EP0546137B1 - Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements - Google Patents

Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements Download PDF

Info

Publication number
EP0546137B1
EP0546137B1 EP92912967A EP92912967A EP0546137B1 EP 0546137 B1 EP0546137 B1 EP 0546137B1 EP 92912967 A EP92912967 A EP 92912967A EP 92912967 A EP92912967 A EP 92912967A EP 0546137 B1 EP0546137 B1 EP 0546137B1
Authority
EP
European Patent Office
Prior art keywords
organic compound
display according
anyone
electrodes
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92912967A
Other languages
German (de)
English (en)
Other versions
EP0546137A1 (fr
Inventor
Guy Baret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0546137A1 publication Critical patent/EP0546137A1/fr
Application granted granted Critical
Publication of EP0546137B1 publication Critical patent/EP0546137B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers

Definitions

  • the invention relates to display screens of the plasma panel type, and more particularly to the electrically insulating elements used in these devices.
  • Plasma panels are flat display screens that operate on the principle of luminescent discharges in a gas. They include two insulating tiles, joined together so as to define a calibrated space between them. This space is formed in a sealed manner at the periphery of the slabs in order to form a gas space.
  • the electrical discharges in the gas are obtained using electrodes to which electrical voltages are applied.
  • the electrodes can be distributed on either side of the gas space: in this case most often an array of electrodes is carried by a slab and at least one other array of electrodes is carried by the other slab.
  • the two networks are orthogonal to each other, and an elementary cell or pixel is defined at each intersection of electrodes.
  • the electrodes can also be arranged on the same side with respect to the gas space, that is to say be carried by the same slab.
  • the alternative panels have the advantage of presenting a memory effect which makes it possible to address the useful information only to the pixels whose state one wishes to change (on or off) on the other pixels, the state of the latter is simply maintained by repetition of alternating electrical discharges, called maintenance discharges.
  • This memory effect is obtained by electrically isolating the electrodes from the discharge gas, by covering with a dielectric layer on which accumulate the charged particles generated by the discharge in the gas.
  • the article in IBM Technical Disclosure Bulletin Volume 24 No 1B of June 1981 gives the structure of plasma panels of the alternative type.
  • the electrodes are covered with a dielectric layer, in particular in alumina or magnesia, which is itself protected against ion bombardment by a second layer, for example in magnesia.
  • Such discharge barriers can also be used in "PAPs” whose cells or pixels are formed at the crossing of only two electrodes, and their presence is practically essential in “PAPs” of the “continuous” type.
  • the discharge barriers can be constituted by pieces forming shims, called spacers, which define the height of the gas space.
  • FIG. 1 shows a plasma panel of the type with two crossed electrodes to define a cell or pixel.
  • the figure is a sectional view parallel to one of these two electrodes.
  • the panel 1 comprises two tiles 2, 3 each carrying an array of electrodes.
  • the slabs 2, 3 constitute substrates, they commonly have a thickness E1 of the order of 1 to 6 mm.
  • the first panel 2 carries a first network of electrodes Y1 to Yn parallel.
  • the second panel 3 carries a second array of parallel electrodes represented by an electrode X (shown parallel to the plane of the figure) orthogonal to the electrodes Y1 to Yn.
  • the electrodes Y1 to Yn are covered with a dielectric layer 4, the thickness E2 of which is commonly of the order of 20 to 30 micrometers.
  • the dielectric layer 4 is covered by a protective layer 5 often made of Mg0, the thickness of which is very small, of the order of 0.2 micrometers.
  • the electrodes X of the second network are covered by a second dielectric layer 6 having substantially the same thickness E2 as the first.
  • This second dielectric layer is itself covered with a second protective layer 7 similar to the first 5.
  • ends 8 of the electrode X, not covered by the dielectric layer 6, constitute sockets contact.
  • the two tiles 2, 3 are intended to be assembled so as to provide between them a space 10 which must contain a gas, neon for example, at a pressure of for example 500 mb.
  • the panel 1 has sealing joints 11 arranged at the periphery of one of the slabs, the second slab 3 for example.
  • the height H1 of the gas space 10 is defined using spacers 12 called spacers, arranged at the periphery of a slab, of the first slab 2 for example.
  • the spacers 12 are produced on the first dielectric layer 4, and in the bringing together of the two slabs 2, 3, these spacers must come into abutment on the second protective layer 7 these conditions are taken into account to define the height H2 of these spacers 12 in order to give the gas space the desired height H1, height H1 (of the gas space) which is commonly of the order of 100 micrometers.
  • the sealing joints 11 generally consist of a glass with a low melting point (between 380 ° C. and 450 ° C.). They have a height H3 such that, taking into account the surface on which they are arranged (surface of the second dielectric layer in the example), it is necessary to crush them to bring the spacers 12 into abutment on the second slab 3 , so as to thus seal the gas space 10.
  • the quality of operation of the "PAP" can be degraded if the height H1 of the gas space shows too great variations.
  • central spacers 15 it is also possible to use such central spacers 15 to further perform a separation barrier function between the discharges of contiguous pixels.
  • Each pixel being defined in the area of intersection of electrodes X and Y, it is known to produce such central spacers 15, with a parallelepiped shape for example and to arrange them so as to surround each pixel.
  • the separators or barriers 12, 15 are generally made of mineral glass: walls of mineral glass are formed in several intermediate layers by successive screen printing. These successive serigraphs are followed by a final baking to densify and harden the material.
  • the layers produced by successive screen prints are difficult to superimpose with precision: thus for a layer whose width is for example 50 micrometers, it it is not uncommon for it to overflow 10 micrometers from the previous layer, so that finally these partitions or barriers have variable widths, the dimensions of which are difficult to control. This further results in a degradation of the operation of the plasma panel.
  • the temperature can reach, for example, 530 ° C. to 600 ° C. This may result in degradation of the glass which forms the slabs 2, 3 and / or degradation of the conductive deposits which form the electrodes. For example, the glass softens and loses its flatness if it does not rest on a perfectly flat support.
  • Another method for making spacers (which in this case does not additionally fulfill the discharge barrier function) consists in depositing a dense network of calibrated glass beads, regularly arranged between the electrodes.
  • the precision on the diameter of the balls is insufficient to obtain that the greatest number of balls are in contact at the same time with the two slabs or substrates.
  • the general structure shown in the figure is the same, the difference being that in this case the dielectric layers 4, 6 and the protective layers 5, 7 do not exist, so that the electrodes X, Y1 to Yn are in contact with the gas contained in the gas space 10.
  • the glass begins to react with the conductive or dielectric layers deposited on its surface, and in particular with the materials constituting the electrodes.
  • this vitreous dielectric offers the advantage of very good mechanical and chemical stability, during the subsequent step of sealing the plasma panel, which step requires temperatures of at least 400 ° C.
  • the invention proposes to produce these elements from materials whose implementation work does not require exposing the entire plasma panel to a temperature much higher than that required in the sealing step.
  • the invention proposes to produce at least one dielectric layer disposed between the gas space and electrodes in a polymerizable organic compound, and thermostable for temperatures equal to or lower than the sealing temperature of the plasma panel in which it went up.
  • the resulting advantage is that the highest temperature imposed on the plasma panel is that necessary to effect the sealing.
  • Spacers and / or discharge barriers can also be produced in a polymerizable organic compound and this compound can be photosensitive, which makes it possible to engrave it in a simple manner by conventional photolithography processes, and to obtain any type of pattern with a excellent resolution and uniform thickness.
  • the invention therefore relates to a plasma panel as defined in claim 1.
  • the invention further relates to a method for producing such electrically insulating elements.
  • the plasma panel 1 comprises two panels 2, 3 each carrying an array of electrodes X, Y1 to Yn, so that these electrodes are arranged on either side of the gas space 10 formed between the slabs 2, 3.
  • at least one dielectric layer 4, 6 is required interposed between each network of electrodes and the gas space 10, ie at least two dielectric layers.
  • the invention proposes to produce them with a thermostable polymerizable organic compound.
  • the basic organic compound can be a solution in a suitable solvent (xylene or metacresol for example) of a dianhydride and a diamine (the formulas of which are given below) for obtaining a polyimide: diamine: NH2 - AR2 - NH2 where AR1 and AR2 are aromatic chains.
  • a suitable solvent xylene or metacresol for example
  • diamine the formulas of which are given below
  • the organic compound can be deposited by the usual methods of depositing so-called “thick" layers, for example the following methods: spinner, spray (projection), soaking, roller or screen printing; conventionally in itself, the viscosity of the product can be adapted to the method used by varying the fraction of polymer in the solvent.
  • the final polymerization temperature should preferably be greater than or equal to the temperature of the panel sealing step. For example, a layer of final thickness of approximately 5 micrometers of polyphenylquinoxaline polymerized at 410 ° C for 10 minutes, will no longer evolve chemically and mechanically during a sealing step at 400 ° C.
  • the step of sealing a PAP is the step in which the two slabs 2, 3 are brought together, to obtain the desired height H1 of the gas space 10, and in which deforms the sealing joints 11 to make the seal.
  • organic compound can be loaded with mineral and / or metallic compounds, for example in order to modify the dielectric constant and / or to modify the color thereof.
  • the relative dielectric constant Er of the organic compounds used can be between 2 and 4 for the pure compound (for example a polyimide) and it can be increased to reach values greater than 10.
  • the thicknesses can vary from less than 1 micrometer to several tens of micrometers, depending on the dielectric capacity desired by the layer.
  • the possible color of the final deposit can also be adjusted by adding an organic dye or a mineral compound. Black or white deposits can also be obtained in this way.
  • thermostable organic compound as defined above, can be polymerized at relatively low temperatures, so as not to cause deformation of the substrate. glass or slab 2, 3, nor degrade the other layers deposited on this substrate. In particular, the organic compound does not react with the electrode material (ITO, metal, etc.).
  • the organic compound allows a homogeneous covering of the electrodes and therefore supports high electric fields without showing any phenomenon of electrical breakdown.
  • the invention applies as well to the case where the dielectric layers are produced along continuous surfaces as in the case of discontinuous surfaces.
  • a polymerizable organic compound similar to that indicated above for the dielectric layers, can constitute the basic material for the production of the spacers and barriers 12, 15.
  • the organic compound can be loaded with mineral and / or metallic compounds, in order to vary the viscosity and / or the color and / or the resistance to crushing after polymerization.
  • the organic compound can be spread on the substrate or slab 2, 3 by usual methods similar to those mentioned above for the dielectric layers (spin, spray, screen printing, etc.).
  • Photosensitive organic compounds are commercially available.
  • the exposure and photogravure phase occurs after the last deposit has dried, and before polymerization or following partial polymerization of the organic compound.
  • the polymerization of the organic compound is obtained by exposing it to a heat treatment and / or by exposure to ultraviolet rays, in a manner in itself conventional.
  • the photo-imageable nature of the organic compound makes it possible to impart, simply and securely, to the spacers and barriers 12, 15, the desired dimensions as well as the desired positions in particular relative to the electrodes X, Y1 to Yn.
  • This characteristic is particularly advantageous in the case of barriers 15 whose width L, relative to the pitch P of the cells, must remain relatively small, and whose position between the cells is also important.
  • spacers or barriers 12, 15 thus produced are thermostable and do not tend to creep: it is therefore possible to obtain ratios of height H2 to width L (H1 / L) greater than 1, for heights H2 greater than 200 micrometers .
  • the invention can be applied to the production of any electrically insulating element carried by a PAP slab, whether the latter is of the continuous or alternative type, monochrome or polychrome, whatever the distribution of the electrodes relative to the gas space. , and regardless of the number of electrodes used to define a cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

L'invention se rapporte aux écrans de visualisation du type panneau à plasma. Elle a plus particulièrement pour objet des éléments électriquement isolants tels que espaceurs (12, 15) et/ou couches diélectriques (4, 6). Conformément à l'invention, les espaceurs (12, 15) et/ou les couches diélectriques (4, 6) sont réalisées en un composé organique polymérisable. Il en résulte que la température la plus élevée imposée au panneau à plasma durant sa fabrication peut rester inférieure à une température du scellement de ce panneau.

Description

  • L'invention concerne les écrans de visualisation du type panneaux à plasma, et plus particulièrement des éléments électriquement isolants utilisés dans ces dispositifs.
  • Les panneaux à plasma (ou en abrégé "PAP") sont des écrans plats de visualisation qui fonctionnent suivant le principe des décharges luminescentes dans un gaz. Ils comprennent deux dalles isolantes, assemblées l'une à l'autre de manière à définir entre elles un espace calibré. Cet espace est formé de façon étanche à la périphérie des dalles afin de former un espace gazeux.
  • Les décharges électriques dans le gaz sont obtenues à l'aide d'électrodes auxquelles sont appliqués des tensions électriques. Les électrodes peuvent être distribuées de part et d'autre de l'espace gazeux : dans ce cas le plus souvent un réseau d'électrodes est portée par une dalle et au moins un autre réseau d'électrodes est portée par l'autre dalle. Les deux réseaux sont orthogonaux l'un par rapport à l'autre, et une cellule élémentaire ou pixel est définie à chaque croisement d'électrodes. Mais les électrodes peuvent aussi être disposées d'un même côté par rapport à l'espace gazeux, c'est-à-dire être portées par une même dalle.
  • Il existe différents types de panneaux à plasma, notamment les panneaux du type fonctionnant en tension continue et les panneaux dits "alternatifs". Les panneaux alternatifs ont l'avantage de présenter un effet de mémoire qui permet d'adresser l'information utile seulement aux pixels dont on souhaite changer l'état (allumé ou éteint) sur les autres pixels, l'état de ces derniers est simplement entretenu par répétition de décharges électriques alternées, appelées décharges d'entretien. Cet effet de mémoire est obtenu en isolant électriquement les électrodes du gaz de décharge, en les recouvrant d'une couche diélectrique sur laquelle s'accumulent les particules chargées engendrées par la décharge dans le gaz.
  • L'article d'IBM Technical Disclosure Bulletin Volume 24 No 1B de juin 1981 donne la structure de panneaux à plasma de type alternatif. Les électrodes sont recouvertes d'une couche diélectrique notamment en alumine ou magnésie, elle-même protégée contre le bombardement ionique par une seconde couche par exemple en magnésie.
  • On trouve une explication du fonctionnement d'un panneau de type alternatif dans un article de G.W.DICK publié dans PROCEEDING OF THE SID, volume 27/3 1986, pages 183-187. La structure décrite dans ce document se rapporte plus particulièrement à une structure du type à entretien coplanaire. Dans ce type de panneau on utilise trois électrodes pour définir un pixel: deux électrodes parallèles et coplanaires réalisent les décharges d'entretien dans chaque pixel; les électrodes coplanaires sont croisées avec des électrodes dites d'adressage, dont la fonction généralement est uniquement de réaliser l'adressage en coopération avec l'une des électrodes coplanaires. Il est à noter que le document ci-dessus cité mentionne en outre l'utilisation de barrières de décharges dont la fonction est de séparer les décharges produites dans des cellules contiguës.
  • De telles barrières de décharge peuvent être utilisées aussi dans les "PAP" dont les cellules ou pixels sont formées au croisement de seulement deux électrodes, et leur présence est pratiquement indispensable dans les "PAP" du type "continu".
  • Quel que soit le type de "PAP", les barrières de décharges peuvent être constituées par des pièces formant cales d'épaisseur, appelées espaceurs, qui définissent la hauteur de l'espace gazeux.
  • La fonction de tels espaceurs est illustrée par la figure qui montre un panneau à plasma du type à deux électrodes croisées pour définir une cellule ou pixel. La figure est une vue en coupe parallèle à l'une de ces deux électrodes.
  • Le panneau 1 comprend deux dalles 2, 3 portant chacune un réseau d'électrodes. Les dalles 2, 3 constituent des substrats, elles ont couramment une épaisseur E1 de l'ordre de 1 à 6 mm.
  • La première dalle 2 porte un premier réseau d'électrodes Y1 à Yn parallèles. La seconde dalle 3 porte un second réseau d'électrodes parallèles représenté par une électrode X (représentée parallèle au plan de la figure) orthogonale aux électrodes Y1 à Yn.
  • Sur la première dalle 2, les électrodes Y1 à Yn (vues suivant leur section) sont recouvertes d'une couche diélectrique 4, dont l'épaisseur E2 est couramment de l'ordre de 20 à 30 micromètres.
  • La couche diélectrique 4 est couverte par une couche de protection 5 souvent en Mg0 dont l'épaisseur est très faible, de l'ordre 0,2 micromètre.
  • Sur la seconde dalle 3, les électrodes X du second réseau sont couvertes par une seconde couche diélectrique 6 ayant sensiblement une même épaisseur E2 que la première. Cette seconde couche diélectrique est elle-même couverte d'une seconde couche de protection 7 semblable à la première 5. Sur la seconde dalle 3, des extrémités 8 de l'électrode X, non couvertes par la couche diélectrique 6, constituent des prises de contact.
  • Les deux dalles 2, 3 sont destinées à être assemblées de manière à ménager entre elles un espace 10 devant contenir un gaz, du néon par exemple, à une pression de par exemple 500 mb.
  • A cet effet le panneau 1 comporte des joints de scellement 11 disposés à la périphérie de l'une des dalles, la seconde dalle 3 par exemple. La hauteur H1 de l'espace gazeux 10 est définie à l'aide d'entretoises 12 appelées espaceurs, disposés à la périphérie d'une dalle, de la première dalle 2 par exemple. Dans l'exemple représenté, les espaceurs 12 sont réalisés sur la première couche diélectrique 4, et dans le rapprochement l'une de l'autre des deux dalles 2, 3, ces espaceurs doivent venir en butée sur la seconde couche de protection 7 ces conditions sont prises en compte pour définir la hauteur H2 de ces espaceurs 12 en vue de conférer à l'espace gazeux la hauteur H1 désirée, hauteur H1 (de l'espace gazeux) qui est couramment de l'ordre de 100 micromètres.
  • Les joints de scellement 11 sont constitués généralement en un verre à bas point de fusion (entre 380°C et 450°C). Ils comportent une hauteur H3 telle que, en tenant compte de la surface sur laquelle elles sont disposées (surface de la seconde couche diélectrique dans l'exemple), il soit nécessaire de les écraser pour amener les espaceurs 12 en butée sur la seconde dalle 3, de manière à assurer ainsi l'étanchéité de l'espace gazeux 10.
  • La qualité du fonctionnement du "PAP" peut être dégradée si la hauteur H1 de l'espace gazeux accuse des variations trop importante. Pour éviter ce défaut il est connu de disposer, entre les espaceurs ou séparateurs périphériques 12 et jusque dans des positions centrales, de secondes entretoises 15 ou espaceurs centraux ayant une même épaisseur H2 que les premiers espaceurs 12 périphériques.
  • On peut utiliser aussi de tels espaceurs centraux 15 pour réaliser en outre, une fonction de barrière de séparation entre les décharges de pixels contigus.
  • Chaque pixel étant défini dans la zone d'intersection d'électrodes X et Y, il est connu de réaliser de tels espaceurs centraux 15, avec une forme parallépipédique par exemple et de les disposer de manière à entourer chaque pixel.
  • Ces séparateurs remplissent alors à la fois une fonction d'espaceur et une fonction de barrière de séparation des décharges.
  • Cette technique est couramment utilisée, bien qu'elle présente l'inconvénient d'exiger une mise en oeuvre longue et délicate. En effet, les séparateurs ou barrières 12, 15 sont généralement réalisés en verre minéral : des murs de verre minéral sont formés en plusieurs couches intermédiaires par sérigraphies successives. Ces sérigraphies successives sont suivies d'une cuisson finale pour densifier et durcir le matériau. Les couches réalisées par sérigraphies successives sont difficiles à superposer avec précision : ainsi pour une couche dont la largeur est par exemple de 50 micromètres, il n'est pas rare qu'elle déborde de 10 micromètres de la couche précédente, de telle sorte que pour finir ces cloisons ou barrières ont des largeurs variables, dont les dimensions sont difficiles à maîtriser. Il en résulte en outre une dégradation du fonctionnement du panneau à plasma.
  • Un autre inconvénient de cette technique est, que lors de la cuisson finale des couches formant ces espaceurs ou barrières, la température peut atteindre par exemple 530°C à 600°C. Il peut en résulter une dégradation du verre qui forme les dalles 2, 3 et/ou une dégradation des dépôts conducteurs qui forment les électrodes. Par exemple, le verre se ramollit et perd sa planéité s'il ne repose pas sur un support lui-même parfaitement plan.
  • Une autre méthode pour réaliser des espaceurs, (qui dans ce cas ne remplissent pas en plus la fonction de barrière de décharge) consiste à déposer un réseau dense de billes de verre calibrées, régulièrement disposées entre les électrodes. Mais la précision sur le diamètre des billes est insuffisante pour obtenir que le plus grand nombre des billes soient en contact à la fois avec les deux dalles ou substrats.
  • Pour les panneaux à plasma du type fonctionnant en courant continu, la structure générale montrée à la figure est la même, la différence étant que dans ce cas les couches diélectriques 4, 6 et les couches de protection 5, 7 n'existent pas, de sorte que les électrodes X, Y1 à Yn sont en contact avec le gaz contenu dans l'espace gazeux 10.
  • Dans les "PAP" du type "alternatif", la réalisation des couches diélectriques posent également des problèmes. En effet, à ce jour toutes les couches diélectriques de "PAP" type "alternatif" sont en verre minéral à bas point de fusion (530°C à 600°C), par exemple des verres d'oxyde de plomb. Ces diélectriques en verres peuvent être transparents, blancs, noirs ou colorés et présentent des constantes diélectriques relatives Er compatibles avec le fonctionnement des panneaux alternatifs (Er typiquement compris entre 10 et 30). Les couches diélectriques sont constituées de la manière suivante :
    • une poudre de verre finement broyée est mélangée à un solvant ou à une huile se décomposant à des température supérieures à 400°C ;
    • le mélange est ensuite déposé par sérigraphie, ou au trempé ou par "spray" (projection), puis séché sur le substrat ou dalle de verre et les électrodes
    • la dalle de verre est ensuite chauffée à des température supérieures à 530°C, et le mélange réagit pour former une couche vitreuse dont l'épaisseur généralement est comprise entre 20 micromètres et 30 micromètres.
  • Lors de ce dernier traitement, un inconvénient réside dans le fait que la dalle de verre doit reposer sur une dalle rectifiée, en céramique par exemple, pour ne pas se déformer du fait que la température de transition vitreuse du verre formant le substrat ou dalle est voisine de 510°C - 520°C.
  • De plus, à ces températures, le verre commence à réagir avec les couches conductrices ou diélectriques déposées sur sa surface, et en particulier avec les matériaux constituant les électrodes.
  • En revanche, ce diélectrique vitreux offre l'avantage d'une très bonne stabilité mécanique et chimique, lors de l'étape ultérieure de scellement du panneau à plasma, laquelle étape nécessite des températures d'au moins 400°C.
  • On connait aussi par la demande de brevet internationale WO 90/00808 un panneau de visualisation plat à émission de champ qui comporte entre les deux dalles des espaceurs en polyimide.
  • En vue de répondre aux différents problèmes ci-dessus cités, posés par les éléments électriquement isolants tels que couches diélectriques et espaceurs et/ou barrières de décharge pour panneaux à plasma, l'invention propose de réaliser ces éléments en des matériaux dont la mise en oeuvre n'exige pas d'exposer l'ensemble du panneau à plasma à une température très supérieure à celle qui est nécessaire dans l'étape de scellement.
  • A cette fin, l'invention propose de réaliser au moins une couche diélectrique disposée entre l'espace gazeux et des électrodes en un composé organique polymérisable, et thermostable pour des températures égales ou inférieures à la température de scellement du panneau à plasma dans lequel elle est montée.
  • L'avantage qui en résulte est que la température la plus élevée imposée au panneau à plasma est celle nécessaire à réaliser le scellement.
  • Des espaceurs et/ou barrières de décharge peuvent aussi être réalisés dans un composé organique polymérisable et ce composé peut être photosensible, ce qui permet de le graver de manière simple par des procédés classiques de photolithogravure, et d'obtenir tout type de motif avec une excellente résolution et une épaisseur uniforme.
  • L'invention concerne donc un panneau à plasma tel que défini dans la revendication 1.
  • L'invention concerne en outre un procédé pour la réalisation de tels éléments électriquement isolants.
  • L'invention sera mieux comprise, et les avantages qu'elle procure apparaîtront mieux à la lecture de la description qui suit, faite à titre d'exemple non limitatif en référence à l'unique figure annexée.
  • La figure annexée, déjà partiellement décrite, montre schématiquement un panneau à plasma auquel peut s'appliquer l'invention.
  • Dans l'exemple représenté à la figure, le panneau à plasma 1 comprend deux dalles 2, 3 portant chacune un réseau d'électrodes X, Y1 à Yn, de telle sorte que ces électrodes sont disposées de part et d'autre de l'espace gazeux 10 formé entre les dalles 2, 3. Dans ce cas, pour un panneau "alternatif", il faut au moins une couche diélectrique 4, 6 interposée entre chaque réseau d'électrodes et l'espace gazeux 10, soit au moins deux couches diélectriques.
  • Mais il est d'autres formes de réalisation classiques (non représentées), dans lesquelles par exemple toutes les électrodes sont disposées d'un même côté de l'espace gazeux 10, c'est-à-dire portées par la même dalle ; cette dernière est dans ce cas généralement la dalle dite "dalle arrière", c'est-à-dire celle qui est à l'opposé d'un observateur et qui généralement comporte le queusot (non représenté) qui permet d'établir dans le panneau la pression désirée (après l'étape de scellement).
  • Quelle que soit la forme de réalisation, et le nombre des couches diélectriques telles que les couches 4, 6, l'invention propose de les réaliser on un composé organique polymérisable thermostable.
  • Ainsi par exemple, le composé organique de base peut être une solution dans un solvant approprié (xylène ou métacrésol par exemple) d'un dianhydride et d'un diamine (dont les formules sont données ci-après) pour l'obtention d'un polyimide :
    Figure imgb0001

       diamine : NH₂ - AR₂ - NH₂
    Figure imgb0002

       où AR₁ et AR₂ sont des chaines aromatiques.
  • Le composé organique peut être déposé par des méthodes usuelles de dépôt des couches dites "épaisses", par exemple les méthodes suivantes : tournette, spray (projection), trempé, rouleau ou sérigraphie ; de façon en elle-même classique, la viscosité du produit peut être adaptée à la méthode utilisée en variant la fraction de polymère dans le solvant.
  • On chauffe ensuite progressivement pour évaporer lentement les solvants et polymériser. La température finale de polymérisation doit être de préférence supérieure ou égale à la température de l'étape de scellement du panneau. Par exemple, une couche d'épaisseur finale d'environ 5 micromètres de polyphénylquinoxaline polymérisée à 410°C pendant 10 minutes, n'évoluera plus chimiquement et mécaniquement pendant une étape de scellement à 400°C.
  • On rappelle que l'étape de scellement d'un PAP est l'étape dans laquelle on rapproche l'une de l'autre, les deux dalles 2, 3, pour obtenir la hauteur H1 désirée de l'espace gazeux 10, et dans laquelle on déforme les joints de scellement 11 pour faire l'étanchéité.
  • Il est à noter que le composé organique peut être chargé avec des composés minéraux et/ou métalliques, en vue par exemple de modifier la constante diélectrique et/ou pour en modifier la couleur.
  • La constante diélectrique relative Er des composés organiques utilisés peut être comprise entre 2 et 4 pour le composé pur (par exemple un polyimide) et elle peut être augmentée pour atteindre des valeurs supérieurs à 10.
  • Les épaisseurs peuvent varier de moins de 1 micromètre à plusieurs dizaines de micromètres, selon la capacité diélectrique recherchée par la couche.
  • Par exemple pour le composé organique non chargé (2<Er<4), on obtient un fonctionnement correct du "PAP" pour des épaisseurs E2 des couches diélectriques 4, 6, (après polymérisation) de l'ordre de 5 à 6 micromètres.
  • La couleur éventuelle du dépôt final peut aussi être ajustée en ajoutant un colorant organique ou un composé minéral. Des dépôts noirs ou blancs peuvent également être obtenus de cette manière.
  • Le composé organique thermostable tel que ci-dessus défini, peut être polymérisé à des températures relativement basses, pour ne pas provoquer la déformation du substrat de verre ou dalle 2, 3, ni dégrader les autres couches déposées-sur ce substrat. En particulier, le composé organique ne réagit pas avec le matériau d'électrodes (ITO, métal, etc ...).
  • De plus, le composé organique permet un recouvrement homogène des électrodes et supporte donc des champs électriques élevés sans montrer de phénomène de claquage électrique.
  • Bien entendu l'invention s'applique aussi bien au cas où les couches diélectriques sont réalisées suivant des surfaces continues que dans le cas de surfaces discontinues.
  • Un composé organique polymérisable semblable à celui ci-dessus indiqué pour les couches diélectriques, peut constituer le matériau de base pour la réalisation des espaceurs et des barrières 12, 15.
  • Comme ci-dessus, le composé organique peut être chargé par des composés minéraux et/ou métalliques, pour en faire varier la viscosité et/ou la couleur et/ou la résistance à l'écrasement après polymérisation.
  • Le composé organique peut être étendu sur le substrat ou dalle 2, 3 par des méthodes usuelles semblables à celles citées le plus haut pour les couches diélectriques (tournette, spray, sérigraphie, etc ...).
  • Plusieurs couches peuvent être nécessaires pour obtenir la hauteur H2 désirée. Dans ce cas une opération de séchage est intercalée entre chaque étape de dépôt.
  • Un avantage important de l'utilisation d'un composé organique pour la réalisation d'especeurs, résulte de ce que ce composé organique peut être (ou être rendu) photosensible, et se prête alors à être insolé (à travers un masque) et gravé. Un tel matériau est appelé "photo-imageable".
  • On trouve dans le commerce des composés organiques photosensibles.
  • Si plusieurs dépôts sont nécessaires pour obtenir la hauteur H2, il suffit d'insoler (généralement par exposition à rayonnement ultra-violet) la couche quand le dernier dépôt est effectué, puis de graver à l'aide des méthodes classiques de photogravures.
  • La phase d'insolation et de photogravure intervient après séchage du dernier dépôt, et avant polymérisation ou à la suite d'une polymérisation partielle du composé organique.
  • La polymérisation du composé organique est obtenue en l'exposant à un traitement thermique et/ou par insolation aux rayons ultra-violets, d'une façon en elle-même classique.
  • L'ensemble des opérations peut être répété pour réaliser des espaceurs ou des barrières multicouches.
  • Les opérations ci-dessus décrites peuvent être effectuées simultanément pour tous les espaceurs faisant en outre office de barrière de décharge ou non.
  • Mais ces opérations peuvent aussi être répétées en particulier pour obtenir une géométrie et/ou des propriétés mécaniques ou optiques variables dans l'épaisseur de l'espaceur formant barrière ou non. Ceci est indiqué notamment quand on veut réaliser certaines barrières avec des hauteurs plus faibles, en vue du conditionnement des cellules (notamment circulation du gaz entre les cellules).
  • Le caractère photo-imageable du composé organique permet de conférer de façon simple et sure, aux espaceurs et barrières 12, 15, les dimensions voulues ainsi que les positions désirées notamment par rapport aux électrodes X, Y1 à Yn.
  • Cette caractéristique est particulièrement intéressante dans le cas des barrières 15 dont la largeur L, par rapport au pas P des cellules, doit rester relativement faible, et dont la position entre les cellules est également importante.
  • En outre des espaceurs ou barrière 12, 15 ainsi réalisés sont thermostables et n'ont pas tendance à fluer : on peut donc obtenir des rapports hauteur H2 sur largeur L (H1/L) supérieurs à 1, pour des hauteurs H2 supérieures à 200 micromètres.
  • La possibilité de superposer des couches intermédiaires pour obtenir une couche finale ayant la hauteur H2 désirée, permet de réaliser des empilements dans lesquels au moins une couche intermédiaire, la première réalisée par exemple, est colorée (avec une épaisseur faible de l'ordre de un à quelques micromètres) en vue d'augmenter le contraste optique présenté par le PAP.
  • L'invention peut s'appliquer à la réalisation de tout élément électriquement isolant porté par une dalle de PAP, que ce dernier soit du type continu ou alternatif, monochrome ou polychrome, quelle que soit la répartition des électrodes par rapport à l'espace gazeux, et quel que soit le nombre d'électrodes utilisées pour définir une cellule.

Claims (11)

  1. Dispositif de visualisation du type panneau à plasma, comportant deux dalles (2, 3) dont au moins une porte des électrodes (X, Y1 à Yn), les deux dalles (2, 3) étant assemblées de manière qu'un espace (10) soit réalisé entre ces deux dalles, l'espace étant destiné à constituer un espace gazeux dont l'étanchéité est réalisée par une opération dite de scellement, au moins une couche diélectrique (4,6) étant disposée entre l'espace gazeux (10) et des électrodes (X,Y1 à Yn), caractérisé en ce que la couche (4,6) est réalisée en un composé organique polymérisable.
  2. Dispositif de visualisation suivant la revendication 1, caractérisé en ce qu'il comporte au moins # un espaceur (12, 15) définissant la hauteur (H1) de l'espace gazeux (10) aussi réalisé en un composé organique polymérisable.
  3. Dispositif de visualisation suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte au moins une barrière de décharge (15) réalisée en un composé organique polymérisable.
  4. Dispositif de visualisation selon l'une des revendications précédentes, caractérisé en ce que le composé organique polymérisable est obtenu à partir d'un mélange de monomères.
  5. Dispositif de visualisation suivant l'une quelconque des revendications précédentes, caractérisé en ce que le composé organique polymérisable est en polyimide.
  6. Dispositif de visualisation selon l'une des revendications précédentes, caractérisé en ce que le composé organique est thermostable jusqu'à une température au moins égale à une température produite durant l'opération de scellement .
  7. Dispositif de visualisation suivant l'une des revendications précédentes, caractérisé en ce que le composé organique est photosensible.
  8. Dispositif de visualisation suivant l'une des revendications précédentes, caractérisé en ce que le composé organique est polymérisable à une température inférieure ou sensiblement égale à une température provoquant un ramollissement d'au moins une dalle (2, 3).
  9. Dispositif de visualisation suivant l'une des revendications précédentes, caractérisé en ce que le composé organique est chargé par des produits ou composés minéraux et/ou métalliques.
  10. Procédé pour la réalisation d'un dispositif de visualisation suivant l'une des revendications 1 à 9, caractérisé en ce qu'il consiste à stabiliser le composé organique par insolation aux rayons ultra-violet.
  11. Procédé pour la réalisation d'un dispositif suivant l'une des revendications 1 à 9, caractérisé en ce qu'il consiste à stabiliser le composé organique en l'exposant à une température comprise entre la température produite pendant l'étape de scellement et une température de ramollissement d'au moins une des dalles (2, 3).
EP92912967A 1991-06-27 1992-06-19 Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements Expired - Lifetime EP0546137B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9108004 1991-06-27
FR9108004A FR2678424A1 (fr) 1991-06-27 1991-06-27 Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements.
PCT/FR1992/000561 WO1993000698A1 (fr) 1991-06-27 1992-06-19 Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements

Publications (2)

Publication Number Publication Date
EP0546137A1 EP0546137A1 (fr) 1993-06-16
EP0546137B1 true EP0546137B1 (fr) 1995-09-06

Family

ID=9414412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912967A Expired - Lifetime EP0546137B1 (fr) 1991-06-27 1992-06-19 Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements

Country Status (6)

Country Link
US (1) US5336121A (fr)
EP (1) EP0546137B1 (fr)
JP (1) JP3270045B2 (fr)
DE (1) DE69204632T2 (fr)
FR (1) FR2678424A1 (fr)
WO (1) WO1993000698A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145279B2 (ja) * 1995-08-28 2001-03-12 大日本印刷株式会社 プラズマディスプレイパネル及びその製造方法
KR19980702292A (ko) * 1995-12-18 1998-07-15 요트. 게. 아. 롤페즈 플라즈마 어드레스 액정 디스플레이
FR2748469B1 (fr) * 1996-05-07 1998-07-31 Thomson Csf Utilisation d'une barriere en nitrure pour eviter la diffusion d'argent dans du verre
JPH1027550A (ja) * 1996-05-09 1998-01-27 Pioneer Electron Corp プラズマディスプレイパネル
DE19727607C2 (de) * 1997-06-28 2000-11-23 Philips Corp Intellectual Pty Plasmabildschirm mit einer UV-Leuchtstoffzubereitung und UV-Leuchtstoffzubereitung
JP3606038B2 (ja) * 1998-03-31 2005-01-05 松下電器産業株式会社 プラズマディスプレイパネル
US6215241B1 (en) 1998-05-29 2001-04-10 Candescent Technologies Corporation Flat panel display with encapsulated matrix structure
US7002287B1 (en) 1998-05-29 2006-02-21 Candescent Intellectual Property Services, Inc. Protected substrate structure for a field emission display device
US6853129B1 (en) 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device
US6614168B2 (en) * 2002-01-11 2003-09-02 Industrial Technology Research Institute Package method for field emission display
KR100533723B1 (ko) * 2003-04-25 2005-12-06 엘지전자 주식회사 플라즈마 디스플레이 패널 및 그 제조방법
US8497631B2 (en) * 2006-01-23 2013-07-30 The Board Of Trustees Of The University Of Illinois Polymer microcavity and microchannel devices and fabrication method
KR101113853B1 (ko) * 2006-02-27 2012-02-29 삼성테크윈 주식회사 플라즈마 디스플레이 패널과, 디스플레이 패널용 전극 매립유전체 벽 제조 방법과, 상기 플라즈마 디스플레이 패널용전극 매립 유전체 벽 제조 방법
JP2008262931A (ja) * 2008-08-05 2008-10-30 Toray Ind Inc プラズマディスプレイパネルの緩衝層形成用ペースト

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855847A (en) * 1972-06-20 1974-12-24 Westinghouse Electric Corp Acoustic emission transducer and monitoring system
FR2260865B1 (fr) * 1974-02-12 1976-11-26 Thomson Csf
US3931436A (en) * 1974-07-30 1976-01-06 Owens-Illinois, Inc. Segmented gas discharge display panel device and method of manufacturing same
US4803402A (en) * 1984-08-22 1989-02-07 United Technologies Corporation Reflection-enhanced flat panel display
JPS61236096A (ja) * 1985-04-10 1986-10-21 Hitachi Ltd 磁気バブルメモリ素子の作製方法
US4695674A (en) * 1985-08-30 1987-09-22 The Standard Oil Company Preformed, thin-film front contact current collector grid for photovoltaic cells
JPH0743996B2 (ja) * 1988-03-02 1995-05-15 ガス放電表示装置の製造方法
US4923421A (en) * 1988-07-06 1990-05-08 Innovative Display Development Partners Method for providing polyimide spacers in a field emission panel display
US5209688A (en) * 1988-12-19 1993-05-11 Narumi China Corporation Plasma display panel

Also Published As

Publication number Publication date
FR2678424A1 (fr) 1992-12-31
WO1993000698A1 (fr) 1993-01-07
DE69204632D1 (de) 1995-10-12
JP3270045B2 (ja) 2002-04-02
EP0546137A1 (fr) 1993-06-16
DE69204632T2 (de) 1996-02-08
JPH06500891A (ja) 1994-01-27
US5336121A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
EP0546137B1 (fr) Elements electriquement isolants pour panneaux a plasma et procede pour la realisation de tels elements
US6321571B1 (en) Method of making glass structures for flat panel displays
EP0234989B1 (fr) Procédé de fabrication d&#39;un dispositif de visualisation par cathodoluminescence excitée par émission de champ
EP0511096B1 (fr) Procédé de passivation locale d&#39;un substrat par une couche de carbone amorphe hydrogène et procédé de fabrication de transistors en couches minces sur ce substrat passive
EP0710433B1 (fr) Circuits electriques a tres haute conductibilite et de grande finesse, leurs procedes de fabrication, et dispositifs les comprenant
EP0222668B1 (fr) Procédé de fabrication par gravure en escalier d&#39;un transistor en couches minces à grille auto-alignée par rapport au drain et à la source de celui-ci et transistor obtenu par ce procédé
FR2754634A1 (fr) Panneau d&#39;affichage plasma et son procede de fabrication
EP0968512A1 (fr) Panneau a plasma bi-substrat
FR2797987A1 (fr) Appareil, procede de fabrication et procede de commande d&#39;un ecran d&#39;affichage a plasma
US6560997B2 (en) Method of making glass structures for flat panel displays
EP0225822B1 (fr) Condensateur multipiste
FR2792454A1 (fr) Procede de fabrication d&#39;un panneau a plasma
FR2764438A1 (fr) Procede de realisation d&#39;une couche dielectrique comportant des motifs en relief, sur une dalle de panneau a plasma
FR2758431A1 (fr) Dispositif d&#39;affichage electroluminescent en couche mince et a excitation alternative et son procede de realisation
FR2818798A1 (fr) Procede de fabrication d&#39;un reseau de barrieres en materiau mineral sur une dalle pour panneau de visualisation a plasma
EP0709741B1 (fr) Procédé de photolithogravure de motifs circulaires denses
FR2797992A1 (fr) Composition pour la realisation d&#39;un reseau noir procede de realisation d&#39;un reseau noir et panneau d&#39;affichage au plasma comprotant un tel reseau noir
FR2812125A1 (fr) Dalle en verre munie d&#39;electrodes en un materiau conducteur
EP2005465A1 (fr) Procédé de réalisation de structures en multicouches à propriétés contrôlées
KR100716851B1 (ko) 평면 패널 디스플레이용 글라스 구조 제조방법
EP1017645B1 (fr) Procede de realisation d&#39;un panneau de visualisation comportant une dalle a stabilite dimensionnelle amelioree
FR2787631A1 (fr) Procede de fabrication d&#39;un panneau a plasma
WO2001020637A1 (fr) Melange pour realiser des electrodes et procede de formation d&#39;electrodes sur un substrat transparent
JP4447710B2 (ja) フラットパネルディスプレイ用ガラス構造の作成方法
EP1097448A1 (fr) Procede de realisation d&#39;une tete magnetique d&#39;enregistrement/lecture et application a une tete matricielle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19931215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950906

Ref country code: GB

Effective date: 19950906

REF Corresponds to:

Ref document number: 69204632

Country of ref document: DE

Date of ref document: 19951012

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950906

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050621

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630