en) * | 2015-10-20 | 2017-04-26 | 林德股份公司 | Plate heat exchanger-capacitor evaporator and method for cryogenic decomposition of air |
WO2020239767A1 (en) * | 2019-05-29 | 2020-12-03 | L'air Liquide Société Anonyme Pour L’Étude Et L'exploitation Des Procédés Georges Claude | Exchanger-reactor with improved distribution areas |
FR3096768A1 (en) * | 2019-05-29 | 2020-12-04 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Exchanger-reactor with improved distribution zones |
FR3096767A1 (en) * | 2019-05-31 | 2020-12-04 | Safran | DEFLECTION THERMAL EXCHANGER |
Also Published As
Publication number | Publication date |
---|---|
CA2084920A1 (en) | 1993-06-12 |
DE69209994T2 (en) | 1996-09-05 |
DE69209994D1 (en) | 1996-05-23 |
EP0546947B1 (en) | 1996-04-17 |
US5333683A (en) | 1994-08-02 |
CN1073259A (en) | 1993-06-16 |
CN1041126C (en) | 1998-12-09 |
FR2685071A1 (en) | 1993-06-18 |
JPH05280881A (en) | 1993-10-29 |
FR2685071B1 (en) | 1996-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0546947B1 (en) | Indirect plate-type heat exchanger | |
EP1008826B1 (en) | Falling film vaporizer and air distillation plant | |
EP0130122B1 (en) | Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device | |
EP0019508B1 (en) | Thermal-exchange assembly of the plate heat exchanger type | |
FR2665755A1 (en) | Apparatus for producing nitrogen | |
EP0566435B1 (en) | Trickle heat-exchanger and an air destillation comprising such a heat-exchanger | |
FR2563620A1 (en) | PLATE TYPE HEAT EXCHANGER | |
FR2718836A1 (en) | Improved heat exchanger with brazed plates. | |
EP1026468A1 (en) | Heat exchanger, more particularly plate-like heat exchanger for air separating apparatus | |
FR3065795B1 (en) | IMPROVED WAVE JUNCTION HEAT EXCHANGER, AIR SEPARATION INSTALLATION THEREFOR, AND METHOD FOR MANUFACTURING SUCH EXCHANGER | |
EP0718582B1 (en) | Heatexchanger | |
EP1088578A1 (en) | Vaporizer-condenser with thermosiphon and corresponding air distillation plant | |
EP1179724B1 (en) | Heat exchanger with multiple heat exchange blocks with fluid inlet manifold providing uniform distribution, and vaporizer-condenser comprising same | |
EP0507649B1 (en) | Method for the evaporation of a liquid, heat exchanger for carrying out the method, and use in an air distillation plant with a double column | |
FR2774755A1 (en) | PERFECTED BRAZED PLATE CONDENSER AND ITS APPLICATION TO DOUBLE AIR DISTILLATION COLUMNS | |
EP2368084B1 (en) | Heat exchanger | |
FR2793548A1 (en) | Plate vaporizer-condenser operating as a thermosiphon in which the exchange corrugations of the second passage are vertical and the exchange body has two inlet boxes spaced over its length | |
WO2011110782A1 (en) | Heat exchanger | |
FR2733039A1 (en) | HEAT EXCHANGER WITH BRAZED PLATES AND CORRESPONDING PROCESS FOR TREATING A DIPHASIC FLUID | |
FR2798598A1 (en) | BATH VAPORIZER-CONDENSER AND CORRESPONDING AIR DISTILLATION APPARATUS | |
WO2015121593A2 (en) | Column for separating air by cryogenic distillation, air separation device comprising such a column and method for producing such a column | |
WO2020174173A1 (en) | Matrix integrating at least one heat exchange function and one distillation function | |
FR3093170A1 (en) | Matrix integrating at least one heat exchange function and one distillation function | |
FR3132851A3 (en) | Distillation apparatus | |
FR3127561A1 (en) | Exchanger comprising at least one heat exchange structure with a ribbed surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19921217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19940429 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69209994 Country of ref document: DE Date of ref document: 19960523 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960517 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19970117 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19981110 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19981124 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981125 Year of fee payment: 7 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991211 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19991211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001003 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20010125 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |