EP0544492B1 - Compositions détergents sous forme particulaire - Google Patents
Compositions détergents sous forme particulaire Download PDFInfo
- Publication number
- EP0544492B1 EP0544492B1 EP92310721A EP92310721A EP0544492B1 EP 0544492 B1 EP0544492 B1 EP 0544492B1 EP 92310721 A EP92310721 A EP 92310721A EP 92310721 A EP92310721 A EP 92310721A EP 0544492 B1 EP0544492 B1 EP 0544492B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zeolite
- surfactant
- detergent composition
- ethoxylation
- particulate detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 139
- 239000003599 detergent Substances 0.000 title claims abstract description 42
- 239000004094 surface-active agent Substances 0.000 claims abstract description 98
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 75
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000010457 zeolite Substances 0.000 claims abstract description 75
- 238000007046 ethoxylation reaction Methods 0.000 claims abstract description 38
- 150000001298 alcohols Chemical class 0.000 claims abstract description 35
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 34
- -1 alkyl sulphate Chemical compound 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910021653 sulphate ion Inorganic materials 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 15
- 239000004411 aluminium Substances 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000344 soap Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 23
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 17
- 239000000194 fatty acid Substances 0.000 claims description 17
- 229930195729 fatty acid Natural products 0.000 claims description 17
- 150000004665 fatty acids Chemical class 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 14
- 239000004615 ingredient Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 4
- 150000003839 salts Chemical group 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 7
- 238000005054 agglomeration Methods 0.000 abstract description 4
- 230000002776 aggregation Effects 0.000 abstract description 4
- 239000000843 powder Substances 0.000 description 64
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 29
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 28
- 241000894007 species Species 0.000 description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- 229910000029 sodium carbonate Inorganic materials 0.000 description 13
- 238000009472 formulation Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 229940096386 coconut alcohol Drugs 0.000 description 7
- 239000008187 granular material Substances 0.000 description 7
- 244000060011 Cocos nucifera Species 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000007844 bleaching agent Substances 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000005995 Aluminium silicate Substances 0.000 description 5
- 235000013162 Cocos nucifera Nutrition 0.000 description 5
- 229940120146 EDTMP Drugs 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 5
- 235000012211 aluminium silicate Nutrition 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- 239000002304 perfume Substances 0.000 description 5
- 229920001983 poloxamer Polymers 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 3
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003240 coconut oil Substances 0.000 description 3
- 235000019864 coconut oil Nutrition 0.000 description 3
- 239000008233 hard water Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 210000002374 sebum Anatomy 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 3
- 229940117972 triolein Drugs 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 239000004435 Oxo alcohol Substances 0.000 description 2
- GBFLZEXEOZUWRN-VKHMYHEASA-N S-carboxymethyl-L-cysteine Chemical compound OC(=O)[C@@H](N)CSCC(O)=O GBFLZEXEOZUWRN-VKHMYHEASA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000012612 commercial material Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
- C11D17/065—High-density particulate detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
Definitions
- the present invention is concerned with particulate detergent compositions that combine exceptionally good cleaning performance with high bulk density and excellent powder properties.
- the compositions contain a high level of high-performance organic surfactant - selected ethoxylated alcohol optionally plus a minor amount of alkyl sulphate - and zeolite detergency builder, and are preferably prepared by an agglomeration process using a high-speed mixer/granulator.
- alkyl sulphates In view of increasing environmental awareness, it has also become desirable to use alkyl sulphates in preference to the linear alkylbenzene sulphonates traditionally used in laundry detergents.
- Alkyl sulphates are readily biodegradable and can be obtained from renewable sources such as coconut and palm oil. However, they are generally more difficult to process into high quality detergent powders than are alkylbenzene sulphonates.
- Nonionic surfactants alkyl sulphates and mixtures of the two have been found to provide highly efficient detergency, but because of their mobility are difficult to incorporate, even at moderate levels, into free-flowing powders that will disperse in the wash liquor.
- these difficulties would be expected to increase, and to be exacerbated even further in the highly concentrated, dense powders currently favoured by the consumer and the detergents industry.
- the present inventors have succeeded in formulating high bulk density free-flowing detergent powders combining excellent performance with good powder properties and dispersibility, despite their containing relatively high levels of high-performance mobile surfactants.
- the powders of the invention contain relatively high levels of zeolite builder, and may be prepared by a granulation process in a high-speed mixer/granulator. Especially good powder properties may be obtained by use of a novel zeolite P as the builder; and especially good detergency may be obtained by use of selected nonionic surfactants.
- EP 265 203A discloses a surfactant blend mobile at a temperature within the range of from 20 to 80°C, comprising from 20 to 80 wt% of alkylbenzene sulphonate or alkyl sulphate, from 80 to 20 wt% of ethoxylated nonionic surfactant and from 0-10 wt% water.
- the surfactant blend may be sprayed on to an absorbent particulate solid material, for example, spray-dried polymer-modified Burkeite, to give free-flowing detergent powder containing up to about 25 wt% of surfactant.
- EP 436 240A (Unilever) discloses a similar mobile surfactant blend additionally containing a fatty acid soap. When sprayed onto an absorbent solid material, this blend gives powders having improved flow and dispensing properties.
- GB 1 462 134 (Procter & Gamble/Collins) discloses linear or predominantly linear ethoxylated primary alcohols of closely defined chain length, chain length distribution, ethylene oxide content, ethoxylation distribution and free alcohol content. These materials give improved oily soil detergency as compared with conventional commercially available materials.
- EP 133 715A (Union Carbide) discloses an alkoxylation product mixture having an especially highly peaked distribution of alkoxylation species, in which a single prevalent alkoxylation species constitutes 20 to 40 wt% and the amounts of species differing substantially from the prevalent species are strictly limited.
- EP 384 070A discloses the use as a detergency builder of zeolite P having a silicon to aluminium ratio not greater than 1.33 (zeolite MAP). This zeolite has been found to be a more effective and rapid binder of calcium ions than is conventional zeolite 4A.
- Example K of that application discloses a high bulk density powder consisting of 50 wt% zeolite 4A, 23.4 wt% sodium carbonate, and 26.6 wt% of the nonionic surfactant Synperonic A3 (synthetic C 12-15 alcohol having an average degree of ethoxylation of 3); and
- Example 7 discloses a high bulk density powder consisting of 56.6 wt% zeolite MAP, 13.3 wt% sodium carbonate, and 30.1 wt% Synperonic A3. These compositions are specifically disclaimed in the present application.
- a liquid surfactant composition comprising an alkyl sulphate (20-80 wt%), an ethoxylated nonionic surfactant (80-20 wt%) and water (0-20 wt%).
- the present invention provides a particulate detergent composition having a bulk density of at least 650 g/l, preferably at least 700 g/l and advantageously at least 800 g/l, comprising:
- the particulate detergent composition of the invention is characterised by an especially high level of a high-performance organic surfactant system. At least 15 wt% of the composition is constituted by the surfactant, and as much as 50 wt% may be present. Compositions may advantageously contain at least 20 wt%, more advantageously at least 25 wt%, of the surfactant system.
- the surfactant system consists essentially of ethoxylated alcohol having a relatively low degree of ethoxylation, optionally with a minor proportion (not exceeding 40 wt% of the surfactant system) of primary alkyl sulphate.
- the proportion of primary alkyl sulphate preferably does not exceed 35 wt% (of the surfactant system), and more preferably does not exceed 30 wt% of the surfactant system.
- Preferred proportions of alkyl sulphate in the surfactant system are from 0.1 to 35 wt%, more preferably from 5 to 35 wt%, and advantageously from 10 to 30 wt%.
- surfactant systems in which the proportion of alkyl sulphate does not exceed 15 wt%, for example, from 0.1 to 15 wt%, preferably from 0.1 to 10 wt%.
- the ethoxylated alcohol nonionic surfactant employed in the detergent compositions of the present invention has a relatively low degree of ethoxylation, not exceeding 6.5.
- the average degree of ethoxylation of the nonionic surfactant is preferably at least 4, but it may be lower, for example, from 3 to 4, when primary alkyl sulphate is present. Accordingly, when primary alkyl sulphate is present, the ethoxylated alcohol preferably has an average degree of ethoxylation within the range of from 3 to 6.5.
- the preferred range for the average degree of ethoxylation of the nonionic surfactant is within the range of from 4 to 6.5, more preferably from 4 to 6 and most preferably from 4 to 5.5.
- a mixture of differently ethoxylated materials may be used, provided that the overall degree of ethoxylation meets the stated requirements.
- the HLB value of the nonionic surfactant preferably does not exceed 11.0, and more preferably does not exceed 10.5. Desirably the HLB value is within the range of from 9.5 to 10.5.
- the chain length of the ethoxylated alcohol may generally range from C 8 to C 18 , preferably from C 12 to C 16 ; an average chain length of C 12-15 is preferred. Especially preferred is ethoxylated alcohol consisting wholly or predominantly of C 12 -C 14 material.
- the ethoxylated alcohol is preferably primary, but secondary alcohol ethoxylates could in principle be used.
- the alcohol is preferably wholly or predominantly straight-chain. Suitable alcohols are vegetable-derived, for example, coconut, which is the most preferred material. Among the synthetic alcohols, Ziegler alcohols are preferred to oxo-based alcohols.
- the ethoxylated alcohol (which of course is always a mixture of species having different numbers of ethylene oxide units) is a "narrow range" material having a distribution of ethoxylated species that is more highly peaked about a single prevalent value than is the case in conventional commercial nonionic surfactants.
- the content of unethoxylated material is also generally lower, and may be reduced further by so-called "stripping".
- mixtures having an average alkoxylation number of at least 4, in which at least one alkoxylation species (the "prevalent species") constitutes about 20 to 40 wt% of the mixture; the proportion of species having 3 or more alkoxylation units above the mean is less than 12 wt%; and the species having 1 more and 1 less alkoxylation unit that the mean are each present in a weight ratio to the prevalent species of 0.6:1 to 1:1.
- Preferred product mixtures contain from 80 to 95 wt% of alkoxylation species having alkoxylation numbers within plus or minus 2 of the mean.
- narrow range as used in the present specification also covers materials that are not so highly peaked as to meet the requirements of the Union Carbide patent claims, but yet are substantially more peaked than, for example, the commercially available ICI "Synperonic” (Trade Mark) ethoxylated alcohols.
- ethoxylated alcohol product in which a single ethoxylation species constitutes 13 wt% or more, preerably 15 wt% or more, of the product.
- Conventional ethoxylates contain no more than about 10 wt% of any one ethoxylation species.
- the prevalent species preferably contains 4 or 5 ethoxylation units.
- Preferred "narrow range" ethoxylated alcohol used in the compositions of the invention may have any one or more of the following characteristics:
- GB 1 462 132 Procter & Gamble/ Collins
- these materials having an average degree of ethoxylation between 3.5 and 6.5, the amount of material having a degree of ethoxylation within the 2-7EO range being at least 63 wt%, and the amount of free alcohol not exceeding 5 wt%. These materials are also suitable for use in the compositions of the present invention.
- the following table shows the ethoxylation distribution of some commercially available coconut-based ethoxylates, both narrow-range (NRE7, NRE5 etc), and broad-range (E7, E3), the figures indicating the nominal average degree of ethoxylation in each case.
- NRE5, NRE4.6 and NRE4.2 are especially preferred, NRE4.2 being particularly favoured.
- nonionic surfactants described in the aforementioned GB 1 462 134 (Procter & Gamble/Collins) are such that at least 65 wt% of the material has a chain length within ⁇ 1 carbon atom of the mean value.
- the primary alcohol sulphate (PAS) that may optionally be present, constituting up to 40 wt% of the surfactant system, may have a chain length in the range of C 8 -C 18 , preferably C 12 -C 16 , with a mean value preferably in the C 12-15 range. Especially preferred is PAS consisting wholly or predominantly of C 12 -C 14 material.
- mixtures of different chain lengths may be used as described and claimed in EP 342 917A (Unilever).
- PAS of vegetable origin, and more especially PAS from coconut oil (cocoPAS) is especially preferred.
- cocoPAS PAS from coconut oil
- the PAS is present in the form of the sodium or potassium salt, the sodium salt generally being preferred.
- the amount of zeolite builder in the compositions of the invention may range from 20 to 60 wt%, usually from 25 to 55 wt% and suitably, in a heavy duty detergent composition, from 25 to 48 wt%.
- the zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders.
- the use of zeolite 4A can give powders having satisfactory flow properties when 17 wt% of surfactant consisting of 30 wt% PAS and 70 wt% nonionic surfactant is present.
- the zeolite builder incorporated in the compositions of the invention is zeolite MAP as described and claimed in EP 384 070A (Unilever Case T3047).
- Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
- zeolite MAP having a silicon to aluminium ratio not exceeding 1.07.
- the calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
- zeolite MAP has another advantage quite independent of its greater building efficacy: it enables more higher total surfactant levels, and more nonionic-rich surfactant systems, to be used without loss of powder flow properties.
- Preferred zeolite MAP for use in the present invention is especially finely divided and has a d 50 (as defined below) within the range of from 0.1 to 5.0 microns, more preferably from 0.4 to 2.0 microns and most preferably from 0.4 to 1.0 microns.
- the quantity “d 50 " indicates that 50 wt% of the particles have a diameter smaller than that figure, and there are corresponding quantities "d 80 ", "d 90 " etc.
- Especially preferred materials have a d 90 below 3 microns as well as a d 50 below 1 micron.
- compositions in accordance with the invention may contain sodium carbonate, to increase detergency and to ease processing.
- Sodium carbonate may generally be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%, and most suitably from 2 to 13 wt%.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate polymer, or sodium silicate.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate polymer, or sodium silicate.
- the preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt%. As will be discussed below in the context of processing, this is preferably incorporated as the free acid and neutralised in situ.
- compositions of the invention are characterised by excellent flow properties, despite the high content of mobile high-performance organic surfactant.
- powder flow is defined in terms of the dynamic flow rate, in ml/s, measured by means of the following procedure.
- the apparatus used consists of a cylindrical glass tube having an internal diameter of 35 mm and a length of 600 mm.
- the tube is securely clamped in a position such that its longitudinal axis is vertical. Its lower end is terminated by means of a smooth cone of polyvinyl chloride having an internal angle of 15° and a lower outlet orifice of diameter 225 mm.
- a first beam sensor is positioned 150 mm above the outlet, and a second beam sensor is positioned 250 mm above the first sensor.
- the outlet orifice is temporarily closed, for example, by covering with a piece of card, and powder is poured through a funnel into the top of the cylinder until the powder level is about 10 cm higher than the upper sensor; a spacer between the funnel and the tube ensures that filling is uniform.
- the averaging and calculation are carried out electronically and a direct read-out of the DFR value obtained.
- compositions and components of the present invention generally have dynamic flow rates of at least 90 ml/s, preferably at least 100 ml/s.
- Fully formulated laundry detergent compositions in accordance with the present invention may additionally contain any suitable ingredients normally encountered, for example, inorganic salts such as sodium silicate or sodium sulphate; organic salts such as sodium citrate; antiredeposition aids such as cellulose derivatives and acrylate or acrylate/maleate polymers; fluorescers; bleaches, bleach precursors and bleach stabilisers; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; fabric softening compounds.
- inorganic salts such as sodium silicate or sodium sulphate
- organic salts such as sodium citrate
- antiredeposition aids such as cellulose derivatives and acrylate or acrylate/maleate polymers
- fluorescers bleaches, bleach precursors and bleach stabilisers
- proteolytic and lipolytic enzymes dyes; coloured speckles; perfumes; foam controllers; fabric softening compounds.
- compositions of the invention may advantageously be prepared by granulating the zeolite and surfactants in a high-speed mixer/granulator.
- surfactant system includes PAS, that may be incorporated either in salt form (generally as an aqueous paste), or as the free acid (for neutralisation in situ).
- An especially preferred process includes the steps of:
- the surfactant system is simply an ethoxylated alcohol (mixture) which will already take the form of a homogeneous mobile liquid blend.
- the homogeneous mobile liquid blend may be prepared by mixing PAS paste with the nonionic surfactant.
- the nonionic may be admixed during the neutralisation of PAS acid by alkali, for example in a loop reactor, as described and claimed in EP 507 402A (Unilever) filed on 31 March 1992 and published on 7 October 1992.
- the high-speed mixer/granulator also known as a high-speed mixer/densifier, may be a batch machine such as the Fukae (Trade Mark) FS, or a continuous machine such as the Lödige (Trade Mark) Recycler CB30.
- the process allows the incorporation of high levels of surfactant without loss of powder flow properties, especially when the zeolite component of the composition is zeolite MAP and/or when soap is present as a structurant.
- soap is to be included as a structurant, this is preferably incorporated in the mobile surfactant blend, either as such, or as the corresponding fatty acid (together with a suitable amount of alkali) for neutralisation in situ.
- bleach ingredients (bleaches, bleach precursors and bleach stabilisers), proteolytic and lipolytic enzymes, coloured speckles, perfumes and foam control granules are most suitably admixed (postdosed) to the dense granular product after it has left the high-speed mixer/granulator.
- compositions of the invention may also be prepared by other processes, involving spray-drying or non-tower technology or combinations of the two.
- Detergent compositions were prepared to the following general formulation: parts % Surfactant system (see below) 17 20.11 Zeolite 4A 32 37.86 Polymer 4 4.73 Carbonate 14.5 17.16 Silicate 0.5 0.59 Metaborate 16.5 19.53 84.50 100.00
- the surfactant systems were made up as follows (wt%): Example CocoPAS E7(s) E3(s) NRE7(s) NRE3(s) 1 30 30 40 - - 2 30 - - 30 40 3 10 40 50 - - 4 10 - - 40 50
- Both mixtures of 30 parts of 7EO nonionic surfactant and 40 parts of 3EO nonionic surfactant had an average EO number of 4.7 and an HLB value of 10.1.
- the percentage of the predominant ethoxylation species (4EO) in the NRE mix was estimated to be 14 wt%.
- Example 1 and Example 3 shows how increasing the proportion of nonionic surfactant at the expense of PAS increases detergency: while comparison of the results for Examples 1 and 2, and for Examples 3 and 4, shows the detergency benefit obtained by changing to "narrow range" ethoxylated alcohol.
- the outstandingly good result for Example 4 shows the benefit of combining these two measures.
- a further detergency comparison was carried out, using test cloths carrying a number of different soils. This experiment was carried out using a Miele (Trade Mark) computer-controlled washing machine, using a product concentration of 5 g/l, and a 30-minute wash at 20°C in 26° (French) hard water.
- Miele Trade Mark
- compositions had the following general formulation: parts % Surfactant system (see below) 17.0 19.50 Zeolite 4A 30.5 35.00 Sodium carbonate 12.77 14.65 Sodium silicate 0.5 0.57 Sodium perborate monohydrate 16.25 18.65 TAED (83% granules) 7.25 8.32 EDTMP 0.37 0.42 Antifoam granules 2.50 2.87 87.14 100.00
- the surfactant systems were made up as follows (wt%): Example CocoPAS E7(s) E3(s) NRE7(s) NRE3(s) 5 30 30 40 - - 6 30 - - 30 40 7 10 - - 40 50
- Test cloth 1 kaolin and wool fat on polyester/cotton (WFK 10C) Reflectance change (delta R 460 ) Example 5 10.9 Example 6 11.8 Example 7 12.4 Test cloth 2 : kaolin and wool fat on polyester/cotton (WFK 30C) Reflectance change (delta R 460 ) Example 5 21.4 Example 6 24.5 Example 7 27.5 Test cloth 3 : kaolin and sebum on cotton (WFK 10D) Reflectance change (delta R 460 ) Example 5 16.5 Example 6 17.4 Example 7 18.8 Test cloth 4 : kaolin and sebum on polyester (WFK 30D) Reflectance change (delta R 460 ) Example 5 18.7 Example 6 21.5 Example 7 25.1
- compositions were as given in Example 1, and the surfactant systems consisted of 30 wt% cocoPAS, and 70 wt% ethoxylated alcohol.
- the ethoxylated alcohol component was made up
- Example 8 The procedure of Example 8 was repeated using a series of compositions having a more nonionic-rich surfactant system: 10 wt% cocoPAS and 90 wt% ethoxylated alcohol. The results are shown in the following Table. (i) (ii) (iii) EO (average) E7 + E3 NRE7 + NRE3 Single NRE 6.88 22.6 (E7) 5.96 34.3 (NRE7) 5.20 44.1 45.5 (NRE5) 5.17 35.3 4.94 35.5 51.5 (NRE4.6) 4.70 36.1 4.66 44.5 4.49 43.0 4.31 43.1 4.27 53.5 (NRE4.2) 3.75 44.1 3.01 35.4 (NRE3) 3.00 37.2 (E3)
- Detergent base powders of high bulk density consisting of the surfactant system, zeolite and (in some cases) sodium carbonate, were prepared by agglomeration in a Fukae FS100 batch high-speed mixer/granulator. These powders are not intended as fully formulated detergent compositions, but are readily converted to such compositions by admixture (postdosing) of other components such as bleach ingredients, enzymes, lather control granules and perfume.
- the surfactant system was as follows:
- compositions in parts by weight and percentages, are shown below.
- a 11 12 Surfactant 17 (38.64) 17 (31.48) 17 (40.48) Zeolite 4A 27 (61.36) 27 (50.00) - Zeolite MAP - - 25 (59.52) Carbonate - 10 (18.52) - 44 (100.00) 54 (100.00) 42 (100.00)
- a homogeneous liquid blend of the surfactants was prepared by neutralising PAS acid with sodium hydroxide solution in a loop reactor in the presence of the nonionic surfactants. Zeolite and (where present) sodium carbonate were dosed into the Fukae mixer, the liquid surfactant blend added and the mixture granulated. The granular product was then dried using a fluidised bed.
- Composition B produced a solid mass, while Compositions C, D and E initially produced free-flowing powders which, however, lost their flow on drying.
- compositions similar to those of Comparative Examples B to E were prepared, but this time fatty acid soap was present.
- a homogeneous mobile blend was prepared by mixing PAS in sodium salt form (70 wt%), fatty acid, sufficient sodium hydroxide solution to neutralise the fatty acid, and the nonionic surfactants. Ingredients were dosed into the Fukae mixer in the order zeolite, carbonate, surfactant blend, granulation/densification was carried out as in previous Examples, and the products were finally dried using a fluidised bed.
- Powders having excellent flow properties were obtained.
- Compositions 16 17 parts % parts % Surfactant 17 25.95 17 29.18 Zeolite 4A 32 48.85 32 54.94 Carbonate 14.5 22.14 7.25 12.45 Soap 2 3.05 2 3.43 65.5 100.00 58.25 100.00
- Powder properties 16 17 Bulk density (g/l) 918 872 DFR (ml/s) 122 143
- compositions similar to those of Examples 16 and 17 were prepared, by the same method, but using zeolite MAP instead of zeolite 4A.
- Compositions 18 19 parts % parts % Surfactant 17 25.95 17 29.18 Zeolite MAP 32 48.85 32 54.94 Carbonate 14.5 22.14 7.25 12.45 Soap 2 3.05 2 3.43 65.5 100.00 58.25 100.00
- Powder properties 18 19 Bulk density (g/l) 980 959 DFR (ml/s) 131 143
- Detergent base powders generally as described in Examples 11, 12 and A were prepared using a different surfactant system:
- the surfactant system was prepared as a homogeneous mobile blend by the method described in Examples 11, 12 and A, and the other process steps were also carried out as in those Examples.
- Compositions in parts by weight F 20 G 21 Surfactant 17 17 17 17 Zeolite 4A 27 27 - - Zeolite MAP - - 25 25 Carbonate - 25 - 15 44 69 42 57
- Compositions in percentages F 20 G 21 Surfactant 38.64 24.64 40.48 29.82 Zeolite 4A 61.36 39.13 - - Zeolite MAP - - 59.52 43.86 Carbonate - 36.23 - 26.32
- compositions similar to those of Examples 18 and 19 were prepared, but containing higher levels of zeolite. Compositions in parts by weight H 22 23 Surfactant 17 17 17 Zeolite 4A 32 32 - Zeolite MAP - - 32 Carbonate - 10 - 49 59 49 Compositions in percentages H 22 23 Surfactant 34.69 28.81 34.69 Zeolite 4A 65.31 54.24 - Zeolite MAP - - 65.31 Carbonate - 16.95 -
- Composition H would not give a granular product: 10 parts of sodium carbonate were required to produce a processable formulation. With zeolite MAP at this level, however, no carbonate was required despite the high percentage level of surfactant in this composition (Example 23).
- Formulations based on zeolite 4A, with and without soap, were prepared using the surfactant system of Examples 20 to 22.
- the fatty acid soap was incorporated by mixing fatty acid and an equivalent amount of sodium hydroxide solution into the surfactant blend (prepared as described in Example 11) before addition of the blend to the Fukae mixer.
- Compositions in parts by weight Surfactant 17 17 17 Zeolite 4A 32 32 32 Carbonate 14.5 14.5 14.5 Soap - 2 4 63.5 65.5 67.5 Compositions in percentages Surfactant 26.77 25.95 25.19 Zeolite 4A 50.39 48.85 47.41 Carbonate 22.83 22.14 21.48 Soap - 3.05 5.93 Composition J gave a non-flowing product both before and after drying, while Composition K initially gave a good product but lost its flow on drying. A larger amount of soap (Example 24) gave an excellent powder having a bulk density of 920 g/l and a dynamic flow rate of 109 ml/s.
- compositions similar to those of Examples 24 and J but containing zeolite MAP and a higher level of surfactant were prepared.
- Compositions 25 26 parts % parts % Surfactant 20.5 30.60 20.5 29.71 Zeolite MAP 32 47.76 32 46.37 Carbonate 14.5 21.64 14.5 21.01 Soap - - 2 2.90 67.0 69.0
- Powder properties 25 26 Bulk sensity (g/l) 928 898 DFR (ml/s) 115 114
- compositions similar to those of Examples J and K were prepared using a different surfactant system:
- Composition L initially gave a good product but lost its flow on drying.
- Inclusion of soap (Example 27) gave an excellent powder having a bulk density of 801 g/l and a dynamic flow rate of 139 ml/s.
- Examples L and 27 were repeated using zeolite MAP instead of zeolite 4A.
- Compositions 28 29 parts parts % % Surfactant 17 26.77 17 25.95 Zeolite MAP 32 50.39 32 48.85 Carbonate 14.5 22.83 14.5 22.14 Soap - - 2 3.05 63.5 65.5 Powder properties 28 29 Bulk density (g/l) 850 810 DFR (ml/s) 145 131
- Example 24 A composition similar to that of Example 24 but containing a different nonionic surfactant, NRE5, was prepared. All solid components had a particle size lower than 200 microns.
- the method of preparation was substantially as described in Example 11.
- the mean residence time of the granular detergent composition in the batch high-speed mixer/granulator was approximately 3 minutes.
- Composition % Surfactant PAS 8.3 NRE5 19.5 Zeolite 4A 43.7 Carbonate 16.2 Water 12.3 100.00
- the granular detergent composition obtained had a bulk density of about 770 g/l and a dynamic flow rate of 101 ml/s.
- Granular detergent compositions similar to that of Example 30 were prepared using a continuous high-speed mixer/granulator, the Lödige (Trade Mark) Recycler CB30.
- the liquid surfactant mix included fatty acid in combination with a stoichiometric amount of sodium hydroxide, which during the course of the mixing and densifying process formed soap.
- the rotational speed was 1600 rpm and the mean residence time of the granular mixture in the Recycler was approximately 10 seconds.
- compositions of the granular materials leaving the Recycler were as follows. 31 32 Surfactant: PAS 8.5 8.3 NRE5 19.4 18.8 Zeolite 4A 52.6 47.1 Carbonate - 8.0 Soap 2.9 2.9 Water 16.4 14.9 100.0 100.0
- Bulk densities were about 700 g/l, particle sizes 500-600 microns, and powder properties were good.
- Comparative Composition M is a high-performance concentrated powder based on a different surfactant system (LAS with nonionic surfactants) similar to that used in premium powders presently on sale in Europe.
- Surfactant systems (wt%) M 33 34 35 LAS 46 - - - Coco PAS - 30 30 10 E7(s) 23 30 - - E3(s) 31 40 - - NRE7(s) - - 30 40 NRE3(s) - - 40 50 100 100 100 100 100 100 100 100 100 100 100 100 100 100
- the total amount of (non-soap) surfactant in each formulation was 17 wt%.
- Composition M was prepared as follows. Zeolite and carbonate (including an additional amount for neutralisation of LAS acid) were dosed into the Fukae mixer, followed by LAS acid, then a homogeneous surfactant blend (nonionic surfactant), fatty acid and an equivalent amount of sodium hydroxide solution). After granulation, the powder was dried using a fluidised bed, and the remaining ingredients postdosed.
- Compositions 33 and 34 were prepared as follows. Homogeneous surfactant blends were prepared by mixing PAS paste (70%), nonionic surfactant, fatty acid and an equivalent amount of sodium hydroxide solution. Zeolite and carbonate were dosed into the Fukae, followed by the surfactant blend. After granulation, the powders were dried using a fluidised bed, and the remaining ingredients postdosed.
- Composition 35 was prepared similarly except that no carbonate was present during granulation. Powder properties M 33 34 35 Bulk density 861 826 841 841 DFR 89 111 120 128
- Detergency was assessed in a Miele washing machine, in the presence of a soiled load, using a product concentration of 5 g/l, 26° (French) hard water, and a wash temperature of 30°C.
- the measure of detergency was the change in reflectance (460 nm) of a polyester test cloth soiled with kaolin and sebum (WFK 30D). Delta R 460 16.2 15.0 15.7 17.2
- compositions may be formulated containing the narrow-range coconut nonionic surfactants NRE7 and NRE3, instead of the broad range materials E7 and E3, in the same proportions; or instead using one of the single materials NRE5, NRE4.6 or NRE4.2.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Sorption Type Refrigeration Machines (AREA)
Claims (14)
- Composition détergente particulaire ayant une densité apparente d'au moins 650 g/l, caractérisée en ce qu'elle comprend :(a) de 15 à 50% en poids d'un système tensioactif consistant essentiellement en :(i) 60 à 100% en poids de tensioactif non ionique éthoxylé qui est un alcool primaire en C8-18 ayant un degré moyen d'éthoxylation n'excédant pas 6,5 à base du poids total du système tensioactif, et(ii) 0 à 40% en poids d'un alkylsulfate primaire en C8-18 à base du poids total du système tensioactif ;(b) de 20 à 60% en poids de zéolite,(c) facultativement, d'autres ingrédients détergents jusqu'à 100% en poids, la composition étant préparée par une voie entièrement non en tour par granulation de la zéolite et des tensioactifs dans un mélangeur/granulateur à grande vitesse.
- Composition détergente particulaire selon la revendication 1, caractérisée en ce que le système tensioactif (a) comprend de 0,1 à 35% en poids d'alkylsulfate (ii).
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce que le système tensioactif comporte l'alkylsulfate (ii) et l'alcool éthoxylé (i) a un degré moyen d'éthoxylation de 3 à 6,5.
- Composition détergente particulaire selon la revendication 1 ou 2, caractérisée en ce que le système tensioactif ne contient pas d'alkylsulfate (ii) et l'alcool éthoxylé (i) a un degré moyen d'éthoxylation de 4 à 6,5.
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce que l'alcool éthoxylé a un degré moyen d'éthoxylation de 4 à 5,5.
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins 13% en poids de l'alcool éthoxylé est constitué par un élément d'éthoxylation unique.
- Composition détergente particulaire selon la revendication 6, caractérisée en ce que l'élément d'éthoxylation unique contient 4 ou 5 motifs d'éthoxylation par mole d'alcool.
- Composition détergente particulaire selon la revendication 6 ou 7, caractérisée en ce que le tensioactif non ionique éthoxylé consiste en une matière unique ayant un degré moyen d'éthoxylation dans la gamme de 4 à 5.
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle contient au moins 17% en poids du système tensioactif.
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce que la zéolite est une zéolite P ayant un rapport silicium/aluminium n'excédant pas 1,33.
- Composition détergente particulaire selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend de 1 à 5% en poids de savon d'acide gras.
- Procédé de préparation d'une composition détergente particulaire selon la revendication 1, caractérisé en ce qu'il consiste à mélanger et à granuler la zéolite, l'alcool éthoxylé, l'alkylsulfate primaire (éventuel) sous forme d'acide ou de sel et facultativement, d'autres ingrédients compatibles, dans un mélangeur/granulateur à grande vitesse.
- Procédé selon la revendication 12, caractérisé par les stades de :(i) préparation du système tensioactif sous forme d'un mélange liquide homogène, et(ii) agglomération du mélange tensioactif liquide homogène avec la zéolite et d'autres solides présents dans le mélangeur/granulateur à grande vitesse.
- Procédé selon la revendication 12 ou la revendication 13, caractérisé en ce que le mélange tensioactif liquide homogène comprend également un acide gras et un alcali ou un savon d'acide gras.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB919125035A GB9125035D0 (en) | 1991-11-26 | 1991-11-26 | Detergent compositions and process for preparing them |
GB9125035 | 1991-11-26 | ||
GB9201059 | 1992-01-17 | ||
GB929201059A GB9201059D0 (en) | 1991-11-26 | 1992-01-17 | Detergent compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0544492A1 EP0544492A1 (fr) | 1993-06-02 |
EP0544492B1 true EP0544492B1 (fr) | 1998-05-27 |
Family
ID=26299920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92310721A Revoked EP0544492B1 (fr) | 1991-11-26 | 1992-11-24 | Compositions détergents sous forme particulaire |
Country Status (19)
Country | Link |
---|---|
EP (1) | EP0544492B1 (fr) |
JP (1) | JPH0739599B2 (fr) |
CN (1) | CN1035066C (fr) |
AT (1) | ATE166667T1 (fr) |
AU (1) | AU647681B2 (fr) |
BR (1) | BR9204572A (fr) |
CA (1) | CA2083331C (fr) |
CZ (1) | CZ284628B6 (fr) |
DE (1) | DE69225679T2 (fr) |
ES (1) | ES2117969T3 (fr) |
HK (1) | HK1014263A1 (fr) |
HU (2) | HU9203707D0 (fr) |
IN (1) | IN177823B (fr) |
MX (1) | MX9206809A (fr) |
MY (1) | MY109102A (fr) |
NO (1) | NO302621B1 (fr) |
NZ (1) | NZ245202A (fr) |
PL (1) | PL296731A1 (fr) |
SK (1) | SK281376B6 (fr) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3516449B2 (ja) * | 1992-09-09 | 2004-04-05 | ユニリーバー・ナームローゼ・ベンノートシヤープ | 改良型硬質表面洗剤 |
GB9225609D0 (en) * | 1992-12-08 | 1993-01-27 | Unilever Plc | Detergent composition |
ES2109665T3 (es) * | 1992-12-15 | 1998-01-16 | Shell Int Research | Composicion tensioactiva que incluye una zeolita y un sulfato de alquilo secundario y su procedimiento de obtencion. |
GB9305599D0 (en) * | 1993-03-18 | 1993-05-05 | Unilever Plc | Detergent compositions |
GB9324127D0 (en) † | 1993-05-26 | 1994-01-12 | Unilever Plc | Detergent compositions |
AU673926B2 (en) * | 1993-07-13 | 1996-11-28 | Colgate-Palmolive Company, The | Process for preparing detergent composition having high bulk density |
EP0639639B2 (fr) * | 1993-08-17 | 2010-07-28 | The Procter & Gamble Company | Compositions détergentes contenant des percarbonates comme agents de blanchiment |
US5698510A (en) * | 1993-09-13 | 1997-12-16 | The Procter & Gamble Company | Process for making granular detergent compositions comprising nonionic surfactant |
ATE188991T1 (de) * | 1993-09-13 | 2000-02-15 | Procter & Gamble | Granulare waschmittelzusammensetzungen mit nichtionischem tensid und verfahren zu ihrer herstellung |
DE4403323A1 (de) * | 1993-09-23 | 1995-08-10 | Henkel Kgaa | Extrudierte Wasch- oder Reinigungsmittel mit verbesserten Löseeigenschaften |
GB9324129D0 (en) * | 1993-11-24 | 1994-01-12 | Unilever Plc | Detergent compositions and process for preparing them |
DE69408161T2 (de) * | 1993-11-24 | 1998-05-07 | Unilever Nv | Reinigungsmittelzusammensetzungen |
GB2287948B (en) * | 1994-03-31 | 1998-04-08 | Procter & Gamble | Detergent composition |
TW326472B (en) * | 1994-08-12 | 1998-02-11 | Kao Corp | Method for producing nonionic detergent granules |
US5516448A (en) * | 1994-09-20 | 1996-05-14 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate |
US5489392A (en) * | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
WO1996010071A1 (fr) * | 1994-09-29 | 1996-04-04 | Unilever Plc | Compositions detergentes granulaires tres actives et leur procede de fabrication |
GB2296919A (en) * | 1995-01-12 | 1996-07-17 | Procter & Gamble | Detergent composition |
GB9500738D0 (en) * | 1995-01-14 | 1995-03-08 | Procter & Gamble | Detergent composition |
US6440922B1 (en) | 1995-01-14 | 2002-08-27 | The Procter & Gamble Company | Detergent composition comprising zeolite and amylase enzyme |
GB2297977A (en) * | 1995-02-07 | 1996-08-21 | Procter & Gamble | Detergent composition containing Zeolite MAP |
WO1997009415A1 (fr) * | 1995-09-04 | 1997-03-13 | Unilever Plc | Compositions de detergents et leur procede de preparation |
GB9519606D0 (en) * | 1995-09-26 | 1995-11-29 | Procter & Gamble | Detergent composition |
GB9519587D0 (en) * | 1995-09-26 | 1995-11-29 | Procter & Gamble | Detergent compositions |
GB9913546D0 (en) | 1999-06-10 | 1999-08-11 | Unilever Plc | Granular detergent component containing zeolite map and laundry detergent compositions containing it |
GB9913547D0 (en) | 1999-06-10 | 1999-08-11 | Unilever Plc | Particulate detergent composition containing zeolite |
EP3978589A1 (fr) | 2020-10-01 | 2022-04-06 | The Procter & Gamble Company | Alcoxylates d'alcool à gamme étroite et dérivés associés |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4406808A (en) * | 1977-10-06 | 1983-09-27 | Colgate-Palmolive Company | High bulk density carbonate-zeolite built heavy duty nonionic laundry detergent |
DE3514364A1 (de) * | 1985-04-20 | 1986-10-23 | Henkel KGaA, 4000 Düsseldorf | Koerniges waschmittel mit verbessertem reinigungsvermoegen |
DE3812530A1 (de) * | 1988-04-15 | 1989-10-26 | Henkel Kgaa | Verfahren zur erhoehung der dichte spruehgetrockneter, phosphatreduzierter waschmittel |
DE3835918A1 (de) * | 1988-10-21 | 1990-04-26 | Henkel Kgaa | Verfahren zur herstellung von tensidhaltigen granulaten |
AU647736B2 (en) * | 1989-04-24 | 1994-03-31 | Unilever Plc | Detergent compositions |
GB9001404D0 (en) * | 1990-01-22 | 1990-03-21 | Unilever Plc | Detergent composition |
GB9007999D0 (en) * | 1990-04-09 | 1990-06-06 | Unilever Plc | Particulate bleaching detergent composition |
GB9008013D0 (en) * | 1990-04-09 | 1990-06-06 | Unilever Plc | High bulk density granular detergent compositions and process for preparing them |
-
1992
- 1992-11-19 CA CA002083331A patent/CA2083331C/fr not_active Expired - Fee Related
- 1992-11-20 AU AU28546/92A patent/AU647681B2/en not_active Ceased
- 1992-11-20 NZ NZ245202A patent/NZ245202A/en not_active IP Right Cessation
- 1992-11-24 MY MYPI92002139A patent/MY109102A/en unknown
- 1992-11-24 EP EP92310721A patent/EP0544492B1/fr not_active Revoked
- 1992-11-24 ES ES92310721T patent/ES2117969T3/es not_active Expired - Lifetime
- 1992-11-24 AT AT92310721T patent/ATE166667T1/de not_active IP Right Cessation
- 1992-11-24 DE DE69225679T patent/DE69225679T2/de not_active Revoked
- 1992-11-25 HU HU9203707A patent/HU9203707D0/hu unknown
- 1992-11-25 HU HUP9203707A patent/HU216145B/hu not_active IP Right Cessation
- 1992-11-25 PL PL29673192A patent/PL296731A1/xx unknown
- 1992-11-25 NO NO924557A patent/NO302621B1/no not_active IP Right Cessation
- 1992-11-25 CN CN92114552.7A patent/CN1035066C/zh not_active Expired - Fee Related
- 1992-11-26 CZ CS923495A patent/CZ284628B6/cs not_active IP Right Cessation
- 1992-11-26 BR BR9204572A patent/BR9204572A/pt not_active IP Right Cessation
- 1992-11-26 IN IN375BO1992 patent/IN177823B/en unknown
- 1992-11-26 JP JP4339664A patent/JPH0739599B2/ja not_active Expired - Fee Related
- 1992-11-26 SK SK3495-92A patent/SK281376B6/sk not_active IP Right Cessation
- 1992-11-26 MX MX9206809A patent/MX9206809A/es not_active IP Right Cessation
-
1998
- 1998-12-24 HK HK98115579A patent/HK1014263A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CZ349592A3 (en) | 1993-08-11 |
ES2117969T3 (es) | 1998-09-01 |
JPH0739599B2 (ja) | 1995-05-01 |
ATE166667T1 (de) | 1998-06-15 |
JPH06100899A (ja) | 1994-04-12 |
CA2083331C (fr) | 1998-08-11 |
CN1073713A (zh) | 1993-06-30 |
SK281376B6 (sk) | 2001-03-12 |
PL296731A1 (en) | 1993-08-09 |
CN1035066C (zh) | 1997-06-04 |
AU2854692A (en) | 1993-06-17 |
SK349592A3 (en) | 1994-08-10 |
AU647681B2 (en) | 1994-03-24 |
DE69225679D1 (de) | 1998-07-02 |
DE69225679T2 (de) | 1998-09-17 |
CA2083331A1 (fr) | 1993-05-27 |
NO924557L (no) | 1993-05-27 |
MX9206809A (es) | 1993-07-01 |
MY109102A (en) | 1996-12-31 |
NO302621B1 (no) | 1998-03-30 |
NO924557D0 (no) | 1992-11-25 |
IN177823B (fr) | 1997-02-22 |
HUT63452A (en) | 1993-08-30 |
HU216145B (hu) | 1999-04-28 |
CZ284628B6 (cs) | 1999-01-13 |
NZ245202A (en) | 1994-12-22 |
EP0544492A1 (fr) | 1993-06-02 |
BR9204572A (pt) | 1993-06-01 |
HU9203707D0 (en) | 1993-03-29 |
HK1014263A1 (en) | 1999-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0544492B1 (fr) | Compositions détergents sous forme particulaire | |
US6369020B1 (en) | Granular detergent components and particulate detergent compositions containing them | |
EP1131395B1 (fr) | Compositions detergentes particulaires de blanchissage contenant des granules de tensio-actif non ionique | |
EP0983338B1 (fr) | Compositions detergentes granulaires et leur production | |
CA2028204A1 (fr) | Compositions detergentes | |
JPH0641597A (ja) | 洗剤組成物 | |
EP0730638B1 (fr) | Compositions detergentes | |
EP0678119B2 (fr) | Utilisation d'alcohols aliphatiques ethoxyles comme aides de dissolution | |
AU768794B2 (en) | Particulate detergent composition containing zeolite | |
EP0985016B1 (fr) | Compositions detergentes contenant des granules tensioactives non ioniques | |
EP0870008B2 (fr) | Procede de production de compositions ou constituants detersifs granulaires | |
EP0436240B2 (fr) | Procédé de préparation de compositions détergentes à haute densité ayant des propriétés améliorées de diffusion | |
JPH08504864A (ja) | 粒状の洗浄剤および/または清浄化剤 | |
AU768802B2 (en) | Granular detergent component containing zeolite map | |
EP0700427B1 (fr) | Compositions detergentes | |
EP1436378B1 (fr) | Compositions detergentes contenant du carbonate de potassium et leur procede de preparation | |
JP2002510342A (ja) | 清浄性能を向上した洗浄または清浄剤 | |
EP1436377A1 (fr) | Compositions detergentes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE |
|
17P | Request for examination filed |
Effective date: 19931108 |
|
17Q | First examination report despatched |
Effective date: 19960708 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980527 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980527 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980527 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980527 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980527 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980527 |
|
REF | Corresponds to: |
Ref document number: 166667 Country of ref document: AT Date of ref document: 19980615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69225679 Country of ref document: DE Date of ref document: 19980702 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980827 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980827 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980827 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2117969 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981124 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: THE PROCTER & GAMBLE COMPANY Effective date: 19990219 Opponent name: HENKEL KGAA Effective date: 19990218 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: THE PROCTER & GAMBLE COMPANY Effective date: 19990219 Opponent name: HENKEL KGAA Effective date: 19990218 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: THE PROCTER & GAMBLE COMPANY Effective date: 19990219 Opponent name: HENKEL AG & CO. KGAA Effective date: 19990218 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20081126 Year of fee payment: 17 |
|
27W | Patent revoked |
Effective date: 20081203 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20081203 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20081127 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081117 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081223 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081128 Year of fee payment: 17 |