EP0019508B1 - Thermal-exchange assembly of the plate heat exchanger type - Google Patents

Thermal-exchange assembly of the plate heat exchanger type Download PDF

Info

Publication number
EP0019508B1
EP0019508B1 EP80400560A EP80400560A EP0019508B1 EP 0019508 B1 EP0019508 B1 EP 0019508B1 EP 80400560 A EP80400560 A EP 80400560A EP 80400560 A EP80400560 A EP 80400560A EP 0019508 B1 EP0019508 B1 EP 0019508B1
Authority
EP
European Patent Office
Prior art keywords
passages
exchanger
distribution
zone
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80400560A
Other languages
German (de)
French (fr)
Other versions
EP0019508A1 (en
Inventor
Maurice Grenier
Pierre Petit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to AT80400560T priority Critical patent/ATE1684T1/en
Publication of EP0019508A1 publication Critical patent/EP0019508A1/en
Application granted granted Critical
Publication of EP0019508B1 publication Critical patent/EP0019508B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/905Column

Definitions

  • the object of the present invention is to provide construction methods more particularly suitable for an arrangement of the exchanger according to which its large dimension is arranged vertically.
  • This vertical arrangement of the exchanger has proven to be decisive in ensuring correct distribution of the various fluids (first, second, third and fourth fluids) thus allowing a strictly balanced heat transfer in the transverse direction of the exchanger.
  • said fourth passages have, in a manner known per se, active heat exchange zones with longitudinally oriented waves, the longitudinal extension is limited to clear on each side of each said active area on the one hand a wave feed distribution area, on the other hand a wave evacuation distribution area, said feed and evacuation distribution areas opening out respectively in said entry and exit windows of said fourth passages, said entry and exit windows communicating with a common phase separator means at least substantially coextensive longitudinally with said active areas.
  • the vertical arrangement of the exchanger a makes it possible to ensure more homogeneous specific heat flows between the 1st and 2nd passages on the one hand and the 3rd passages on the other hand, it however required a complete rearrangement of the 4th passages which are arranged according to the invention no longer at cross-currents, but co-extensively with respect to the circulation of the other fluids flowing in the other passages. This is why direct communication between the inputs and outputs of the passages is provided to form a phase separator. It is understood that in operation, the liquid entering the lower end circulates like a reboiler in the passages with a large excess of vaporized liquid, which ensures perfect homogeneity of the heat transfers.
  • this advantage is essentially due to the fact that the coolant here is a single constituent such as propane and not a coolant mixture as is the case in that which circulates in the first and third passages, there is therefore no variation in the composition of the liquid and vapor phases during vaporization. It is therefore possible, without degrading the thermodynamic performance of the heat exchanger, to recycle the excess of non-vaporized liquid.
  • the most economical way to carry out this operation is to do it as close as possible to the heat transfer zone concerned, for example by means of boxes which are common to the inputs and outputs.
  • these two common boxes have a cross section sufficient for an at least coarse separation of the liquid and vapor phases to occur: the largest part, for example of the order of 90% of the non-vaporized excess liquid, is thus directly recycled at the entrance to the same exchange zone and only a small part is entrained by the vapor phase which will moreover be separated later preferably in suitable collectors.
  • a liquefaction installation comprises a plate exchanger 1 formed from a stack of rectangular plates whose large dimension, or length, or height, is arranged vertically from a first high end 1a up to at a second lower end 1b while the small dimensions, or width and thickness, have horizontal extensions.
  • the inlet boxes 14 of the first passages of the refrigerant mixture 11 are connected by a pipe 60, incorporating a cooler 61 , at the outlet of a compressor 62, the inlet of which is connected by a pipe 63 to the lateral outlet boxes (35a and 35b) of the third passages 31.
  • the inlet box 34 of the passages 31 is itself connected by a line 64 incorporating an expansion valve 65 into the outlet boxes 15 of the first passages 11.
  • the refrigerant mixture comprises, for example, hydrocarbons such as methane, ethane, butane and generally nitrogen, and the particularity of the process is that the mixture refrigerant reaches the inlet boxes in a purely gaseous state 14.
  • the second passages 21 intended for gas in during treatment (generally natural gas) are supplied by their inlet boxes 24 with natural gas in gaseous state at room temperature and the low outlet boxes 25 deliver liquefied natural gas.
  • the second passages can be equipped with outlets and intermediate inlets arranged laterally to ensure the elimination of certain components of the gas during treatment.
  • the fourth passages 41 (41 a, 41 b, 41 c, 41 d) are connected by their inlet-outlet boxes 44 and 45 on the one hand, part of the high tubes 66 intended to convey steam, if necessary with liquid, and low lines 67 intended to convey exclusively liquid, to a double series of lateral collectors 71 (71a, 71 b, 71 c, 71 d) and 72 (72a, 72b, 72c, 72d).
  • lateral collectors 71 and 72 are themselves connected by “steam” pipes 73 ′ and “liquid” pipes 74, each to a separator 75 (75a, 75b, 75c, 75d) in number equal to the number of types of fourth sub-passages 41, operating under different pressures (that is to say four in the drawing), a separator 75, for example the separator 75b, being connected to the outlet of the “liquid” phase of the neighboring separator at higher pressure (75a) by a connecting pipe 76 (76b, 76c, 76d) to expansion valve 77 (77b, 77c, 77d), except the head separator under the highest pressure 75a which is itself connected by a pipe 76a , incorporating an expansion valve 77a and a cooler-condenser 78 at the outlet of a multistage compressor 79 (79a, 79b, 79c, 79d) whose inputs are connected by conduits 80 (80a, 80b, 80c, 80d ) at an upper end of the
  • the distribution zones (12) and (22-23) have structures of the same type (the same is true of the distribution zone of the low outlet not shown in the first heat exchange passages 11), and it is therefore sufficient to describe the distribution area 12.
  • the inlet (14-24) or outlet (15-25) boxes are arranged at the axial end of the exchanger 1, but with a lateral offset so as to allow, on the same exchanger end, the arrangement of several inlet and / or outlet boxes.
  • the distribution zone 12 comprises two sections 12a, 12b, formed from corrugated sheet; section 12a presents waves with vertical extension, while section 12b presents parallel waves with extension inclined parallel to the direction which connects the inner edge 91 of the supply box 14 and the most distant lower corner 92 of the distribution zone 12.
  • the fluid whether in the gaseous or liquid state (but for the supply box 14, this fluid is expressly in the gaseous state) is distributed uniformly along the waves parallel from section 12a and then distributed along the parallel waves of section 12b to reach uniformly in the active heat exchange zone 16, which is itself provided with parallel waves with vertical extension, generally very tight, for obtain the maximum heat exchange effect.
  • Each distribution zone 32 has the particularity of having an inlet window 95 of the same thickness as a passage 31 of the exchanger 1 and the other dimension of which, counted according to the width of the exchanger 1, is substantially reduced by the presence outlet boxes 15 for the refrigerant mixture and 25 for the treated gas.
  • it is a two-phase fluid which passes through this supply window 95 according to arrangements which will be examined below.
  • This distribution zone 32 consists of four sections which are defined by straight lines connecting the upper corners of the zone 32 to the neighboring edges of the window 95.
  • a first section 32a located upstream in a direction of flow of the fluid, is therefore presents in the form of a triangle whose base is coextensive with the window 95 and comprises waves with vertical extension.
  • This first section 32a feeds by its two sides two intermediate sections 32b and 32c equipped with waves inclined in the direction which connects, in each section 32b or 32c, the adjacent lower edge 96 (96 ') of section 32a to the upper edge adjacent 97 '(97) of distribution area 32.
  • a fourth distribution section 32d is also in the form of a triangle, the apex of which coincides with that of section 32a and is equipped with vertically extending waves allowing the fluid from the sections 32b and 32c to be taken up to uniformly supply the set of waves with vertical extension of the active heat exchange zone 36.
  • These sections 421 and 422 (431,432) have waves with horizontal extension, which feed (or are fed respectively by) a third distribution section 423, 424 (433, 434), formed of a double subsection each formed of inclined waves converging towards the active heat exchange zone 46 for the inlet (or diverging from this exchange zone 46 for the outlet), so as to take up the fluid issuing sections 421 and 422 (or from the heat exchange zone 46 respectively) to distribute it uniformly all along the active heat exchange zone 46 (or in sections 431, 432 respectively).
  • inlet windows 991 and 992 at the liquid level, and the outlet windows 993 and 994 at the vapor level have different longitudinal extensions, since the “steam” outlet windows 993 and 994 are significantly longer than the “liquid” inlet windows 991 and 992, which is explained by the fact that they must allow the same quantities of fluid to pass through as the “liquid” windows 991 and 992, but in the partially vaporized state, then that these windows 991 and 992 allow the fluid to pass exclusively in the form of liquid.
  • an auxiliary refrigerant for example propane
  • propane is introduced continuously into the lateral collectors 71 and 72 by the “liquid” lines 74, and this liquid after having been distributed in the boxes 44 and 45 enter, through the windows 991 and 992 into the sections 421 and 422 of the supply distribution area 42, before being taken up by the subsections 423 and 424 for distribution, throughout the active area d 'heat exchange 46 consisting of tight waves with vertical extension.
  • the auxiliary liquid refrigerant partially vaporizes in these waves, and flows through subsections 433 and 434 of distribution zone 43, reaches sections 431 and 432 to be directed again into boxes 44 and 45, then in the lateral collectors 71 and 72.
  • the “vapor” fraction in the collectors 71 and 72 is directed (however entraining a portion of liquid which is not completely decanted) to the separators at different pressures 75a, 75b, 75c, 75d where the liquid droplets entrained are deposited with the liquid fraction in said separators.
  • the passages for the fourth fluid 41 incorporate an active heat exchange zone 146 which consists of a double trapezoid-shaped section 146a and 146b, the largest sides of which coincide and correspond to the longitudinal height. of a passage 41.
  • the “liquid” inlet sections 142a and 142b have the shape of flattened right triangles whose short sides constitute inlet windows 199a and 199a ′ for the liquid, while the outlet sections 143a and 143b have the same shape, but have outlet windows 199b and 199b 'of shapes which are clearly more elongated in the longitudinal direction.
  • the waves of sections 146a and 146b of the active heat exchange zone 46 are all vertical and these waves can have increasingly tight steps as one approaches. boxes 44 and 45, so as to offer the fluid substantially equal pressure drops despite the appreciable differences in path lengths, as is clear from the drawing.
  • the embodiment differs essentially from what is described in Figure 3 in that the inlet (142a 'and 142b') and outlet (143a 'and 143b') sections have here the shape, no longer of triangles, but of rectangular trapezoids.
  • FIG. 5 differs from FIG. 4 in that the active heat exchange zone 46a, here, a rectangular shape with a smaller longitudinal extension and inlet sections 142a "and 142b" which have the same shape as the sections 142a 'and 142b' of FIG. 4, but these sections precede two connection sections 142c 'and 142c ", adjacent to the active area 46.
  • the active heat exchange zone 46a here, a rectangular shape with a smaller longitudinal extension and inlet sections 142a "and 142b" which have the same shape as the sections 142a 'and 142b' of FIG. 4, but these sections precede two connection sections 142c 'and 142c ", adjacent to the active area 46.
  • connection sections 142c' and 142c have waves inclined so as to distribute the fluid from sections 142a "and 142b" all along the inlet of the active heat exchange zone 46, while the connection sections 143d 'and 143d "are intended to take up the fluid in the two-phase state from the output of the active heat exchange section 46 to the output sections 143a "and 143b".
  • the embodiment according to FIG. 6 differs from the embodiment according to FIG. 5 in that the inlet sections 242a “and 242b" and the connection sections 242c 'and 242c “are not symmetrical, the sections 242c" and 242b “having a greater transverse extension than sections 242c 'and 242a ", so as to distribute the liquid coming from the inlet section 242b" over a transverse length greater than half the transverse dimension of the active heat exchange zone 46. This allows an overall flow of liquid from the left to the right, which is necessary when the liquid supply is only on the left side.
  • the embodiment according to FIG. 7 differs from the embodiment according to FIG. 6 in that, not only, the inlet sections 242a ", and 242b", 242c 'and 242c "are asymmetrical in a direction which corresponds to a greater flow from left to right only in the opposite direction, but also provision has been made for the outlet sections 243a, 243b, 243d 'and 243d "to be asymmetrical, sections 243d 'and 243a before a greater transverse extension than section 243d "and 243b, which has the consequence of increasing the flow rate of non-vaporized liquid, from left to right, towards box 44, relative to the circulating flow rate to box 45.
  • This two-phase supply box 34 is formed of an envelope 101 having a substantial vertical extension and which has an opening 102 at approximately half-height, into which opens the line 64 for reintroducing low pressure refrigerant mixture.
  • a perforated plate 103 Inside the casing 101, parallel to the window 95 and at a short distance from it, is mounted a perforated plate 103 on which, and through which are mounted tubes 104 extending below of said plate 103 and up to a distance largely below the opening 102 of the pipe 64, the tubes 104 having a lower end 105, in which one or more slots 106 has advantageously been made.
  • a lining 107 is placed in the interstitial space between the distribution zone 32 and the perforated plate 103.
  • the refrigerant mixture which has just been expanded by the expansion valve 65 at the low pressure of the cycle reaches the interior of the casing 101, in which this fluid, in the two-phase state, separates into a vapor fraction 108 and a liquid fraction 109, the normal level of separation N being generally located above the slots 106.
  • the propellant effect due to the pressure acting on the surface of the liquid mass 109 ensures a rise in the liquid through the tubes 104, at the same time as an escape of the gaseous fraction through the perforations of the plate 103.
  • the two-phase mixture is thus reconstituted in a homogeneous manner, at the upper outlet of the tubes 104, in the lining 107 , which allows a uniform feeding of section 32a resp.
  • the level N of the liquid fraction 109 descends until it reaches the level of the slots 106, which then causes the escape, through the slots 106, of the tubes 104, of part of the gaseous fraction. Once the flow rate of this liquid fraction, which normally constitutes most of the two-phase fluid, is restored, the level N rises and the operation as detailed above resumes.
  • the two-phase fluid which circulates uniformly along the vertical waves of the central section 32e is taken up - when there is symmetry, that is to say when the section 32e has the shape of an isosceles triangle whose apex is axial - half by section 32f, for the other half by section 32g, output that the vertical waves of the active heat exchange zone 36 are uniformly supplied with two-phase liquid.
  • the active heat exchange zone 36 of the cooling mixture heating passages 31 is supplied by a distribution zone 32 which is identical to that which has been described in FIG. 8, but the input box 34 is here very different in nature: this input box 34 is in the form of a thick semi-cylindrical receptacle 120 mounted in relation to supply windows 121 for the area of distribution 32.
  • Each supply window 121 is closed off with a thick strip 122 in which is mounted, by screwing, a plurality of ejectors 123 having an upwardly diverging shape, the receptacle 120 having an intake orifice on which is connected the supply line 64, but unlike the previous examples, the refrigerant mixture has been, here, expanded to an intermediate pressure, such that it is formed in the receptacle 120 that a clear liquid, the final expansion s performing in é nozzles 123; the two-phase mixing is therefore done ipso-facto at the outlet of the ejectors 123 and is, by this very fact, uniformly distributed along the vertical waves of the first section 32e of the distribution area 32.
  • FIG. 11 an alternative embodiment of the supply box 34 is described as described with reference to FIG. 9.
  • the semi-cylindrical receptacle 120 intended to receive the free liquid at pressure intermediate, but the. ejectors 123 are here arranged in a regularly distributed manner in a support plate 124 which extends over the entire surface of the exchanger 1, but at a short distance beyond this exchanger, and between the plate 124 and the windows free 125 of the cooling mixture heating passages 31 is provided a grating 126 for distributing the two-phase fluid at the entrance to sections 32e of all distribution areas 32.
  • FIGS. 13, 14 and 15 another alternative embodiment of the two-phase supply of the conduits for heating the refrigerant mixture 31 is described.
  • the supply box 34 comprises a receptacle 151 extending over the entire depth of the exchanger 1 and into which opens, after separation into a separator 150 and via line 64, a free liquid 152.
  • the passages 31 are here arranged side by side, two by two, and, in the interval between two pairs of passages 31, is formed a steam passage 51 which extends over a short terminal length of the exchanger on the side of its lower end or second end, which further limits the longitudinal extension of the cooling passages of the treated gas 21.
  • the separation between the passages 51 on the one hand, and 11 and 21 on the other hand, is ensured by spacers of sealing 52.
  • the passages 51 are closed by bars 53, and it can be seen that the intermediate wall plates 54 between each passage 51 and each passage 31 are perforated according to inclined slots (or holes) 56, evenly distributed.
  • the outlets of the cooling mixture cooling passages 11 and the outlets of the cooling ganz treated cooling passage are here arranged laterally at the exchanger, as indicated in 57 for the refrigerant mixture passages 11, or in 58 for cooling gas cooling passages.
  • the evacuating distribution zone has been simplified in that it provides for the evacuation of the entire refrigerant mixture on one side of the exchanger, towards the box 57 by the distribution zone 59, while the evacuation of the treated gas is carried out entirely on the other side towards the box 58 of the exchanger.
  • outlet boxes 57 and 58 are staggered longitudinally, so as to provide a free space for the arrangement of an inlet box 60 associated with a distribution area 61, for the vapor phase which comes from the separator 150, while the liquid 152 is drawn off in a tank in this same separator 150.
  • the vapor which enters the passages 51 undergoes a certain pressure drop in the ports 56, so that the level of liquid N, which is established in the passages 51 is lower than the level of liquid N 2 which is established in the cooling mixture heating passages 31.
  • the vapor therefore engages uniformly in the slots 56 and is thus distributed in the liquid.
  • the essential advantage of this arrangement is that the two-phase mixing is carried out just upstream of the heat exchange zone between the cooling conduits for the refrigerant mixture 11 and for the treated gas 21.
  • the treated gas passages 21 here extend over the entire length of the exchanger 1 and the outlet box 25 is then disposed at the end of the exchanger.
  • the treated gas passages 21 lead to an end outlet box 25.
  • an ejector is here formed of two parts fixed to the plate 122, namely an upstream part 131 pierced with a passage 132 of diameter d and a downstream portion 133 pierced with a passage 134 of diameter D.
  • the transverse surface of the passage D is equal to 1.5 to 5 times the transverse surface of the passage d, advantageously from 2 to 4 and preferably of the order of 3. This arrangement allows flexibility of adjustment making it possible to have a constant expansion pressure downstream for flow rates varying within wide limits, for example from 40% to 120% with also very different upstream pressures.
  • FIG. 19 is an alternative embodiment of FIG. 18 where the passages 132 ′ and 134 ′ are made directly in the plate 122.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

This invention relates to heat exchangers comprising vertically arranged plates, and passages are provided which extend from an inlet casing to an outlet casing, as well as further passages which extend from a two-phase inlet casing to other outlet casings. Other passages for an auxiliary fluid extend between the latter casing outlet and an upper extremity of the heat exchanger. Heat exchangers according to the invention can be used for the liquefaction of natural gas in particular.

Description

La présente invention concerne un échangeur de chaleur du type à plaques comprenant une pluralité de plaques rectangulaires dont la dimension transversale constitue la largeur de l'échangeur et dont la plus grande dimension longitudinale est la longueur de l'échangeur, empilées et solidarisées à espacement étanche selon l'épaisseur de l'échangeur pour former:

  • - une pluralité de premiers passages dits passages de refroidissement d'un mélange réfrigérant;
  • - une pluralité de deuxièmes passages dits passages de refroidissement d'un gaz à traiter;
    lesdits premiers et seconds passages ayant des zones de distribution d'entrées à une première extrémité longitudinale de l'échangeur et des zones de distribution de sortie au moins au voisinage de l'autre extrémité longitudinale de l'échangeur;
  • - une pluralité de troisièmes passages dits passages de réchauffage du mélange réfrigérant, avec des zones de distribution d'entrées à la dite seconde extrémité de l'échangeur, et avec des zones de distribution de sorties disposées à distance de la dite première extrémité d'échangeur aboutissant à des fenêtres de sortie latérales;
  • - une pluralité de quatrièmes passages disposés dans les prolongements longitudinaux laissés libres par lesdits troisièmes passages avec des fenêtres latérales d'entrée et de sortie. Un tel échangeur de chaleur est décrit dans le document FR-A-2 384 221.
The present invention relates to a heat exchanger of the plate type comprising a plurality of rectangular plates whose transverse dimension constitutes the width of the exchanger and whose greatest longitudinal dimension is the length of the exchanger, stacked and secured to each other with tight spacing depending on the thickness of the exchanger to form:
  • - A plurality of first passages called cooling passages of a cooling mixture;
  • - A plurality of second passages called cooling passages of a gas to be treated;
    said first and second passages having inlet distribution zones at a first longitudinal end of the exchanger and outlet distribution zones at least in the vicinity of the other longitudinal end of the exchanger;
  • - A plurality of third passages known as reheating passages of the refrigerant mixture, with inlet distribution zones at said second end of the exchanger, and with outlet distribution zones arranged at a distance from said first end of exchanger leading to lateral outlet windows;
  • - A plurality of fourth passages arranged in the longitudinal extensions left free by said third passages with lateral entry and exit windows. Such a heat exchanger is described in document FR-A-2 384 221.

La présente invention a pour but des modalités constructives plus spécialement appropriées à un agencement de l'échangeur selon lequel sa grande dimension est disposée verticalement. Cet agencement vertical de l'échangeur s'est avéré être décisif pour assurer une distribution correcte des différents fluides (premier, second, troisième et quatrième fluides) permettant ainsi un transfert thermique rigoureusement équilibré dans le sens transversal de l'échangeur.The object of the present invention is to provide construction methods more particularly suitable for an arrangement of the exchanger according to which its large dimension is arranged vertically. This vertical arrangement of the exchanger has proven to be decisive in ensuring correct distribution of the various fluids (first, second, third and fourth fluids) thus allowing a strictly balanced heat transfer in the transverse direction of the exchanger.

On comprend très bien, en se référant à l'échangeur décrit dans le brevet français no. 2 384 221 que l'échangeur agencé avec sa dimension longitudinale dans le sens horizontal subit les conséquences de la gravité qui font que la zone inférieure de l'échangeur ne voit pas le même flux thermique specifique que la zone supérieure de l'échangeur. Cette dissymétrie de fonctionnement est encore accentuée dans le cas des quatrièmes passages (figure 5): le réfrigérant se vaporise à température constante dans ces 4ème passages, au cours d'un échange de chaleur à courants-croisés avec les fluides des 1er et 2ème passages en cours de refroidissement. Le choix d'un tel mode d'échange conduit à un flux thermique spécifique beaucoup plus grand dans la zone située en amont de l'écoulement des fluides dans les 1er et 2ème passages que dans celle en aval; le débit de liquide induit par l'effet de rebouillage devrait donc être beaucoup plus grand dans la zone amont que dans la zone aval, si on ne veut pas assécher la zone haute amont; la condition est difficilement réalisable.We understand very well, with reference to the exchanger described in French patent no. 2 384 221 that the exchanger arranged with its longitudinal dimension in the horizontal direction suffers from the consequences of gravity which means that the lower zone of the exchanger does not see the same specific heat flow as the upper zone of the exchanger. This asymmetry of operation is further accentuated in the case of the fourth passages (FIG. 5): the refrigerant vaporizes at constant temperature in these 4th passages, during a cross-current heat exchange with the fluids of the 1st and 2nd passages during cooling. The choice of such a mode of exchange leads to a much greater specific heat flux in the zone located upstream of the flow of fluids in the 1st and 2nd passages than in that downstream; the liquid flow rate induced by the reboiling effect should therefore be much greater in the upstream area than in the downstream area, if the upper upstream area is not to be dried up; the condition is difficult to achieve.

Afin d'obtenir le but recherché par l'invention consistant à permettre un agencement vertical de l'échangeur de chaleur, lesdits quatrièmes passages présentent, de façon connue en soi, des zones actives d'échange thermique à ondes orientées longitudinalement, dont l'extension longitudinale est limitée pour dégager de part et d'autre de chaque dite zone active d'une part une zone de distribution alimentatrice à ondes, d'autre part une zone de distribution évacuatrice à ondes, lesdites zones de distribution alimentatrice et évacuatrice débouchant respectivement dans lesdites fenêtres d'entrées et sortie desdits quatrièmes passages, dites fenêtres d'entrée et de sortie communiquant avec un moyen séparateur de phase commun au moins substantiellement coextensif longitudinalement avec lesdites zones actives.In order to obtain the aim sought by the invention of allowing a vertical arrangement of the heat exchanger, said fourth passages have, in a manner known per se, active heat exchange zones with longitudinally oriented waves, the longitudinal extension is limited to clear on each side of each said active area on the one hand a wave feed distribution area, on the other hand a wave evacuation distribution area, said feed and evacuation distribution areas opening out respectively in said entry and exit windows of said fourth passages, said entry and exit windows communicating with a common phase separator means at least substantially coextensive longitudinally with said active areas.

La disposition verticale de l'échangeur a permet d'assurer des flux de chaleur spécifiques plus homogènes entre les 1er et 2ème passages d'une part et les 3ème passages d'autres part, elle a cependant nécessité un réarrangement complet des 4ème passages qui sont disposés selon l'invention non plus à courants-croisés, mais co- extensivement par rapport à la circulation des autres fluides s'écoulant dans les autres passages. C'est la raison pour laquelle une communication directe entre les entrées et les sorties des passages est prévue pour former séparateur de phase. On conçoit qu'en fonctionnement, le liquide entrant à l'extrémité inférieure circule à la façon d'un rebouilleur dans les passages avec un excès important de liquide vaporisé, ce qui assure une homogénéité parfaite des transferts thermiques.The vertical arrangement of the exchanger a makes it possible to ensure more homogeneous specific heat flows between the 1st and 2nd passages on the one hand and the 3rd passages on the other hand, it however required a complete rearrangement of the 4th passages which are arranged according to the invention no longer at cross-currents, but co-extensively with respect to the circulation of the other fluids flowing in the other passages. This is why direct communication between the inputs and outputs of the passages is provided to form a phase separator. It is understood that in operation, the liquid entering the lower end circulates like a reboiler in the passages with a large excess of vaporized liquid, which ensures perfect homogeneity of the heat transfers.

On note que cet avantage est dû essentiellement au fait que le liquide réfrigérant est ici un constituant unique tel le propane et non un mélange réfrigérant comme c'est le cas dans celui qui circule dans les premier et troisième passages, il n'y a donc pas de variation de la composition des phases liquide et vapeur au cours de la vaporisation. On peut donc, sans dégrader les performances thermodynamiques de l'échangeur de chaleur, recycler l'excédant de liquide non vaporisé. La façon la plus économique pour effectuer cette opération est de la faire au plus près de la zone de transfert thermique concernée, par exemple au moyen de boîtes qui sont communes aux entrées et sorties. Bien entendu, ces deux boîtes communes ont une section suffisante pour qu'une séparation au moins grossière des phases liquide et vapeur puisse se produire: la plus grosse partie, par exemple de l'ordre de 90% du liquide exéden- taire non vaporisé, est ainsi directement recyclée à l'entrée de la même zone d'échange et une faible partie seulement est entraînée par la phase vapeur qui sera d'ailleurs séparée ultérieurement de préférence dans des collecteurs appropriés.It should be noted that this advantage is essentially due to the fact that the coolant here is a single constituent such as propane and not a coolant mixture as is the case in that which circulates in the first and third passages, there is therefore no variation in the composition of the liquid and vapor phases during vaporization. It is therefore possible, without degrading the thermodynamic performance of the heat exchanger, to recycle the excess of non-vaporized liquid. The most economical way to carry out this operation is to do it as close as possible to the heat transfer zone concerned, for example by means of boxes which are common to the inputs and outputs. Of course, these two common boxes have a cross section sufficient for an at least coarse separation of the liquid and vapor phases to occur: the largest part, for example of the order of 90% of the non-vaporized excess liquid, is thus directly recycled at the entrance to the same exchange zone and only a small part is entrained by the vapor phase which will moreover be separated later preferably in suitable collectors.

Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui suit, à titre d'exemple, en référence aux dessins annexés dans lesquels:

  • - la figure 1 est une vue schématique d'une installation de traitement cryogénique incorporant un échangeur selon l'invention en coupe verticale;
  • - la figure 2 est une vue plus détaillée des quatrièmes passages de l'échangeur selon la figure 1;
  • - les figures 3 à 7 sont des vues en coupe verticale de variante de réalisation des quatrièmes passages d'un échangeur selon l'invention;
  • - les figures 8 et 9 sont des vues en coupe verticale de deux variantes de réalisation de la partie basse de l'échangeur au droit d'un troisième passage;
  • - la figure 10 est une vue en coupe verticale d'un détail de la figure 9;
  • - la figure 11 est une variante de réalisation de la figure 9;
  • - la figure 12 est une vue partielle en coupe verticale d'un échangeur au droit d'un deuxième passage;
  • - la figure 13 est une vue partiellement en coupe, et en perspective d'une variante de l'alimentation d'un troisième passage;
  • - les figures 14 et 15 sont des vues en coupe partielle et verticale, respectivement selon l'épaisseur et la largeur de l'échangeur;
  • - les figures 16 et 17 sont des vues analogues aux figures 14 et 15 d'une autre variante de réalisation;
  • - les figures 18 et 19 sont des vues de deux variantes de réalisation de la figure 10.
The characteristics and advantages of the invention will become more apparent from the following description, by way of example, with reference to the appended drawings in which:
  • - Figure 1 is a schematic view of a cryogenic processing installation incorporating an exchanger according to the invention in vertical section;
  • - Figure 2 is a more detailed view of the fourth passages of the exchanger according to Figure 1;
  • - Figures 3 to 7 are views in vertical section of an alternative embodiment of the fourth passages of an exchanger according to the invention;
  • - Figures 8 and 9 are views in vertical section of two alternative embodiments of the lower part of the exchanger to the right of a third passage;
  • - Figure 10 is a vertical sectional view of a detail of Figure 9;
  • - Figure 11 is an alternative embodiment of Figure 9;
  • - Figure 12 is a partial view in vertical section of an exchanger at the right of a second passage;
  • - Figure 13 is a partially sectional view in perspective of a variant of the supply of a third passage;
  • - Figures 14 and 15 are views in partial and vertical section, respectively according to the thickness and the width of the exchanger;
  • - Figures 16 and 17 are views similar to Figures 14 and 15 of another alternative embodiment;
  • - Figures 18 and 19 are views of two alternative embodiments of Figure 10.

En se référant aux figures 1, 2 et 12 une installation de liquéfaction comprend un échangeur à plaques 1 formé d'un empilage de plaques rectangulaires dont la grande dimension, ou longueur, ou hauteur, est disposée verticalement depuis une première extrémité haute 1a jusqu'à une seconde extrémité basse 1b tandis que les petites dimensions, ou largeur et épaisseur, ont des extensions horizontales.With reference to FIGS. 1, 2 and 12, a liquefaction installation comprises a plate exchanger 1 formed from a stack of rectangular plates whose large dimension, or length, or height, is arranged vertically from a first high end 1a up to at a second lower end 1b while the small dimensions, or width and thickness, have horizontal extensions.

Ces plaques sont séparées les unes des autres par des barrettes-entretoises, le tout étant brasé de façon à définir une pluralité de passages d'échange thermique, que l'on énumère ci-après:

  • 1. En se référant plus particulièrement à la figure 1, une pluralité de premiers passages d'échanges thermiques 11, ou passages de refroidissement de mélange réfrigérant, à extension verticale sur toute la longueur ou hauteur de l'échangeur, comprenant une zone active d'échange thermique 16 s'étendant depuis une zone de distribution d'entrée haute 12 jusqu'à une zone de distribution de sortie basse (non représentée).
    La zone de distribution haute 12 est elle-même alimentée par une boîte en bout d'entrée haute 14 pour le mélange réfrigérant, tandis que la zone de distribution de sortie basse communique avec une boîte en bout de sortie basse 15.
  • 2. En se référant plus particulièrement à la figure 12, une pluralité de deuxième passages d'échange thermique 21, ou passages de refroidissement du gaz traité, ayant substantiellement la même configuration, avec symétrie par rapport à un plan vertical médian, que la pluralité des passages 11 à extension verticale, comprenant une zone active d'échange thermique 26 s'étendant depuis une zone de distribution haute 22 jusqu'à une zone de distribution de sortie basse 23. La zone de distribution haute 22 est alimentée par une boîte en bout d'entrée haute 24, tandis que la zone de distribution de sortie basse 23 débouche dans une boîte en bout de sortie basse 25.
  • 3. En se référant plus particulièrement à la figure 1, une pluralité de troisièmes passages 31, ou passages de réchauffement du mélange réfrigérant, à extension verticale, comprenant une zone active d'échanges thermiques 36 s'étendant depuis une zone de distribution d'entrée basse 32 jusqu'à une zone de distribution de sortie haute 33, située à un niveau intermédiaire sur la hauteur de l'échangeur. La zone de distribution d'entrée basse 32 communique avec une boîte en bout d'entrée basse 34, tandis que la zone de distribution de sortie haute 33 communique avec deux boîtes de sortie latérale 35a et 35b.
  • 4. En se référant plus particulièrement aux figures 1 et 2, une pluralité de quatrièmes passages 41, pour un réfrigérant auxiliaire, groupés en un ensemble disposé dans le prolongement longitudinal supérieur de chacun des troisièmes passages de réchauffement du mélange réfrigérant 31, chacun de ces quatrièmes passage 41 étant lui-même subdivisé en une pluralité (quatre au dessin) de sous-passages à pressions différentes 41 a, 41 b, 41 c, 41 d (quatre pressions différentes au dessin), la pression étant décroissante d'un passage supérieur vers un passage inférieur et chacun de ces passages 41 comprend une zone active d'échange thermique 46 (46a, 46b, 46c, 46d) s'étendant entre une zone de distribution basse d'entrée 42 (42a, 42b, 42c, 42d) et une zone de distribution haute de sortie 43 (43a, 43b, 43c, 43d), les zones de distribution d'entrée 42 et de sortie 43 étant racordées par des doubles boîtes communes d'entrée-sortie latérales 44 et 45 (44a, 44b, 44c, 44d; 45a, 45b, 45c, 45d).
These plates are separated from each other by spacer bars, the whole being brazed so as to define a plurality of heat exchange passages, which are listed below:
  • 1. Referring more particularly to FIG. 1, a plurality of first heat exchange passages 11, or cooling mixture cooling passages, extending vertically over the entire length or height of the exchanger, comprising an active zone d heat exchange 16 extending from a high inlet distribution area 12 to a low outlet distribution area (not shown).
    The upper distribution zone 12 is itself supplied by a box at the top inlet end 14 for the refrigerant mixture, while the low outlet distribution zone communicates with a box at the bottom outlet end 15.
  • 2. Referring more particularly to FIG. 12, a plurality of second heat exchange passages 21, or passages for cooling the treated gas, having substantially the same configuration, with symmetry with respect to a median vertical plane, as the plurality passages 11 with vertical extension, comprising an active heat exchange zone 26 extending from a high distribution zone 22 to a low outlet distribution zone 23. The high distribution zone 22 is supplied by a box upper inlet end 24, while the lower outlet distribution zone 23 opens into a box at the lower outlet end 25.
  • 3. Referring more particularly to FIG. 1, a plurality of third passages 31, or heating passages of the refrigerant mixture, with vertical extension, comprising an active heat exchange zone 36 extending from a distribution zone of low inlet 32 to a high outlet distribution area 33, located at an intermediate level on the height of the exchanger. The lower inlet distribution area 32 communicates with a box at the lower inlet end 34, while the upper outlet distribution area 33 communicates with two lateral outlet boxes 35a and 35b.
  • 4. Referring more particularly to FIGS. 1 and 2, a plurality of fourth passages 41, for an auxiliary refrigerant, grouped in an assembly disposed in the upper longitudinal extension of each of the third heating passages of the refrigerant mixture 31, each of these fourth passage 41 being itself subdivided into a plurality (four in the drawing) of sub-passages at different pressures 41 a, 41 b, 41 c, 41 d (four different pressures in the drawing), the pressure decreasing by one passage upper to a lower passage and each of these passages 41 comprises an active heat exchange zone 46 (46a, 46b, 46c, 46d) extending between a low inlet distribution zone 42 (42a, 42b, 42c, 42d ) and a high outlet distribution area 43 (43a, 43b, 43c, 43d), the inlet 42 and outlet 43 distribution areas being connected by double common lateral input-outlet boxes 44 and 45 (44a , 44b, 44c, 44d; 45a, 45b, 45c, 45d).

On va maintenant entrer dans le détail de l'alimentation de l'échangeur 1 en se référant plus particulièrement à la figure 1: les boîtes d'entrée 14 des premiers passages du mélange réfrigérant 11 sont raccordées par une conduite 60, incorporant un refroidisseur 61, à la sortie d'un compresseur 62 dont l'entrée est raccordée par une conduite 63 aux boîtes de sortie latérales (35a et 35b) des troisièmes passages 31. La boîte d'entrée 34 des passages 31 est elle-même raccordée par une conduite 64 incorporant une vanne de détente 65 aux boîtes de sortie 15 des premiers passages 11. Le mélange réfrigérant comprend, par exemple, des hydrocarbures tels que méthane, éthane, butane et généralement de l'azote et la particularité du procédé est que le mélange réfrigérant parvient à l'état purement gazeux aux boîtes d'entrée 14.We will now enter into the detail of the supply of the heat exchanger 1 with particular reference to FIG. 1: the inlet boxes 14 of the first passages of the refrigerant mixture 11 are connected by a pipe 60, incorporating a cooler 61 , at the outlet of a compressor 62, the inlet of which is connected by a pipe 63 to the lateral outlet boxes (35a and 35b) of the third passages 31. The inlet box 34 of the passages 31 is itself connected by a line 64 incorporating an expansion valve 65 into the outlet boxes 15 of the first passages 11. The refrigerant mixture comprises, for example, hydrocarbons such as methane, ethane, butane and generally nitrogen, and the particularity of the process is that the mixture refrigerant reaches the inlet boxes in a purely gaseous state 14.

Les seconds passages 21 destinés au gaz en cours de traitement (généralement du gaz naturel) sont alimentés par leurs boîtes d'entrée 24 en gaz naturel à l'état gazeux à température ambiante et les boîtes de sorties basses 25 délivrent du gaz naturel liquéfié. De façon connue, les seconds passages peuvent être éuipés de sorties et d'entrées intermédiaires disposées latéralement pour assurer l'élimination de certains composants du gaz en cours de traitement.The second passages 21 intended for gas in during treatment (generally natural gas) are supplied by their inlet boxes 24 with natural gas in gaseous state at room temperature and the low outlet boxes 25 deliver liquefied natural gas. In known manner, the second passages can be equipped with outlets and intermediate inlets arranged laterally to ensure the elimination of certain components of the gas during treatment.

Les quatrièmes passages 41 (41 a, 41 b, 41 c, 41 d) sont raccordés par leurs boîtes d'entrée-sortie 44 et 45 d'une part, part des tubes hauts 66 destinés à véhiculer de la vapeur, le cas échéant avec du liquide, et des conduites basses 67 destinées à véhiculer exclusivement du liquide, à une double série de collecteurs latéraux 71 (71a, 71 b, 71 c, 71 d) et 72 (72a, 72b, 72c, 72d). Ces collecteurs latéraux 71 et 72 sont eux-mêmes raccordés par des tubulures «vapeur» 73'et des conduites «liquides» 74, chacun à un séparateur 75 (75a, 75b, 75c, 75d) en nombre égal au nombre de types de quatrièmes sous-passages 41, opérant sous des pressions différentes (c'est-à-dire quatre au dessin), un séparateur 75, par exemple le séparateur 75b, étant raccordé au débouché de la phase «liquide» du séparateur voisin à plus haute pression (75a) par une conduite de liaison 76 (76b, 76c, 76d) à vanne de détente 77 (77b, 77c, 77d), sauf le séparateur de tête sous la plus haute pression 75a qui est lui-même raccordé par une canalisation 76a, incorporant une vanne de détente 77a et un refroidisseur- condenseur 78 à la sortie d'un compresseur 79 à plusieurs étages (79a, 79b, 79c, 79d) dont les entrées sont raccordées par des conduites 80 (80a, 80b, 80c, 80d) à une extrémité haute des séparateurs 75a, 75b, 75c, 75d) respectivement.The fourth passages 41 (41 a, 41 b, 41 c, 41 d) are connected by their inlet-outlet boxes 44 and 45 on the one hand, part of the high tubes 66 intended to convey steam, if necessary with liquid, and low lines 67 intended to convey exclusively liquid, to a double series of lateral collectors 71 (71a, 71 b, 71 c, 71 d) and 72 (72a, 72b, 72c, 72d). These lateral collectors 71 and 72 are themselves connected by “steam” pipes 73 ′ and “liquid” pipes 74, each to a separator 75 (75a, 75b, 75c, 75d) in number equal to the number of types of fourth sub-passages 41, operating under different pressures (that is to say four in the drawing), a separator 75, for example the separator 75b, being connected to the outlet of the “liquid” phase of the neighboring separator at higher pressure (75a) by a connecting pipe 76 (76b, 76c, 76d) to expansion valve 77 (77b, 77c, 77d), except the head separator under the highest pressure 75a which is itself connected by a pipe 76a , incorporating an expansion valve 77a and a cooler-condenser 78 at the outlet of a multistage compressor 79 (79a, 79b, 79c, 79d) whose inputs are connected by conduits 80 (80a, 80b, 80c, 80d ) at an upper end of the separators 75a, 75b, 75c, 75d) respectively.

On détaille maintenant les différentes zones de distribution (12) - (22-23) - (32-33) - (42-43) dont certaines présentent des structures originales.We now detail the different distribution areas (12) - (22-23) - (32-33) - (42-43) some of which have original structures.

En se référant aux figures 1 et 12, les zones de distribution (12) et (22-23) présentent des structures du même type (ilen est de même de la zone de distribution de sortie basse non représentée des premiers passages d'échange thermique 11), et l'on se contente donc de décrire la zone de distribution 12. Dans chacun des cas, les boîtes d'entrée (14-24) ou de sortie (15-25) sont aménagées en bout axial de l'échangeur 1, mais avec un décalage latéral de façon à permettre, sur une même extrémité d'échangeur, l'aménagement de plusieurs boîtes d'entrée et/ou de sortie. La zone de distribution 12 comprend deux sections 12a, 12b, formées de tôle ondulée; la section 12a présente des ondes à extension verticale, tandis que la section 12b présente des ondes paralléles à extension inclinée parallélement à la direction qui relie le bord intérieur 91 de la boîte d'alimentation 14 et l'angle inférieur le plus éloigné 92 de la zone de distribution 12. De la sortie, le fluide, qu'il soit à l'état gazeux ou liquide (mais pour la boîte d'alimentation 14, ce fluide est expressément à l'état gazeux) se répartit uniformément le long des ondes parallèles de la section 12a et ensuite se distribue le long des ondes parallèles de la section 12b pour parvenir uniformément dans la zone active d'échange thermique 16, qui est elle-même pourvue d'ondes parallèles à extension verticale, généralement très serrées, pour obtenir le maximum d'effet d'échange thermique.Referring to Figures 1 and 12, the distribution zones (12) and (22-23) have structures of the same type (the same is true of the distribution zone of the low outlet not shown in the first heat exchange passages 11), and it is therefore sufficient to describe the distribution area 12. In each of the cases, the inlet (14-24) or outlet (15-25) boxes are arranged at the axial end of the exchanger 1, but with a lateral offset so as to allow, on the same exchanger end, the arrangement of several inlet and / or outlet boxes. The distribution zone 12 comprises two sections 12a, 12b, formed from corrugated sheet; section 12a presents waves with vertical extension, while section 12b presents parallel waves with extension inclined parallel to the direction which connects the inner edge 91 of the supply box 14 and the most distant lower corner 92 of the distribution zone 12. From the outlet, the fluid, whether in the gaseous or liquid state (but for the supply box 14, this fluid is expressly in the gaseous state) is distributed uniformly along the waves parallel from section 12a and then distributed along the parallel waves of section 12b to reach uniformly in the active heat exchange zone 16, which is itself provided with parallel waves with vertical extension, generally very tight, for obtain the maximum heat exchange effect.

En se référant à la figure 1, on détaille maintenant la structure particulière de la zone de distribution d'entrée 32 et de la zone de distribution de sortie 33.Referring to FIG. 1, we now detail the particular structure of the inlet distribution area 32 and of the outlet distribution area 33.

Chaque zone de distribution 32 a cette particularité de présenter une fenêtre d'entrée 95 de même épaisseur qu'un passage 31 de l'échangeur 1 et dont l'autre dimension comptée selon la largeur de l'échangeur 1 est substantiellement réduite par la présence des boîtes de sortie 15 pour le mélange réfrigérant et 25 pour le gaz traité. En outre (mais cela ne présente pas d'importance pour la définition des structures de la zone de distribution 32), c'est un fluide diphasique qui traverse cette fenêtre d'alimentation 95 selon des dispositions qui seront examinées plus loin.Each distribution zone 32 has the particularity of having an inlet window 95 of the same thickness as a passage 31 of the exchanger 1 and the other dimension of which, counted according to the width of the exchanger 1, is substantially reduced by the presence outlet boxes 15 for the refrigerant mixture and 25 for the treated gas. In addition (but this is not important for the definition of the structures of the distribution zone 32), it is a two-phase fluid which passes through this supply window 95 according to arrangements which will be examined below.

Cette zone de distribution 32 est constituée par quatre sections qui sont définies par des droites reliant les angles supérieurs de la zone 32 aux bords voisins de la fenêtre 95. Une première section 32a, située en amont selon un sens d'écoulement du fluide, se présente donc sous la forme d'un triangle dont la base est coextensive avec la fenêtre 95 et comporte des ondes à extension verticale. Cette première section 32a, alimente par ses deux côtés deux sections intermédiaires 32b et 32c équipées d'ondes inclinées selon la direction qui relie, dans chaque section 32b ou 32c, le bord inférieur adjacent 96 (96') de la section 32a au bord supérieur adjacent 97' (97) de la zone de distribution 32.This distribution zone 32 consists of four sections which are defined by straight lines connecting the upper corners of the zone 32 to the neighboring edges of the window 95. A first section 32a, located upstream in a direction of flow of the fluid, is therefore presents in the form of a triangle whose base is coextensive with the window 95 and comprises waves with vertical extension. This first section 32a, feeds by its two sides two intermediate sections 32b and 32c equipped with waves inclined in the direction which connects, in each section 32b or 32c, the adjacent lower edge 96 (96 ') of section 32a to the upper edge adjacent 97 '(97) of distribution area 32.

Une quatrième section de distribution 32d se présente également sous forme de triangle dont le sommet coïncide avec celui de la section 32a et est équipée d'ondes à extension verticale permettant la reprise du fluide issu des section 32b et 32c pour alimenter de façon uniforme l'ensemble des ondes à extension verticale de la zone active d'échange thermique 36.A fourth distribution section 32d is also in the form of a triangle, the apex of which coincides with that of section 32a and is equipped with vertically extending waves allowing the fluid from the sections 32b and 32c to be taken up to uniformly supply the set of waves with vertical extension of the active heat exchange zone 36.

On détaille maintenant plus particulièrement en référence à la figure 2 la forme des zones de distribution d'entrée 42 et de sortie 43 de chacun des quatrièmes passages 41 destinés à la vaporisation d'un réfrigérant auxiliaire, généralement du propane; ces zones de distribution présentent chacune deux sections amont 421 et 422 à l'entrée, 431, 432 à la sortie, en forme de triangles ou trapèzes relativement aplatis et dont les sommets ou petits côtés se font face au niveau de leurs sommets ou petits côtés 98-98', avec des fenêtres d'entrée 991, 992 et de sortie 993 et 994, à partir des boîtes d'entrée-sortie 44 et 45.We now detail in more detail with reference to FIG. 2 the shape of the inlet 42 and outlet 43 distribution zones of each of the fourth passages 41 intended for the vaporization of an auxiliary refrigerant, generally propane; these distribution zones each have two upstream sections 421 and 422 at the entrance, 431, 432 at the exit, in the form of relatively flat triangles or trapezoids whose vertices or short sides face each other at their vertices or short sides 98-98 ', with entry windows 991, 992 and exit 993 and 994, from entry-exit boxes 44 and 45.

Ces sections 421 et 422 (431,432) ont des ondes à extension horizontale, qui viennent alimenter (ou sont alimentés respectivement par) une troisième section de distribution 423, 424 (433, 434), formée d'une double sous-section chacune formée d'ondes inclinées convergentes vers la zone active d'échange thermique 46 pour l'entrée (ou divergentes à partir de cette zone d'échange 46 pour la sortie), de façon à reprendre le fluide issu des sections 421 et 422 (ou issu de la zone d'échange thermique 46 respectivement) pour le distribuer uniformément tout le long de la zone active d'échange thermique 46 (ou dans les sections 431, 432 respectivement).These sections 421 and 422 (431,432) have waves with horizontal extension, which feed (or are fed respectively by) a third distribution section 423, 424 (433, 434), formed of a double subsection each formed of inclined waves converging towards the active heat exchange zone 46 for the inlet (or diverging from this exchange zone 46 for the outlet), so as to take up the fluid issuing sections 421 and 422 (or from the heat exchange zone 46 respectively) to distribute it uniformly all along the active heat exchange zone 46 (or in sections 431, 432 respectively).

On notera que les fenêtres d'entrée 991 et 992, au niveau du liquide, et de sortie 993 et 994 au niveau de la vapeur ont des extensions longitudinales différentes, puisque les fenêtres de sortie «vapeur» 993 et 994 sont nettement plus allongées que les fenêtres d'entrée «liquide» 991 et 992, ce qui s'explique par le fait qu'elles doivent laisser passer les mêmes quantités de fluide que les fenêtres «liquide» 991 et 992, mais à l'état partiellement vaporisé, alors que ces fenêtres 991 et 992 laissent passer le fluide exclusivement sous forme de liquide.It will be noted that the inlet windows 991 and 992, at the liquid level, and the outlet windows 993 and 994 at the vapor level have different longitudinal extensions, since the “steam” outlet windows 993 and 994 are significantly longer than the “liquid” inlet windows 991 and 992, which is explained by the fact that they must allow the same quantities of fluid to pass through as the “liquid” windows 991 and 992, but in the partially vaporized state, then that these windows 991 and 992 allow the fluid to pass exclusively in the form of liquid.

En se référant maintenant aux figures 1 et 2, en fonctionnement, un réfrigérant auxiliaire, par exemple du propane, est introduit de façon continue dans les collecteurs latéraux 71 et 72 par les conduites «liquide» 74, et ce liquide après avoir été distribué dans les boîtes 44 et 45 pénètre, par les fenêtres 991 et 992 dans les sections 421 et 422 de la zone de distribution alimentatrice 42, avant d'être repris par les sous-sections 423 et 424 pour être distribué, dans toute la zone active d'échange thermique 46 constituée d'ondes serrées à extension verticale.Referring now to FIGS. 1 and 2, in operation, an auxiliary refrigerant, for example propane, is introduced continuously into the lateral collectors 71 and 72 by the “liquid” lines 74, and this liquid after having been distributed in the boxes 44 and 45 enter, through the windows 991 and 992 into the sections 421 and 422 of the supply distribution area 42, before being taken up by the subsections 423 and 424 for distribution, throughout the active area d 'heat exchange 46 consisting of tight waves with vertical extension.

Le réfrigérant auxiliaire liquide se vaporise partiellement dans ces ondes, et s'écoule par les sous-sections 433 et 434 de la zone de distribution 43, parvient dans les sections 431 et 432 pour être à nouveau dirigé dans les boîtes 44 et 45, puis dans les collecteurs latéraux 71 et 72. La fraction «vapeur» dans les collecteurs 71 et 72 est dirigée (en entraînant cependant une partie de liquide non complètement décanté) vers les séparateurs à pressions différentes 75a, 75b, 75c, 75d où les gouttelettes liquides entraînées se déposent avec la fraction liquide dans lesdits séparateurs.The auxiliary liquid refrigerant partially vaporizes in these waves, and flows through subsections 433 and 434 of distribution zone 43, reaches sections 431 and 432 to be directed again into boxes 44 and 45, then in the lateral collectors 71 and 72. The “vapor” fraction in the collectors 71 and 72 is directed (however entraining a portion of liquid which is not completely decanted) to the separators at different pressures 75a, 75b, 75c, 75d where the liquid droplets entrained are deposited with the liquid fraction in said separators.

Le fonctionnement de ces séparateurs est bien connu et ne sera pas rappelé ci-après. On se contentera cependant de rappeler que les différentes fractions «vapeur» des séparateurs 75 sont ramenées aux différents étages du compresseur 79, tandis que le débit global du compresseur 79 est d'abord refroidi et condensé, dans le refroidisseur-condenseur 78, puis subit une première détente en 77a, avant de parvenir dans le séparateur 75a, dont une partie de la fraction liquide est dérivée par la canalisation 76b vers une vanne de détente 77b avant d'être introduite dans le second séparateur 75b, et ainsi de suite.The operation of these separators is well known and will not be repeated below. It will however be content to recall that the different “steam” fractions of the separators 75 are brought back to the different stages of the compressor 79, while the overall flow of the compressor 79 is first cooled and condensed, in the cooler-condenser 78, then undergoes a first expansion at 77a, before reaching the separator 75a, part of the liquid fraction of which is diverted through the pipe 76b to an expansion valve 77b before being introduced into the second separator 75b, and so on.

On se réfère maintenant à la figure 3, qui concerne une variante de réalisation des passages de quatrième fluide 41 pour le réfrigérant auxiliaire. Dans cette forme de réalisation, les passages pour le quatrième fluide 41 incorporent une zone active d'échange thermique 146 qui est constituée d'une double section en forme de trapèze 146a et 146b dont les plus grands côtés sont confondus et correspondent à la hauteur longitudinale d'un passage 41.Referring now to Figure 3, which relates to an alternative embodiment of the fourth fluid passages 41 for the auxiliary refrigerant. In this embodiment, the passages for the fourth fluid 41 incorporate an active heat exchange zone 146 which consists of a double trapezoid-shaped section 146a and 146b, the largest sides of which coincide and correspond to the longitudinal height. of a passage 41.

Les sections d'entrée «liquide» 142a et 142b ont la forme de triangles rectangles aplatis dont les petits côtés constituent des fenêtres d'entrée 199a et 199a' pour le liquide, alors que les sections de sortie 143a et 143b ont la même forme, mais présentent des fenêtres de sortie 199b et 199b' de formes nettement plus allongées dans le sens longitudinal.The “liquid” inlet sections 142a and 142b have the shape of flattened right triangles whose short sides constitute inlet windows 199a and 199a ′ for the liquid, while the outlet sections 143a and 143b have the same shape, but have outlet windows 199b and 199b 'of shapes which are clearly more elongated in the longitudinal direction.

On notera que, dans ce cas, les ondes des sections 146a et 146b de la zone active d'échange thermique 46 sont toutes verticales et ces ondes peuvent avoir des pas de plus en plus serrés au fur et à mesure qu'on s'approche des boîtes 44 et 45, de façon à offrir au fluide des pertes de charge substantiellement égales malgré les différences appréciables de longueurs de parcours, comme cela ressort clairement du dessin.It will be noted that, in this case, the waves of sections 146a and 146b of the active heat exchange zone 46 are all vertical and these waves can have increasingly tight steps as one approaches. boxes 44 and 45, so as to offer the fluid substantially equal pressure drops despite the appreciable differences in path lengths, as is clear from the drawing.

En se référant à la figure 4, la forme de réalisation diffère essentiellement de ce qui est décrit à la figure 3 par le fait que les sections d'entrée (142a' et 142b') et de sortie (143a' et 143b') ont ici la forme, non plus de triangles, mais de trapèzes rectangles.Referring to Figure 4, the embodiment differs essentially from what is described in Figure 3 in that the inlet (142a 'and 142b') and outlet (143a 'and 143b') sections have here the shape, no longer of triangles, but of rectangular trapezoids.

La figure 5 se différencie de la figure 4 en ce que la zone active d'échange thermique 46a, ici, une forme rectangulaire à extension longitudinale plus faible et des sections d'entrée 142a" et 142b" qui ont la même forme que les sections 142a' et 142b' de la figure 4, mais ces sections précèdent deux sections de raccordement 142c' et 142c", adjacentes à la zone active 46.FIG. 5 differs from FIG. 4 in that the active heat exchange zone 46a, here, a rectangular shape with a smaller longitudinal extension and inlet sections 142a "and 142b" which have the same shape as the sections 142a 'and 142b' of FIG. 4, but these sections precede two connection sections 142c 'and 142c ", adjacent to the active area 46.

Une disposition sensiblement analogue est prévue pour la zone de distribution de sortie, dans laquelle les sections de sortie 143a" et 143b" sont précédées par des sections de raccordement 143d' et 143d". Les sections de raccordement 142c' et 142c" ont des ondes inclinées de façon à distribuer le fluide issu des sections 142a" et 142b" tout au long de l'entrée de la zone active d'échange thermique 46, tandis que les sections de raccordement 143d' et 143d" ont pour but de reprendre le fluide à l'état diphasique depuis la sortie de la section active d'échange thermique 46 vers les sections de sortie 143a" et 143b".A substantially similar arrangement is made for the outlet distribution area, in which the outlet sections 143a "and 143b" are preceded by connection sections 143d 'and 143d ". The connection sections 142c' and 142c" have waves inclined so as to distribute the fluid from sections 142a "and 142b" all along the inlet of the active heat exchange zone 46, while the connection sections 143d 'and 143d "are intended to take up the fluid in the two-phase state from the output of the active heat exchange section 46 to the output sections 143a "and 143b".

La réalisation selon la figure 6 se distingue de la réalisation selon la figure 5 en ce que les sections d'entrée 242a" et 242b" et de raccordement 242c' et 242c" ne sont pas symétriques, les sections 242c" et 242b" ayant une plus grande extension transversale que les sections 242c' et 242a", de façon à distribuer le liquide provenant de la section d'entrée 242b" sur une longueur transversale supérieure à la moitié de la dimension transversale de la zone active d'échange thermique 46. Cela permet un écoulement d'ensemble du liquide de la gauche vers la droite, ce qui est nécessaire quand l'alimentation en liquide ne se fait que du côté gauche.The embodiment according to FIG. 6 differs from the embodiment according to FIG. 5 in that the inlet sections 242a "and 242b" and the connection sections 242c 'and 242c "are not symmetrical, the sections 242c" and 242b "having a greater transverse extension than sections 242c 'and 242a ", so as to distribute the liquid coming from the inlet section 242b" over a transverse length greater than half the transverse dimension of the active heat exchange zone 46. This allows an overall flow of liquid from the left to the right, which is necessary when the liquid supply is only on the left side.

La réalisation selon la figure 7 se distingue de la réalisation selon la figure 6 en ce que, non seulement, les sections d'entrée 242a", et 242b", 242c' et 242c" sont dissymétriques dans un sens qui correspond à un plus grand écoulement de gauche à droite que dans le sens inverse, mais également on a prévu que les sections de sortie 243a, 243b, 243d' et 243d" soient dissymétriques, les sections 243d' et 243a avant une plus grande extension transversale que la section 243d" et 243b, ce qui a comme conséquence d'augmenter le débit de liquide non vaporisé, de gauche à droite, vers la boîte 44, par rapport au débit circulant vers la boîte 45.The embodiment according to FIG. 7 differs from the embodiment according to FIG. 6 in that, not only, the inlet sections 242a ", and 242b", 242c 'and 242c "are asymmetrical in a direction which corresponds to a greater flow from left to right only in the opposite direction, but also provision has been made for the outlet sections 243a, 243b, 243d 'and 243d "to be asymmetrical, sections 243d 'and 243a before a greater transverse extension than section 243d "and 243b, which has the consequence of increasing the flow rate of non-vaporized liquid, from left to right, towards box 44, relative to the circulating flow rate to box 45.

En se référant aux figures 1 et 8, on détaille l'aménagement de la boîte d'entrée diphasique 34 qui alimente pour l'échangeur 1, l'ensemble des troisièmes passages 31 pour le réchauffement du mélange réfrigérant. Comme on l'a vu précédemment, cette boîte d'entrée diphasique 34 est montée en-dessous de la fenêtre 95 d'alimentation de la zone de distribution 32 qui a été précédemment décrite.Referring to Figures 1 and 8, we detail the arrangement of the two-phase input box 34 which supplies for the exchanger 1, all of the third passages 31 for heating the refrigerant mixture. As we have seen previously, this two-phase input box 34 is mounted below the window 95 for supplying the distribution area 32 which has been previously described.

Cette boîte d'alimentation diphasique 34 est formée d'une enveloppe 101 ayant une extension verticale substantielle et qui présente une ouverture 102 à mi-hauteur environ, dans laquelle débouche la conduite 64 de réintroduction de mélange réfrigérant basse pression. A l'intérieur de l'enveloppe 101, parallèlement à la fenêtre 95 et à faible distance de celle-ci, est montée une plaque perforée 103 sur laquelle, et au travers de laquelle, sont montés des tubes 104 s'étendant au-dessous de ladite plaque 103 et jusqu'à une distance largement en-dessous de l'ouverture 102 de la conduite 64, les tubes 104 présentant une extrémité inférieure 105, dans laquelle a été avantageusement pratiquée une ou plusieurs fentes 106. Dans l'espace interstitiel entre la zone de distribution 32 et la plaque perforée 103, est placé un garnissage 107.This two-phase supply box 34 is formed of an envelope 101 having a substantial vertical extension and which has an opening 102 at approximately half-height, into which opens the line 64 for reintroducing low pressure refrigerant mixture. Inside the casing 101, parallel to the window 95 and at a short distance from it, is mounted a perforated plate 103 on which, and through which are mounted tubes 104 extending below of said plate 103 and up to a distance largely below the opening 102 of the pipe 64, the tubes 104 having a lower end 105, in which one or more slots 106 has advantageously been made. In the interstitial space between the distribution zone 32 and the perforated plate 103, a lining 107 is placed.

En fonctionnement, le mélange réfrigérant qui vient d'être détendu par la vanne de détente 65 à la basse pression du cycle parvient à l'intérieur de l'enveloppe 101, dans laquelle ce fluide, à l'état diphasique, se sépare en une fraction vapeur 108 et une fraction liquide 109, le niveau normal de séparation N étant généralement situé au-dessus des fentes 106. On comprend que l'effet propulsif dû à la pression agissant sur la surface de la masse liquide 109 assure une remontée du liquide au travers des tubes 104, en même temps qu'un échappement de la fraction gazeuse au travers des perforations de la plaque 103. Le mélange diphasique est ainsi reconstitué d'une façon homogène, à la sortie supérieure des tubes 104, dans le garnissage 107, ce qui permet une alimentation uniforme de la section 32a resp. 32e de la zone d'alimentation 32. Si, pour une raison quelconque, le débit de la phase gazeuse devient trop important, par exemple en régime de mise en route ou à la suite d'un déréglage, le niveau N de la fraction liquide 109 descend jusqu'à parvenir au niveau des fentes 106, ce qui occasionne alors l'échappement, au travers des fentes 106, des tubes 104, d'une partie de la fraction gazeuse. Une fois que le débit de cette fraction liquide, qui constitue normalement l'essentiel du fluide diphasique, se rétablit, le niveau N remonte et le fonctionnement tel que détaillé plus haut reprend.In operation, the refrigerant mixture which has just been expanded by the expansion valve 65 at the low pressure of the cycle reaches the interior of the casing 101, in which this fluid, in the two-phase state, separates into a vapor fraction 108 and a liquid fraction 109, the normal level of separation N being generally located above the slots 106. It is understood that the propellant effect due to the pressure acting on the surface of the liquid mass 109 ensures a rise in the liquid through the tubes 104, at the same time as an escape of the gaseous fraction through the perforations of the plate 103. The two-phase mixture is thus reconstituted in a homogeneous manner, at the upper outlet of the tubes 104, in the lining 107 , which allows a uniform feeding of section 32a resp. 32e of the feed zone 32. If, for any reason, the flow rate of the gaseous phase becomes too great, for example in start-up mode or following an adjustment, the level N of the liquid fraction 109 descends until it reaches the level of the slots 106, which then causes the escape, through the slots 106, of the tubes 104, of part of the gaseous fraction. Once the flow rate of this liquid fraction, which normally constitutes most of the two-phase fluid, is restored, the level N rises and the operation as detailed above resumes.

En se référant maintenant à la seule figure 8, la zone de distribution 32 est ici constituée seulement d'une section 32e, sous forme d'un triangle dont la hauteur correspond à la dimension longitudinale de la zone de distribution 32 et dont la base occupe toute la largeur de la fenêtre 95. Cette section 32e présente des ondes verticales, et de part et d'autre de la section 32e sont disposées deux sections de répartition 32f et 32g qui occupent le restant de la zone d'alimentation 32 et qui présentent des ondes parallèles définies:

  • - pour ce qui concerne la section 32f, par la droite joignant le bord supérieure gauche 111 de la boîte d'alimentation diphasique 34 au bord supérieur gauche 112 de la zone d'alimentation 32;
  • - pour ce qui concerne la section 32g, par la droite qui relie de bord supérieur droit 113 de la boîte d'alimentation 34 au bord supérieur droit 114 de la zone d'alimentation 32.
Referring now only to FIG. 8, the distribution zone 32 here consists only of a section 32e, in the form of a triangle whose height corresponds to the longitudinal dimension of the distribution zone 32 and whose base occupies the entire width of the window 95. This section 32e has vertical waves, and on either side of the section 32e are arranged two distribution sections 32f and 32g which occupy the remainder of the feed zone 32 and which have defined parallel waves:
  • - as regards section 32f, from the right joining the upper left edge 111 of the two-phase supply box 34 to the upper left edge 112 of the supply zone 32;
  • - as regards section 32g, from the right which connects from the upper right edge 113 of the feed box 34 to the upper right edge 114 of the feed area 32.

Ainsi, on comprend que le fluide diphasique qui circule uniformément le long des ondes verticales de la section centrale 32e est repris - lorsqu'il y a symétrie, c'est-à-dire lorsque la section 32e a la forme d'un triangle isocèle dont le sommet est axial - pour moitié par la section 32f, pour l'autre moitié par la section 32g, de sortie que les ondes verticales de la zone active d'échange thermique 36 sont alimentées uniformément en liquide diphasique.Thus, it is understood that the two-phase fluid which circulates uniformly along the vertical waves of the central section 32e is taken up - when there is symmetry, that is to say when the section 32e has the shape of an isosceles triangle whose apex is axial - half by section 32f, for the other half by section 32g, output that the vertical waves of the active heat exchange zone 36 are uniformly supplied with two-phase liquid.

En se référant aux figures 9 et 10, on voit ici que la zone active d'échange thermique 36 des passages de réchauffement de mélange réfrigérant 31, est alimentée par une zone de distribution 32 qui est identique à celle que l'on a décrit à la figure 8, mais la boîte d'entrée 34 est ici de nature très différente: cette boîte d'entrée 34 se présente sous forme d'un réceptacle hémi-cylindrique épais 120 monté en régard de fenêtres d'alimentation 121 pour la zone de distribution 32. Chaque fenêtre d'alimentation 121 est obturée d'une barrette épaisse 122 dans laquelle est montée, par vissage, une pluralité d'éjecteurs 123 ayant une forme divergeant vers le haut, le réceptacle 120 présentant un orifice d'admission sur lequel est raccordée la conduite d'alimentation 64, mais contrairement aux exemples précédents, le mélange réfrigérant a été, ici, détendu à une pression intermédiaire, telle qu'il ne se forme dans le réceptacle 120 qu'un liquide franc, la détente finale s'effectuant dans des éjecteurs 123; le mélange diphasique se fait donc ipso-facto à la sortie des éjecteurs 123 et est, de ce fait même, uniformément réparti le long des ondes verticales de la première section 32e de la zone de distribution 32.Referring to FIGS. 9 and 10, it can be seen here that the active heat exchange zone 36 of the cooling mixture heating passages 31 is supplied by a distribution zone 32 which is identical to that which has been described in FIG. 8, but the input box 34 is here very different in nature: this input box 34 is in the form of a thick semi-cylindrical receptacle 120 mounted in relation to supply windows 121 for the area of distribution 32. Each supply window 121 is closed off with a thick strip 122 in which is mounted, by screwing, a plurality of ejectors 123 having an upwardly diverging shape, the receptacle 120 having an intake orifice on which is connected the supply line 64, but unlike the previous examples, the refrigerant mixture has been, here, expanded to an intermediate pressure, such that it is formed in the receptacle 120 that a clear liquid, the final expansion s performing in é nozzles 123; the two-phase mixing is therefore done ipso-facto at the outlet of the ejectors 123 and is, by this very fact, uniformly distributed along the vertical waves of the first section 32e of the distribution area 32.

En se référant à la figure 11, on décrit une variante de réalisation de la boîte d'alimentation 34 telle que décrite en référence à la figure 9. Ici, on retrouve le réceptacle hémi-cylindrique 120 destiné à recevoir le liquide franc à la pression intermédiaire, mais les. éjecteurs 123 sont ici agencés d'une façon régulièrement répartie dans une plaque-support 124 qui s'étend sur toute la surface de l'échangeur 1, mais à faible distance au-delà de cet échangeur, et entre la plaque 124 et les fenêtres libres 125 des passages de réchauffement du mélange réfrigérant 31 est ménagé un caillebotis 126 de répartition du fluide diphasique à l'entrée des sections 32e de toutes les zones de distribution 32.Referring to FIG. 11, an alternative embodiment of the supply box 34 is described as described with reference to FIG. 9. Here, we find the semi-cylindrical receptacle 120 intended to receive the free liquid at pressure intermediate, but the. ejectors 123 are here arranged in a regularly distributed manner in a support plate 124 which extends over the entire surface of the exchanger 1, but at a short distance beyond this exchanger, and between the plate 124 and the windows free 125 of the cooling mixture heating passages 31 is provided a grating 126 for distributing the two-phase fluid at the entrance to sections 32e of all distribution areas 32.

En se référant maintenant aux figures 13, 14 et 15, on décrit encore une autre variante de réalisation de l'alimentation diphasique des conduits de réchauffement du mélange réfrigérant 31.Referring now to FIGS. 13, 14 and 15, another alternative embodiment of the two-phase supply of the conduits for heating the refrigerant mixture 31 is described.

Ici, la boîte d'alimentation 34 comprend un réceptacle 151 s'étendant sur toute la profondeur de l'échangeur 1 et dans lequel débouche, après séparation dans un séparateur 150 et via la conduite 64, un liquide franc 152. Les passages 31 sont ici disposés côte à côte, deux par deux, et, dans l'intervalle compris entre deux couples de passages 31, est ménagé un passage de vapeur 51 qui s'étend sur une faible longueur terminale de l'échangeur du côté de son extrémité inférieure ou deuxième extrémité, ce qui limite d'autant l'extension longitudinale des passages de refroidissement du gaz traité 21. La séparation entre les passages 51 d'une part, et 11 et 21 d'autre part, est assurée par des entretoises d'étanchéité 52.Here, the supply box 34 comprises a receptacle 151 extending over the entire depth of the exchanger 1 and into which opens, after separation into a separator 150 and via line 64, a free liquid 152. The passages 31 are here arranged side by side, two by two, and, in the interval between two pairs of passages 31, is formed a steam passage 51 which extends over a short terminal length of the exchanger on the side of its lower end or second end, which further limits the longitudinal extension of the cooling passages of the treated gas 21. The separation between the passages 51 on the one hand, and 11 and 21 on the other hand, is ensured by spacers of sealing 52.

Eventuellement du côté de l'extrémité inférieure de l'échangeur 1, les passages 51 sont fermés par des barrettes 53, et on voit que les plaques parois intermédiaires 54 entre chaque passage 51 et chaque passage 31 sont ajourés selon des fentes inclinées (ou des trous) 56, régulièrement réparties.Optionally on the side of the lower end of the exchanger 1, the passages 51 are closed by bars 53, and it can be seen that the intermediate wall plates 54 between each passage 51 and each passage 31 are perforated according to inclined slots (or holes) 56, evenly distributed.

Bien entendu, dans cette disposition, les sorties des passages de refroidissement de mélange réfrigérant 11 et les sorties de passage de refroidissement de ganz traité sont ici disposées latéralement à l'échangeur, comme indiqué en 57 pour les passages de mélange réfrigérant 11, ou en 58 pour les passages de refroidissement de gaz traité. Ici, la zone de distribution évacuatrice a été simplifiée en ce sens qu'elle prévoit l'évacuation du mélange réfrigérant en totalité sur un côté de l'échangeur, vers la boîte 57 par la zone de distribution 59, tandis que l'évacuation du gaz traité s'effectue en totalité sur l'autre côté vers la boîte 58 de l'échangeur. On notera que les boîtes de sortie 57 et 58 sont étagées longitudinalement, de façon à ménager un espace libre pour la disposition d'une boîte d'entrée 60 associée à une zone de distribution 61, pour la phase vapeur qui provient du séparateur 150, alors que le liquide 152 est soutiré en cuve dans ce même séparateur 150.Of course, in this arrangement, the outlets of the cooling mixture cooling passages 11 and the outlets of the cooling ganz treated cooling passage are here arranged laterally at the exchanger, as indicated in 57 for the refrigerant mixture passages 11, or in 58 for cooling gas cooling passages. Here, the evacuating distribution zone has been simplified in that it provides for the evacuation of the entire refrigerant mixture on one side of the exchanger, towards the box 57 by the distribution zone 59, while the evacuation of the treated gas is carried out entirely on the other side towards the box 58 of the exchanger. It will be noted that the outlet boxes 57 and 58 are staggered longitudinally, so as to provide a free space for the arrangement of an inlet box 60 associated with a distribution area 61, for the vapor phase which comes from the separator 150, while the liquid 152 is drawn off in a tank in this same separator 150.

En fonctionnement, on conçoit que la vapeur qui pénètre dans les passages 51 subit une certaine perte de charge dans les lumières 56, de sorte que le niveau de liquide N, qui s'établit dans les passages 51 est inférieur au niveau de liquide N2 qui s'établit dans les passages de réchauffement de mélange réfrigérant 31. La vapeur s'engage donc uniformément dans les fentes 56 et est ainsi distribuée dans le liquide. L'avantage essentiel de cette disposition est que le mélange diphasique est effectué juste en amont de la zone d'échange thermique entre les conduits de refroidissement pour le mélange réfrigérant 11 et pour le gaz traité 21.In operation, it is understood that the vapor which enters the passages 51 undergoes a certain pressure drop in the ports 56, so that the level of liquid N, which is established in the passages 51 is lower than the level of liquid N 2 which is established in the cooling mixture heating passages 31. The vapor therefore engages uniformly in the slots 56 and is thus distributed in the liquid. The essential advantage of this arrangement is that the two-phase mixing is carried out just upstream of the heat exchange zone between the cooling conduits for the refrigerant mixture 11 and for the treated gas 21.

En se référant à la variante de réalisation représentée aux figures 16 et 17, on voit ici une disposition sensiblement analogue des passages 31 de réchauffement de mélange réfrigérant qui sont situés de part et d'autre d'un passage de vapeur 51 qui, lui-même est ménagé dans le prolongement longitudinal des passages de refroidissement de mélange réfrigérant 11, dont la boîte de sortie 15 est disposée latéralement. Par contre, les passages de gaz traité 21 s'étendent ici sur toute la longueur de l'échangeur 1 et la boîte de sortie 25 est alors disposée en bout de l'échangeur. Les passages de gaz traité 21 aboutissent à une boîte de sortie en bout 25.Referring to the alternative embodiment shown in FIGS. 16 and 17, one sees here a substantially similar arrangement of the passages 31 for heating the refrigerant mixture which are situated on either side of a vapor passage 51 which itself even is formed in the longitudinal extension of the cooling mixture cooling passages 11, the outlet box 15 of which is arranged laterally. By cons, the treated gas passages 21 here extend over the entire length of the exchanger 1 and the outlet box 25 is then disposed at the end of the exchanger. The treated gas passages 21 lead to an end outlet box 25.

En se référant à la figure 18, qui est une variante de réalisation de la figure 10, un éjecteur est ici formé de deux parties fixées sur la plaque 122, à savoir une partie amont 131 percée d'un passage 132 de diamètre d et une partie aval 133 percée d'un passage 134 de diamètre D. La surface transversale du passage D est égale à 1,5 à 5 fois la surface transversale du passage d, avantageusement de 2 à 4 et de préférence de l'ordre de 3. Cette disposition permet une souplesse de réglage permettant d'avoir à l'aval une pression de détente constante pour des débits variant dans de larges limites, par exemple de 40% à 120% avec des pressions amont également très différentes.Referring to FIG. 18, which is an alternative embodiment of FIG. 10, an ejector is here formed of two parts fixed to the plate 122, namely an upstream part 131 pierced with a passage 132 of diameter d and a downstream portion 133 pierced with a passage 134 of diameter D. The transverse surface of the passage D is equal to 1.5 to 5 times the transverse surface of the passage d, advantageously from 2 to 4 and preferably of the order of 3. This arrangement allows flexibility of adjustment making it possible to have a constant expansion pressure downstream for flow rates varying within wide limits, for example from 40% to 120% with also very different upstream pressures.

La figure 19 est une variante de réalisation de la figure 18 où les passages 132' et 134' sont directement pratiqués dans la plaque 122.FIG. 19 is an alternative embodiment of FIG. 18 where the passages 132 ′ and 134 ′ are made directly in the plate 122.

Claims (21)

1. Heat exchanger of the type having plates comprising a plurality of rectangular plates the transvers dimension of which constitutes the width of the exchanger and the largest longitudinal dimension of which is the length of the exchanger, which plates are stacked and integrally mounted with a hermetic space according to the thickness of the exchanger in order to form:
- a plurality of first passages (11) called cooling passages of a cooling mixture;
- a plurality of second passages (21) called cooling passages of a gas to be treated;
the first (11) and second (21) passages having input distribution zones (12 - 22 respectively) at the first longitudinal end (1a) of the exchanger (1) and output distribution zones at least adjacent the other longitudinal end (1b) of the exchanger;
- a plurality of third passages (31), called heating passages of the cooling mixture, comprising input distribution zones (32) at the said second end (1b) of the exchanger (1), and comprising output distribution zones (33) disposed in a distance to the said first end (1a) of the exchanger terminating at lateral output windows;
- a plurality of fourth passages (41) disposed in the longitudinal extensions left free by the said third passages (31) comprising lateral input windows (991) and output windows (993);

characterized in that the said fourth passages (41) present in a manner known per se, active thermal exchanging zones (46) having undulations oriented longitudinally, the longitudinal extension of which is limited for freeing or clearing on both sides of each of said active zone (46) on the one hand an alimentary distribution zone with undulation (42), on the other hand a discharging distribution zone with undulations (43), the alimentary distribution zone (42) and discharge zone (43) terminating respectively in the said input windows (991) and output windows (993) of the said fourth passages (41), and that the said input windows (991) and output windows (993) communicating with a phase separating means common at least substantially coextensive longitudinally with the said active zones (46).
2. Plate exchanger according to claim 1, characterized in that the alimentary districution zone (42) and a discharging distribution zone (43) comprise each two input windows (991, 992) and two output windows (993, 994) terminating to transverse ends of the exchanger.
3. Plate exchanger according to one of the claims 1 and 2, characterized in that the separating means comprises an input-output box (44) (and/ or 45) common to a plurality of input windows (991) (and/or 992) and a plurality of output windows (993) (and/or 994).
4. Plate exchanger according to claim 3, characterized in that an input-output box (44) (and/or 45) is associated moreover to a lateral collector (71) (and/or 72) to which it is connected through high (66) and low conduits (67).
5. Plate exchanger according to claim 1, characterized in that one input window (991) (and/or 992) presents a longitudinal smaller extension than that of an output window (993) (and/or 994).
6. Plate exchanger according to claim 1 of the kind where by the alimentary distribution zones with undulations (42) and the discharging distribution zones with undulations (43) comprise at least a section with undulations oriented transversely to the exchanger, characterized in that the sections with undulations (142a - 142b, Fig. 3) (142a' - 142b', Fig. 4) oriented transversely to the exchanger (1) are adjacent directly to the active thermal exchanging zone (146) which presents the more longitudinal extension the more one departs from an input window (199a) (and/or 199a') and an output window (199b) (and/or 199b').
7. Heat exchanger according to claim 5, characterized in that between the distribution zones (142a", 142b", 143a", 143b", Fig. 5); (242a", 242b", Fig. 6); (243a, 243b, Fig. 7) and the active thermal exchanging zone (46) at least a connecting zone (142c', 142c") (143d', 143d", Fig. 5), (242c', 242c", Fig. 6); (243d', 243d", Fig. 7) is provided.
8. Plate exchanger according to claim 7, characterized in that one section with undulations of an alimentary distribution zone (242b", 242c") has a larger transverse extension than that of the other section with undulations (242a", 242c') of the said alimentary distribution zone (Fig. 6).
9. Plate exchanger according to claim 8, characterized in that one section with undulations of a discharging distribution zone (243d", 243b) has a lower transverse extension than that of the other section with undulations of discharging distribution (243d', 243a), a discharging section with undulations (243d", 243b) which has the smallest transverse extension, having an output which is located at the same lateral side as the input of the section of undulations for alimentary distribution having the greatest transverse extension (242b", 242c", Fig. 7.).
10. Plate exchanger according to one of the claims 1 to 9, characterized in a plurality (41 a, 41 b, 41c, 41d) of fourth sub-passages (41) staggered according to the length of the exchanger, the fourth sub-passages located at the same longitudinal level (for example 41c) being associated to common input-output boxes situated at the same level (44c - 45c) (Fig. 2).
11. Plate exchanger according to one of the claims 3 to 10, characterized in that the third passages (31) are associated successively to the alimentary distribution zones (32) and to an alimentary box called diphasic (34) at the side of the second end (1 b) of the exchanger (1).
12. Plate exchanger according to claim 11, characterized in that the alimentary distribution zones (32) comprise an upstream section (32a) coextending transversely to the diphasic alimentary box (34) and presenting a triangular form, the undulations of the said upstream section being longitudinally oriented (Fig. 1).
13. Plate exchanger according to claim 12, characterized in that the upstream section (32e) of the distribution zone (32) has a longitudinal extension equal to that of the distribution zone (32), and the said upstream section of distribution is followed by two inclined connecting sections with unduiatipns (32f; 32g) (Fig. 8).
14. Plate exchanger according to claim 12, characterized in that the upstream section (32a) of the distribution zone (32) has a smaller longitudinal extension than the longitudinal extension of the distribution zone and comprises two intermediate connecting sections (32b - 32c) at a downstream section of triangular form (32d) with the same apex as the upstream section (32a), and the base of which corresponding to the transverse extension of the active zone (36) of a third passage (31), the downstream section (32d) having undulations with longitudinal extension (Fig. 1
15. Plate exchanger according to one of the claims 11 to 14, characterized in that the diphasic alimentary box (34) for the third passages (31) presents discharging means uniform according to each transverse extension of a passage and uniformly from one passage to the next according to the thickness of the exchanger, with a composite fluid presenting a liquid phase and a vaporous phase.
16. Plate exchanger according to claim 15, characterized in that the discharge means comprising a box (34) at the end of the exchanger extending the entire width of the exchanger and comprising in a small distance from the second end (1b) of the exchanger (1) a perforation plate (103) supporting tubes (104) extending longitudinally in the said box (34), the tubes (104) presenting preferably at the side of their free end a slot or gap (106), while the lining means (107) is interposed between the input (95) of the third passages (31) and the said perforation plates (103) (Fig. 8).
17. Plate exchanger according to claim 13, characterized in that the diphasic alimentary box (34) comprises a receptacle (120) for a liquide phase and a plate (122) with expansion nozzles (123) uniformly distributed over the transverse extension of each input window (121) of the third passage (31).
18. Plate exchanger according to claim 17, characterized in that the nozzle plate is constituted by a plurality of small bars (122) tightly mounted to the input of each third passage (31) (Fig. 9).
19. Plate exchanger according to claim 17, characterized in that the nozzle plate is a single plate (124) with the nozzles (123) distributed on the surface, the plate being positioned at a small distance from the input windows (125) of the third passages (31), the interposed space between the said input windows (125) and the said plate (124) being filled by a lining (126).
20. Plate exchanger according to claim 13, characterized in that the discharging means of a diphasic fluid in the third passages (31) comprises an alimentary box for liquid phase (151) mounted at the end of the second end or extremity of the exchanger and auxiliar passages (51) of a third type communicating by distributed perforations (56) with the said third passages (31), the said auxiliar passages (51) being fed by vaporous phase (Fig. 13, 14, 15).
21. Plate exchanger according to claim 18, characterized in that the auxiliar passages of the third type (51) are provided in the extension of the first passages (11) and/or the second passages (21), which themselves terminate through walls (52) at a distance from the second end or extremity by lateral outputs (Fig. 15).
EP80400560A 1979-05-18 1980-04-25 Thermal-exchange assembly of the plate heat exchanger type Expired EP0019508B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80400560T ATE1684T1 (en) 1979-05-18 1980-04-25 PLATE HEAT EXCHANGER TYPE THERMAL EXCHANGE DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7912727 1979-05-18
FR7912727A FR2456924A2 (en) 1979-05-18 1979-05-18 THERMAL EXCHANGE ASSEMBLY OF THE PLATE HEAT EXCHANGER TYPE

Publications (2)

Publication Number Publication Date
EP0019508A1 EP0019508A1 (en) 1980-11-26
EP0019508B1 true EP0019508B1 (en) 1982-10-20

Family

ID=9225645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400560A Expired EP0019508B1 (en) 1979-05-18 1980-04-25 Thermal-exchange assembly of the plate heat exchanger type

Country Status (6)

Country Link
US (1) US4330308A (en)
EP (1) EP0019508B1 (en)
JP (1) JPS55155195A (en)
AT (1) ATE1684T1 (en)
DE (1) DE3060964D1 (en)
FR (1) FR2456924A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2499226B1 (en) * 1981-02-05 1985-09-27 Air Liquide METHOD AND INSTALLATION FOR LIQUEFACTION OF A GAS
FR2685071B1 (en) * 1991-12-11 1996-12-13 Air Liquide INDIRECT PLATE TYPE HEAT EXCHANGER.
EP0606618B1 (en) * 1992-12-25 2000-05-10 Idemitsu Petrochemical Co., Ltd. A polyolefinic resin and a resin composition comprising said resin
FR2718836B1 (en) * 1994-04-15 1996-05-24 Maurice Grenier Improved heat exchanger with brazed plates.
DE69523437T2 (en) * 1994-12-09 2002-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas liquefaction plant and method
FR2733823B1 (en) * 1995-05-04 1997-08-01 Packinox Sa PLATE HEAT EXCHANGER
US5558748A (en) * 1995-05-12 1996-09-24 Basf Corporation Plate-type distillation/condensation apparatus and method of use
FR2751402B1 (en) * 1996-07-19 1998-10-09 Packinox Sa THERMAL EXCHANGE INSTALLATION BETWEEN AT LEAST THREE FLUIDS
US6044902A (en) * 1997-08-20 2000-04-04 Praxair Technology, Inc. Heat exchange unit for a cryogenic air separation system
FR2774755B1 (en) * 1998-02-09 2000-04-28 Air Liquide PERFECTED BRAZED PLATE CONDENSER AND ITS APPLICATION TO DOUBLE AIR DISTILLATION COLUMNS
JP3100371B1 (en) * 1999-04-28 2000-10-16 春男 上原 Evaporator
FR2797942B1 (en) 1999-08-24 2001-11-09 Air Liquide VAPORIZER-CONDENSER AND CORRESPONDING AIR DISTILLATION SYSTEM
FR2793548A1 (en) * 2000-07-21 2000-11-17 Air Liquide Plate vaporizer-condenser operating as a thermosiphon in which the exchange corrugations of the second passage are vertical and the exchange body has two inlet boxes spaced over its length
FR2812935B1 (en) * 2000-08-08 2002-10-18 Air Liquide MULTIPLE BLOCK HEAT EXCHANGER WITH A UNIFORM FLUID SUPPLY LINE, AND VAPORIZER-CONDENSER COMPRISING SUCH A EXCHANGER
US6349566B1 (en) 2000-09-15 2002-02-26 Air Products And Chemicals, Inc. Dephlegmator system and process
DE10137103A1 (en) * 2001-07-30 2003-02-13 Linde Ag Multi-level condenser evaporator
US7353864B2 (en) * 2005-12-23 2008-04-08 Hamilton Sundstrand Corporation Apparatus for reducing thermal fatigue in heat exchanger cores
US7779899B2 (en) * 2006-06-19 2010-08-24 Praxair Technology, Inc. Plate-fin heat exchanger having application to air separation
DE102011106004A1 (en) 2010-08-06 2012-02-09 Linde Aktiengesellschaft Plate heat exchanger comprises fins and two groups of channels that are separated from each other by partition walls, where gas introducing unit is provided for supplying gas fraction at lower end of heat exchanger
CN102654375A (en) * 2012-04-20 2012-09-05 苏州制氧机有限责任公司 Plate-fin heat exchanger air pumping device in main heat exchanger
CN102654376A (en) * 2012-04-20 2012-09-05 苏州制氧机有限责任公司 Chamfered air extracting opening device of plate-fin type heat exchanger in main heat exchanger
JP6623244B2 (en) * 2018-03-13 2019-12-18 株式会社神戸製鋼所 Reliquefaction device
US10982898B2 (en) 2018-05-11 2021-04-20 Air Products And Chemicals, Inc. Modularized LNG separation device and flash gas heat exchanger
US12013194B2 (en) * 2019-04-29 2024-06-18 Hamilton Sundstrand Corporation Asymmetric cross counter flow heat exchanger
FR3099563B1 (en) * 2019-08-01 2021-07-30 Air Liquide Heat exchanger with passage configuration and improved heat exchange structures
FR3099560B1 (en) 2019-08-01 2021-07-02 Air Liquide Natural gas liquefaction process with improved injection of a mixed refrigerant stream

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1152432B (en) * 1962-04-21 1963-08-08 Linde Eismasch Ag Plate condenser evaporator, especially for gas and air separators
JPS4936109B1 (en) * 1965-11-15 1974-09-27
FR2008887B1 (en) * 1968-05-20 1973-12-07 Kobe Steel Ltd
US3587731A (en) * 1968-07-22 1971-06-28 Phillips Petroleum Co Plural refrigerant tray type heat exchanger
FR2053109A7 (en) * 1969-07-23 1971-04-16 British Oxygen Co Ltd Distributors for gas/liquid mixture over - heat exchanger inlet surface
DE2206620B2 (en) * 1972-02-11 1981-04-02 Linde Ag, 6200 Wiesbaden Plant for liquefying natural gas
DE2438443C2 (en) * 1974-08-09 1984-01-26 Linde Ag, 6200 Wiesbaden Process for liquefying natural gas
FR2384221A1 (en) * 1977-03-16 1978-10-13 Air Liquide PLATE EXCHANGER TYPE HEAT EXCHANGE ASSEMBLY

Also Published As

Publication number Publication date
JPH0154639B2 (en) 1989-11-20
EP0019508A1 (en) 1980-11-26
DE3060964D1 (en) 1982-11-25
JPS55155195A (en) 1980-12-03
FR2456924A2 (en) 1980-12-12
US4330308A (en) 1982-05-18
ATE1684T1 (en) 1982-11-15

Similar Documents

Publication Publication Date Title
EP0019508B1 (en) Thermal-exchange assembly of the plate heat exchanger type
EP0546947B1 (en) Indirect plate-type heat exchanger
EP0130122B2 (en) Device for evaporating a liquid by heat exchange with a second fluid and air distillation unit comprising such a device
EP3479044A1 (en) Heat exchanger comprising a device for distributing a liquid/gas mixture
EP0058106B1 (en) Process and installation for the liquefaction of a gas
EP1179724B1 (en) Heat exchanger with multiple heat exchange blocks with fluid inlet manifold providing uniform distribution, and vaporizer-condenser comprising same
EP1008826A1 (en) Falling film vaporizer and air distillation plant
FR2684437A1 (en) HEAT EXCHANGER, PARTICULARLY FOR HYPERSONIC REACTORS, INCLUDING A SPACING FOR THE TUBES OF ITS DIE.
EP0738862B1 (en) Heat exchanger with brazed plates
EP0566435A1 (en) Trickle heat-exchanger and an air destillation comprising such a heat-exchanger
FR2571837A1 (en) FLUID HEATING APPARATUS
EP0507649B1 (en) Method for the evaporation of a liquid, heat exchanger for carrying out the method, and use in an air distillation plant with a double column
CH635922A5 (en) SPIRAL ENCLOSED HEAT EXCHANGER AND METHODS OF MAKING SAME.
EP1770346B1 (en) Heat exchanger with alternated flat tubes
EP3830511B1 (en) Method for exchanging heat
EP1230522B1 (en) Evaporator-condenser and corresponding air distillation installation
EP0553340B1 (en) Plate-type heat exchanger
WO2021019160A1 (en) Heat exchanger having a configuration of passages and improved heat-exchange structures, and cooling method using at least one such heat exchanger
EP4062118B1 (en) Heat exchanger having an arrangement of mixing devices improving the dispensing of a biphasic mixture
FR2793548A1 (en) Plate vaporizer-condenser operating as a thermosiphon in which the exchange corrugations of the second passage are vertical and the exchange body has two inlet boxes spaced over its length
EP3555544A1 (en) Heat exchanger with a liquid/gas mixing device with improved channel geometry
FR2797943A1 (en) Evaporator-condenser for air distillation installation comprises dihedral body with fluid passage opening on first face hermetically covered by cylindrical connecting box
WO2020174172A1 (en) Method for manufacturing an apparatus for exchanging heat and material
FR3093170A1 (en) Matrix integrating at least one heat exchange function and one distillation function
BE487579A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19821020

Ref country code: NL

Effective date: 19821020

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19821020

REF Corresponds to:

Ref document number: 1684

Country of ref document: AT

Date of ref document: 19821115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3060964

Country of ref document: DE

Date of ref document: 19821125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19821201

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19830430

Ref country code: LI

Effective date: 19830430

Ref country code: CH

Effective date: 19830430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960311

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960318

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960319

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960325

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19970430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT