EP0542595B1 - Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite - Google Patents

Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite Download PDF

Info

Publication number
EP0542595B1
EP0542595B1 EP92402921A EP92402921A EP0542595B1 EP 0542595 B1 EP0542595 B1 EP 0542595B1 EP 92402921 A EP92402921 A EP 92402921A EP 92402921 A EP92402921 A EP 92402921A EP 0542595 B1 EP0542595 B1 EP 0542595B1
Authority
EP
European Patent Office
Prior art keywords
pad
dielectric
antenna
layer
sdb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92402921A
Other languages
German (de)
English (en)
Other versions
EP0542595A1 (fr
Inventor
Philippe Freyssinier
Joel Medard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson CSF Detexis SA
Original Assignee
Thomson CSF Detexis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF Detexis SA filed Critical Thomson CSF Detexis SA
Publication of EP0542595A1 publication Critical patent/EP0542595A1/fr
Application granted granted Critical
Publication of EP0542595B1 publication Critical patent/EP0542595B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the invention relates to microstrip antenna devices or "microstrip”.
  • microstrip radiating structure includes a dielectric layer, carrying on one side a block conductor of the chosen shape, and on the other a conductive plane that we call ground plan. To obtain an antenna, you must define the energy supply mode of this structure microwave.
  • the Applicant notably posed the problem of carrying out a antenna conforming to electronic scanning, intended for the communication with mobiles such as aircraft (system called SATCOM).
  • SATCOM system called SATCOM
  • the electronic scanning function is necessary for this antenna, due to the movement of the mobile carrier, which is assumed here be an aircraft.
  • roof antenna or two side antennas.
  • the aforementioned ARINC standard defined two acceptable official fingerprints, delimiting the volume in which must register the planned antenna.
  • the antenna must also be compliant, i.e. susceptible to adapt to the exact wall shape of the carrier mobile. She should still be thin, to minimize streaking aerodynamic, and of course designed to respect the mechanical characteristics required for the structure of the aircraft.
  • the present invention therefore proposes an antenna element basically different from those known so far.
  • This antenna element is of the type comprising a first layer dielectric comprising on one side a ground plane, and on the other a first conductive pad of selected shape, a second layer dielectric, which overcomes the first layer, on the side of the first block, and supports on the other side, opposite the first block, a second conductive pad of selected shape, a third layer dielectric overcoming the second, as well as means microwave power supply from one of the conductive blocks.
  • the second block is smaller than that of the first block, and only the first block is physically connected to the microwave power supply means, the connection feed from below, at least one point chosen from the first block, located between its center and its periphery.
  • the first block is connected at a crossing of the ground plane joining a supply circuit implanted in a dielectric substrate of typical structure triplate.
  • the three-ply structure includes a substrate layer located between the ground plane already mentioned and a low ground plane; between the two ground plans are provided conductive bushings defining a peripheral shielding of the feed part of the antenna element.
  • a Wilkinson divider to power the pavement lower in two points forming with its center a triangle substantially isosceles rectangle, while the respective signals brought to these two points are in quadrature.
  • the divisor of Wilkinson is implanted at an intermediate level of the layer substrate, in accordance with the three-ply structure. This level intermediate serves in practice as a level of distribution of power between a central connector for all of the antenna, and the different antenna elements that go constitute it, in the application as a network antenna.
  • the two blocks are of general circular shape, and these two blocks are substantially coaxial, that is, they are located on the same perpendicular to the planes of the dielectric layers.
  • the reference PM0 designates a ground plane lower, which can be assembled with an insulating adhesive on a sheet to be incorporated into the wall of the aircraft.
  • This ground plan lower is surmounted by two dielectric layers SDB and SDH (respectively low and high).
  • the SDH layer is in turn surmounted by another PM1 ground plane.
  • the whole forms a triplate structure, with appropriate metallizations engraved between the SDB and SDH layers, or more exactly on one of these layers.
  • these metallizations include a line supply L, which is then subdivided like a Wilkinson divider, shown schematically in Figure 1, but better visible in Figures 3 and 4.
  • This divider includes two DL1 and DL2 branches which first move away from each other, to join at a level where they are connected to a resistance RLL implanted in the thickness of the SDB layer, but without join the lower ground plane PM0. Then the two branches DL1 and DL2 move apart again to join points respective supply EL1 and EL2.
  • points EL1 and EL2 are connected by crossings TR1 and TR2 (not connected to the ground plane PM1) to supply points FR1 and FR2 provided on the lower block P1, or pilot block, engraved on the upper face of a dielectric layer D1 placed above of the ground plane PM1.
  • the end parts of the DL1 and DL2 engravings are of different lengths, so that, electromagnetically, the signals available at the points FR1 and FR2 are substantially in quadrature, one with the other.
  • the power points FR1 and FR2 of block P1 are substantially located at right angles to one of the other.
  • a second dielectric layer is provided above block P1 D2, with the same dielectric constant as layer D1, but thicker, as shown in Figure 2.
  • Partly layer D2 receives a second block by etching conductor P2 (coupled block), which is in principle circular and coaxial with block P1, but has a diameter smaller than that of block P1.
  • the antenna element is completed with a dielectric layer additional DR, forming a radome, and in principle having a dielectric constant significantly higher than that of the layers D1 and D2.
  • peripheral pads such as BP11, BP12 and BP13 define an antenna element power shield considered, compared to neighboring antenna elements, and by report to the outside.
  • Figure 5 shows how you can arrange 24 elements antenna to form an electronic scanning antenna compliant, satisfying the conditions of the problem posed.
  • these antenna elements are connected to a connector general, 24 pins (at least). Upstream of this connector, it a treatment is provided for each antenna element individual reciprocal phase shift, using DPH phase shifters, as shown in Figure 2.
  • each lower block is fed at two points located on two rays substantially perpendicular to each other.
  • the electronic scanning array antenna thus obtained proven capable of operating for deflection angles up to 60 °, with secondary lobe levels sufficiently low, and a gain of at least 12 decibels compared to to an isotropic antenna.
  • phase shifters associated with each of the antenna elements can be integrated into the beam orientation unit (or BSU for "Beam Steering Unit"), housed inside the aircraft.
  • BSU Beam Steering Unit
  • phase shifters with lines switched by PIN diodes controlled by 4-bit binary words, this which provides a resolution of 22.5 °.
  • the distributor integrated into the phase shift block, ensures the weighting in amplitude according to the aforementioned law.
  • the antenna In the particular application targeted, the antenna must operate simultaneously in transmission and reception, at frequencies relatively close. Regarding the calibration of electronic scanning phase shifters, there is reason to set phase or "phase" the network, on a band of about 8%.
  • the Applicant Rather than calculating the phase law at the mid frequency of the tape, the Applicant has found that it is preferable to consider the use of two frequency bands separate, as well as the quantification and nature of phase shifters (switched lines). For this purpose, it uses the calibration process described below.
  • DDi ⁇ DQi (F1, n) - DPi (f1, U, V) ⁇ + ⁇ DQi (F2, n) - DPi (f2, U, V) ⁇ where ⁇ denotes the absolute value.
  • the calibration then consists in seeking a priori, for each direction of sight and each antenna element, the value of n which minimizes this function DDi.
  • the phase shifters are controlled accordingly.
  • this calibration can be stored.
  • the present invention is not necessarily limited to the mode of the described embodiment, or to the intended application.
  • the element antenna can itself be used for other applications, provided that we keep the new structure. Is also at consider the combination of a microstrip element and a tri-plate power supply, in the same dielectric stack.
  • Polarization can be other than circular polarization of the described embodiment.
  • Another feature of the invention is that it can avoid, for layers D1 and D2, the use of dielectrics of weak constant, or porous, even made up of a gas.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)

Description

L'invention concerne les dispositifs d'antennes microrubans ou "microstrip".
De nombreuses structures d'antennes ont déjà été décrites en ce domaine. La structure rayonnante microruban la plus simple comprend une couche diélectrique, portant d'un coté un pavé conducteur de forme choisie, et de l'autre un plan conducteur que l'on appelle plan-masse. Pour obtenir une antenne, il faut définir le mode d'alimentation de cette structure en énergie hyperfréquence.
L'idée de prévoir un empilement de pavés superposés a été décrite dans l'article de LONG & WALTON, "A dual-frequency stacked circular disk antenna", IEEE Transactions on Antenna and Propagation, Vol. AF 27, N° 2, mars 1979. D'autres propositions ont été formulées depuis.
En ce qui concerne l'alimentation d'antennes à deux pavés superposés, il faut distinguer deux cas très différents du point de vue fonctionnel, suivant que l'alimentation s'effectue au niveau du pavé supérieur ou du pavé inférieur (le plus proche du plan masse).
Dans le cas où l'alimentation est réalisée au niveau du'pavé inférieur, il s'agit le plus souvent d'une connexion à la périphérie de ce pavé. De surcroít, on prévoit systématiquement un pavé supérieur de taille plus grande que celle du pavé inférieur (voir notamment l'article de TULINTSEFF, ALI, et KONG, "Input impedance of a probe-fed stacked circular microstrip antenna", IEEE Transactions on Antennas and Propagation, Vol. 39, N° 3, mars 1991).
L' homme du métier sait que la mise au point des antennes à pavés superposés est particulièrement délicate. Des tentatives ont été faites pour en modéliser les propriétés. On citera à titre d'exemple l'article de COCK et CHRISTODOULOU, "Design of a two-layer, capacitively coupled, microstrip patch antenna element for broad band applications", IEEE Symposium on antenna propagation, 1987. Malgré ces tentatives, il reste extrêmement difficile de prévoir par modélisation et de comprendre le comportement des structures microruban comportant deux pavés superposés, ou plus.
La Demanderesse s'est posé notamment le problème de réaliser une antenne conforme à balayage électronique, destinée au système de communication avec des mobiles tels que les aéronefs (système dit SATCOM).
Ce système est prévu pour fonctionner avec le groupe de satellites géostationnaires gérés par l'organisme INMARSAT. En ce qui concerne au moins les applications aux aéronefs, le service de télécommunications proposé est régi par une norme internationale dite ARINC 741.
Techniquement, il s'agit de mettre au point une antenne capable d'opérer d'une part en émission, d'autre part en réception, dans deux bandes très voisines, à savoir un peu plus de 1,5 gigahertz pour la réception, et un peu plus de 1,6 gigahertz pour l'émission.
La fonction balayage électronique est nécessaire pour cette antenne, du fait du mouvement du mobile porteur, que l'on suppose ici être un aéronef. Il y a lieu également de choisir entre une antenne de toit, ou deux antennes latérales. Dans le cas de deux antennes latérales, la norme ARINC précitée a défini deux empreintes officielles acceptables, délimitant le volume dans lequel doit s'inscrire l'antenne prévue.
L'antenne doit également être conforme, c'est-à-dire susceptible de s'adapter à la forme de paroi exacte du mobile porteur. Elle doit encore être peu épaisse, afin de minimiser les traínées aérodynamiques, et bien entendu conçue pour respecter les caractéristiques mécaniques requises pour la structure de l'aéronef.
Lors des recherches qu'elle a menées, la Demanderesse a constaté qu'il était possible de concevoir une antenne microruban allant pratiquement à l'opposé des solutions admises jusqu'à présent par les hommes du métier.
La présente invention propose donc un élément d'antenne fondamentalement différent de ceux connus jusqu'à présent.
Cet élément d'antenne est du type comprenant une première couche diélectrique comportant d'un côté un plan-masse, et de l'autre un premier pavé conducteur de forme choisie, une seconde couche diélectrique, qui surmonte la première couche, du côté du premier pavé, et supporte de l'autre côté, en regard du premier pavé, un second pavé conducteur de forme choisie, une troisième couche diélectrique surmontant la seconde, ainsi que des moyens d'alimentation hyperfréquence de l'un des pavés conducteurs.
Selon l'invention, le second pavé est de taille inférieure à celle du premier pavé, et seul le premier pavé est connecté physiquement aux moyens d'alimentation hyperfréquence, la connexion d'alimentation s'effectuant par le bas, en au moins un point choisi du premier pavé, situé entre son centre et sa périphérie.
Avec cette structure, il est apparu possible de construire une antenne opérationnelle, sous réserve de choisir la position du point en question, en fonction des tailles respectives des premier et second pavés, des caractéristiques diélectriques des première et seconde couches diélectriques, ainsi que de celles de la troisième couche diélectrique, qui possède de préférence des constantes diélectriques nettement supérieures à celles des deux autres.
Selon un autre aspect de l'invention, le premier pavé est relié à une traversée du plan-masse rejoignant un circuit d'alimentation implanté dans un substrat diélectrique de structure type triplaque. Plus particulièrement, la structure triplaque comprend une couche-substrat implantée entre le plan-masse déjà cité et un plan-masse bas; entre les deux plans-masse sont prévues des traversées conductrices définissant un blindage périphérique de la partie alimentation de l'élément d'antenne. De préférence, on prévoit un diviseur de Wilkinson propre à alimenter le pavé inférieur en deux points formant avec son centre un triangle sensiblement rectangle isocèle, tandis que les signaux respectifs apportés à ces deux points sont en quadrature. Le diviseur de Wilkinson est implanté à un niveau intermédiaire de la couche substrat, conformément à la structure triplaque. Ce niveau intermédiaire sert en pratique de niveau de distribution de l'alimentation entre un connecteur central pour l'ensemble de l'antenne, et les différents éléments d'antennes qui vont constituer celle-ci, dans l'application comme antenne-réseau.
Dans un mode de réalisation avantageux, les deux pavés sont de forme générale circulaire, et ces deux pavés sont sensiblement coaxiaux, c'est-à-dire qu'ils sont situés sur la même perpendiculaire aux plans des couches diélectriques.
D'autres caractéristiques et avantages de l'invention apparaítront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
  • la figure 1 est un schéma de principe général d'un élément d'antenne, en perspective éclatée ;
  • la figure 2 est une vue en coupe partielle fragmentée d'un élément d'antenne ;
  • la figure 3 est une vue partielle détaillée (superposée) du branchement du pavé inférieur à son alimentation par diviseur de Wilkinson ;
  • la figure 4 est une vue de dessous des 24 diviseurs de Wilkinson, pour une antenne à 24 éléments, interconnectés à un connecteur central ;
  • la figure 5 est une vue de dessus de 24 pavés inférieurs, correspondant précisément à la figure 4 ; et
  • la figure 6 est un diagramme représentant le coefficient de réflexion de l'antenne en fonction de la fréquence.
L'homme du métier sait que la forme est importante dans les dispositifs microrubans. Par ailleurs, les dessins sont, pour l'essentiel, de caractère certain. Ils pourront donc être incorporés à la description, non seulement pour mieux faire comprendre celle-ci, mais aussi pour contribuer à la définition de l'invention, le cas échéant.
Sur les figures 1 et 2, la référence PM0 désigne un plan-masse inférieur, qui peut être assemblé à l'aide d'une colle isolante sur une tôle à incorporer à la paroi de l'aéronef. Ce plan-masse inférieur est surmonté de deux couches diélectriques SDB et SDH (respectivement basse et haute). La couche SDH est à son tour surmontée d'un autre plan-masse PM1. L'ensemble forme une structure triplaque, avec des métallisations appropriées gravées entre les couches SDB et SDH, ou plus exactement sur l'une de ces couches.
Fondamentalement, ces métallisations comprennent une ligne d'alimentation L, qui ensuite se subdivise à la façon d'un diviseur de Wilkinson, schématisé sur la figure 1, mais mieux visible sur les figures 3 et 4. Ce diviseur comprend deux branches DL1 et DL2 qui d'abord s'écartent l'une de l'autre, pour se rejoindre à un niveau où elles sont connectées à une résistance RLL implantée dans l'épaisseur de la couche SDB, mais sans rejoindre le plan-masse inférieur PM0. Ensuite, les deux branches DL1 et DL2 s'écartent à nouveau pour rejoindre des points d'alimentation respectifs EL1 et EL2.
Ces points EL1 et EL2 sont reliés par des traversées TR1 et TR2 (non reliées au plan-masse PM1) à des points d'alimentation FR1 et FR2 prévus sur le pavé inférieur P1, ou pavé pilote, gravé sur la face supérieure d'une couche diélectrique D1 placée au-dessus du plan-masse PM1.
Comme visible sur les figures 3 et 4, les parties terminales des gravures DL1 et DL2 sont de longueurs différentes, de façon que, électromagnétiquement, les signaux disponibles au niveau des points FR1 et FR2 soient sensiblement en quadrature l'un avec l'autre. Corrélativement, les points d'alimentation FR1 et FR2 du pavé P1 sont sensiblement situés à angle droit l'un de l'autre.
Ces deux points sont situés à des distances d1 et d2 du centre du pavé P1 qui sont en principe égales. On reviendra plus loin sur le choix de ces distances. Mais il est possible d'indiquer immédiatement que ces distances d1 et d2 sont en principe comprises entre 50% et 100% du rayon du pavé P1 (noté DP1/2 sur la figure 3).
Au-dessus du pavé P1 est prévue une seconde couche diélectrique D2, de même constante diélectrique que la couche D1, mais d'épaisseur plus grande, comme visible sur la figure 2. En partie supérieure, la couche D2 reçoit par gravure un second pavé conducteur P2 (pavé couplé), qui est en principe circulaire et coaxial au pavé P1, mais comporte un diamètre inférieur à celui du pavé P1.
L'élément d'antenne se complète d'une couche diélectrique supplémentaire DR, formant radôme, et possédant en principe une constante diélectrique nettement supérieure à celle des couches D1 et D2.
Sur les figures 2 et 4, il apparaít en outre que la ligne L se poursuit jusqu'à un passage par trou métallisé, vers un connecteur hyperfréquence général CCH, du type coaxial, situé derrière la tôle métallique sous-jacente au plan-masse inférieur PM0.
Par ailleurs, rapprochant les figures 2 et 4, il apparaít que ce connecteur est muni pour chaque plot d'un blindage périphérique en forme de fer à cheval, traversant l'ensemble de la couche diélectrique SDB. Ce blindage pourrait être défini par une couche conductrice continue. La Demanderesse a constaté qu'il était suffisant de prévoir un certain nombre de plots traversants, entourant l'emplacement de la traversée CCH, avec un espacement entre ces plots qui reste suffisamment inférieur à la longueur d'onde des signaux hyperfréquence traités.
De même, les plots périphériques tels que BP11, BP12 et BP13 définissent un blindage de l'alimentation de l'élément d'antenne considéré, par rapport aux éléments d'antennes voisins, et par rapport à l'extérieur.
On notera par contre qu'au-dessus du plan-masse PM1, il n'est prévu aucune isolation de l'élément d'antenne par rapport à ses voisins.
La figure 5 montre comment l'on peut disposer 24 éléments d'antenne pour former une antenne à balayage électronique conforme, satisfaisant les conditions du problème posé. Comme déjà indiqué, ces éléments d'antenne sont reliés à un connecteur général, à 24 broches (au moins). En amont de ce connecteur, il est prévu pour chaque élément d'antenne un traitement de déphasage réciproque individuel, à l'aide de déphaseurs DPH, comme schématisé sur la figure 2.
Les principaux paramètres intervenant dans une telle antenne sont :
  • la hauteur et la constante diélectrique des trois couches DR, D2 et D1;
  • les diamètres des pavés P1 et P2; et
  • le rayon d = d1 = d2 des deux points d'alimentation du pavé inférieur P1.
Le problème posé, dans l'application particulière visée, est d'obtenir de l'élément d'antenne unitaire un comportement double (Figure 6):
  • a) un comportement bi-fréquences comportant une très bonne adaptation (meilleure que -20 décibels), sur deux fréquences F1 et F2;
  • b) un comportement large bande, assurant au moins une adaptation de -10 décibels entre des fréquences F3 et F4 contenant l'intervalle de fréquence F1 et F2.
  • La Demanderesse a observé que, pourvu que les fréquences F1 et F2 ne soient pas trop éloignées l'une de l'autre, et dès lors que sont fixés les paramètres de hauteurs et constantes diélectriques des trois couches précitées, il existe pratiquement une seule solution, en termes de rayons des deux pavés et de rayon d'alimentation du pavé P1, qui permette de satisfaire les conditions qui viennent d'être rappelées.
    Toute modification de l'un des paramètres fait qu'il devient très difficile de retrouver une situation susceptible de satisfaire lesdites conditions.
    Bien que les phénomènes en cause ne soient pas encore complètement compris, il semble que, dans le cas général, tout se passe comme si un seul des deux pavés P1 et P2 résonnait à la fréquence de travail. Par contre, il existe un tout petit domaine, dans les paramètres de définition de l'antenne, pour lequel les deux pavés interagissent, tout en présentant un comportement typiquement bi-fréquences, comme souhaité. Et il faut encore rechercher le point optimal de ce comportement bi-fréquences, pour répondre aux conditions de fonctionnement voulues pour l'antenne, telles que rappelées ci-dessus.
    En particulier, il s'est avéré qu'il est pratiquement très difficile de faire fonctionner l'élément d'antenne, sans y adjoindre une couche supérieure de radôme DR.
    La Demanderesse a ainsi pu réaliser des antennes répondant aux paramètres suivants :
    • épaisseur de la couche DR : 1,5 à 2,5 mm;
    • constante diélectrique relative de la couche DR : de 4 à 5 ;
    • épaisseur de la couche D2 : environ 4,8 mm;
    • épaisseur de la couche D1 : environ 1,6 mm;
    • constantes diélectriques relatives des couches D1 et D2 ainsi que SDB et SDH : environ 2 ;
    • diamètre du pavé P1 : environ 70 mm;
    • diamètre du pavé P2 : environ 60 mm;
    • rayon des points d'alimentation FR1 et FR2 : entre 0,5 et 0,7 fois le rayon du pavé P1.
    De telles antenne peuvent satisfaire les conditions posées, pour la bande de travail SATCOM, à savoir:
    • coefficient de réflexion meilleur que -20 dB à la fréquence centrale de réception (1,545 GHz) ;
    • coefficient de réflexion meilleur que -20 dB à la fréquence centrale d'émission (1,645 GHz) ;
    • comportement passe-bande à mieux que -10 dB entre 1,53 et 1,66 GHz.
    On s'intéressera maintenant à la constitution du réseau d'éléments d'antennes tel qu'illustré sur les figures 4 et 5.
    Tout d'abord, il a été indiqué plus haut que chaque pavé inférieur est alimenté en deux points situés sur deux rayons sensiblement perpendiculaires l'un à l'autre.
    Il est apparu intéressant de distribuer convenablement les deux points d'alimentation, et ce d'une façon différente pour les 24 éléments d'antenne illustrés. La Demanderesse a constaté que ceci permet de diminuer le taux d'ellipticité de l'antenne, compte tenu du fait que celle-ci opère en polarisation circulaire, et avec balayage électronique. A cet effet, il est possible soit de distribuer les points d'alimentation sensiblement au hasard, soit de rechercher expérimentalement une configuration optimale du point de vue de ce taux d'ellipticité ( par exemple comme sur la figure 5).
    L'antenne réseau à balayage électronique ainsi obtenue s'est avérée capable de fonctionner pour des angles de dépointage allant jusqu'à 60°, avec des niveaux de lobes secondaires suffisamment bas, et un gain de 12 décibels au moins par rapport à une antenne isotrope.
    Un bon compromis entre la perte de gain et le niveau des lobes secondaires a été obtenu en appliquant une loi d'éclairement faiblement pondérée en amplitude. Ce peut être une loi de Taylor, de type circulaire 20 décibels, ces indications étant compréhensibles pour l'homme du métier.
    Les déphaseurs associés à chacun des éléments d'antenne peuvent être intégrés dans l'unité d'orientation du faisceau (ou BSU pour "Beam Steering Unit"), logée à l'intérieur de l'avion.
    On utilise avantageusement des déphaseurs à lignes commutés par des diodes PIN, commandées par des mots binaires de 4 bits, ce qui procure une résolution de 22,5°.
    Le distributeur, intégré au bloc déphaseur, assure la pondération en amplitude suivant la loi précitée.
    Dans l'application particulière visée, l'antenne doit fonctionner simultanément en émission et en réception, à des fréquences relativement voisines. Pour ce qui concerne la calibration des déphaseurs de balayage électronique, il y a lieu de mettre en phase ou "phaser" le réseau, sur une bande d'environ 8%.
    Plutôt que de calculer la loi de phase à la fréquence milieu de la bande, la Demanderesse a constaté qu'il était préférable de tenir compte de l'utilisation de deux bandes de fréquences distinctes, ainsi que de la quantification et de la nature des déphaseurs (lignes commutées). A cet effet, elle utilise le procédé de calibration décrit ci-après.
    Soit un élément Ai d'une antenne conforme, donc non plane, de coordonnées (au centre) Xi, Yi, Zi. Lorsqu'on veut dépointer le faisceau principal dans la direction U,V à la fréquence f, il y a lieu d'appliquer à cet élément d'antenne Ai un déphasage théorique DPi, qui est une fonction de f, U et V que connaít l'homme de l'art: DPi ( f, U, V)
    En pratique, on utilise une table de calibration TC (n, F) où n est un entier (ou autre variable discrète) représentant l'état requis du déphaseur, avec 0 <= n <= N, tandis qu'on se limite aussi à des valeurs discrètes de la fréquence F. Ceci s'écrit: DQi (F, n)
    Dans l'exemple visé, on prend 101 points de fréquence dans la bande 1,53 - 1,66 GHz ; et N = 15, avec n défini sur 4 bits. Ce procédé ne "phase" le réseau correctement que pour une seule fréquence. Or l'antenne a un comportement essentiellement bi-fréquence.
    La Demanderesse a alors établi une "distance" entre la phase théorique et la phase tabulée, pour les deux fréquences f1 et f2, en particulier de la forme: DDi = ¦ DQi (F1,n) - DPi ( f1, U, V) ¦ + ¦ DQi (F2,n) - DPi ( f2, U, V) ¦ où ¦ désigne la valeur absolue.
    La calibration consiste alors à rechercher a priori, pour chaque direction de visée et chaque élément d'antenne, la valeur de n qui minimise cette fonction DDi.
    La commande des déphaseurs est effectuée en conséquence. Bien entendu, cette calibration peut être mémorisée.
    La présente invention n'est pas nécessairement limitée au mode de réalisation décrit, ni à l'application visée. L'élément d'antenne peut lui-même servir à d'autres applications, pourvu qu'on en conserve la structure nouvelle. Est également à considérer la combinaison d'un élément microruban et d'une alimentation tri-plaque, dans le même empilement diélectrique.
    La polarisation peut être autre que la polarisation circulaire du mode de réalisation décrit.
    Une autre particularité de l'invention est qu'elle peut éviter, pour les couches D1 et D2, le recours à des diélectriques de faible constante, ou poreux, voire constitués d'un gaz.

    Claims (13)

    1. Dispositif d'antenne, du type comprenant une première couche diélectrique (D1) comportant d'un côté un plan-masse (PM1), et de l'autre un premier pavé conducteur (P1) de forme choisie, une seconde couche diélectrique (D2), qui surmonte la première couche, du côté du premier pavé, et supporte de l'autre côté, en regard du premier pavé, un second pavé conducteur (P2) de forme choisie, une troisième couche diélectrique (DR) surmontant la seconde, ainsi que des moyens d'alimentation hyperfréquence de l'un des pavés conducteurs, caractérisé, en combinaison, en ce que le second pavé (P2) est de taille inférieure à celle du premier pavé (P1), et en ce que seul ledit premier pavé (P1) est connecté physiquement auxdits moyens d'alimentation hyperfréquence, ladite connexion d'alimentation s'effectuant par le bas, en au moins un point choisi (FR1) dudit premier pavé (P1), situé entre son centre et sa périphérie.
    2. Dispositif selon la revendication 1, caractérisé en ce que le premier pavé (P1) est relié à une traversée (TR1) du plan-masse rejoignant un circuit d'alimentation (DL1, DL2) implanté dans un substrat diélectrique de structure tri-plaque (SDH, SDB).
    3. Dispositif selon la revendication 2, caractérisé en ce que les deux pavés (P1, P2) sont de forme générale circulaire.
    4. Dispositif selon la revendication 3, caractérisé en ce que les deux pavés (P1, P2) sont sensiblement coaxiaux.
    5. Dispositif selon l'une des revendications 2 à 4, caractérisé en ce que les matériaux diélectriques des première et seconde couches (D1, D2) et du substrat (SDH, SDB) ont une constante diélectrique de l'ordre de 2, et en ce que le rapport des épaisseurs des seconde (D2) et première (D1) couches est de l'ordre de 3.
    6. Dispositif selon la revendication 5, caractérisé en ce que le matériau diélectrique de la troisième couche (DR) a une constante diélectrique de l'ordre de 4.
    7. Dispositif selon l'une des revendications 2 à 6, caractérisé en ce que la structure triplaque comprend une couche-substrat (SDH, SDB) implantée entre le plan-masse (PM1) et un plan-masse bas (PMB), avec des traversées conductrices (BP11-BP13) définissant un blindage périphérique, et un diviseur de Wilkinson (DL1, DL2, RLL), implanté à un niveau intermédiaire de la couche-substrat, et propre à alimenter le pavé inférieur en deux points (FR1, FR2) formant avec son centre un triangle sensiblement rectangle isocèle.
    8. Dispositif selon la revendication 7, caractérisé en ce que le matériau diélectrique de la couche substrat (SDH, SDB) possède sensiblement la même constante diélectrique que ceux des première et seconde couches (D1, D2).
    9. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un réseau de premiers (P1) et seconds (P2) pavés respectivement implantés sur les mêmes première et seconde couches diélectriques.
    10. Dispositif selon la revendication 9, caractérisé en ce qu'il est associé à des déphaseurs commandés (DPH) lui conférant une fonction de balayage électronique.
    11. Dispositif selon la revendication 10, prise en combinaison avec l'une des revendications 7 et 8, caractérisé en ce que les couples de points d'alimentation (FR1, FR2) des pavés inférieurs sont distribués selon une configuration prédéterminée pour améliorer le taux d'ellipticité de l'antenne aux forts dépointages.
    12. Dispositif selon la revendication 11, caractérisé en ce que la configuration prédéterminée est de type sensiblement aléatoire ou obtenue expérimentalement.
    13. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce que les déphaseurs (DPH) sont calibrés à partir d'une fonction de distance entre valeurs théoriques et valeurs réelles, pour l'une et l'autre des deux fréquences centrales de l'antenne.
    EP92402921A 1991-11-14 1992-10-27 Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite Expired - Lifetime EP0542595B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9113984A FR2683952A1 (fr) 1991-11-14 1991-11-14 Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.
    FR9113984 1991-11-14

    Publications (2)

    Publication Number Publication Date
    EP0542595A1 EP0542595A1 (fr) 1993-05-19
    EP0542595B1 true EP0542595B1 (fr) 1999-12-01

    Family

    ID=9418885

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP92402921A Expired - Lifetime EP0542595B1 (fr) 1991-11-14 1992-10-27 Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite

    Country Status (12)

    Country Link
    US (1) US5995047A (fr)
    EP (1) EP0542595B1 (fr)
    JP (1) JP2868197B2 (fr)
    AT (1) ATE187280T1 (fr)
    CA (1) CA2082580C (fr)
    DE (1) DE69230365T2 (fr)
    DK (1) DK0542595T3 (fr)
    ES (1) ES2140405T3 (fr)
    FR (1) FR2683952A1 (fr)
    GR (1) GR3032025T3 (fr)
    PT (1) PT542595E (fr)
    RU (1) RU2117366C1 (fr)

    Families Citing this family (54)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2717048B1 (fr) * 1994-03-10 1996-04-26 Dassault Electronique Casque communicant autonome.
    JP2648453B2 (ja) * 1994-07-08 1997-08-27 株式会社エイ・ティ・アール光電波通信研究所 円偏波セルフダイプレクシングアンテナ
    US5815119A (en) * 1996-08-08 1998-09-29 E-Systems, Inc. Integrated stacked patch antenna polarizer circularly polarized integrated stacked dual-band patch antenna
    US6359588B1 (en) * 1997-07-11 2002-03-19 Nortel Networks Limited Patch antenna
    US6593887B2 (en) 1999-01-25 2003-07-15 City University Of Hong Kong Wideband patch antenna with L-shaped probe
    AU7999500A (en) 1999-10-12 2001-04-23 Arc Wireless Solutions, Inc. Compact dual narrow band microstrip antenna
    US6320546B1 (en) * 2000-07-19 2001-11-20 Harris Corporation Phased array antenna with interconnect member for electrically connnecting orthogonally positioned elements used at millimeter wavelength frequencies
    US6266015B1 (en) * 2000-07-19 2001-07-24 Harris Corporation Phased array antenna having stacked patch antenna element with single millimeter wavelength feed and microstrip quadrature-to-circular polarization circuit
    US6421012B1 (en) * 2000-07-19 2002-07-16 Harris Corporation Phased array antenna having patch antenna elements with enhanced parasitic antenna element performance at millimeter wavelength radio frequency signals
    CA2438545C (fr) * 2001-02-16 2006-08-15 Sara Phillips Procede et systeme permettant la production d'etats de double polarisation avec des ouvertures de faisceau rf pilotees
    US6462710B1 (en) 2001-02-16 2002-10-08 Ems Technologies, Inc. Method and system for producing dual polarization states with controlled RF beamwidths
    US7233217B2 (en) * 2001-08-23 2007-06-19 Andrew Corporation Microstrip phase shifter
    JP2003298477A (ja) * 2002-04-01 2003-10-17 Alps Electric Co Ltd 電力搬送用モデム
    US6717549B2 (en) * 2002-05-15 2004-04-06 Harris Corporation Dual-polarized, stub-tuned proximity-fed stacked patch antenna
    GB0211109D0 (en) * 2002-05-15 2002-06-26 Antenova Ltd Dielectric resonator antenna array feed mechanism
    JP2004056204A (ja) * 2002-07-16 2004-02-19 Alps Electric Co Ltd パッチアンテナ
    JP2004088508A (ja) * 2002-08-27 2004-03-18 Tdk Corp アンテナ付高周波モジュール
    BR0215914A (pt) * 2002-11-08 2006-05-02 Ems Technologies Inc divisor de potência variável
    US7221239B2 (en) * 2002-11-08 2007-05-22 Andrew Corporation Variable power divider
    DE102004016158B4 (de) * 2004-04-01 2010-06-24 Kathrein-Werke Kg Antenne nach planarer Bauart
    JP2005295390A (ja) * 2004-04-02 2005-10-20 Mitsumi Electric Co Ltd アンテナ装置
    US7102587B2 (en) * 2004-06-15 2006-09-05 Premark Rwp Holdings, Inc. Embedded antenna connection method and system
    US7126539B2 (en) * 2004-11-10 2006-10-24 Agc Automotive Americas R&D, Inc. Non-uniform dielectric beam steering antenna
    US7557675B2 (en) 2005-03-22 2009-07-07 Radiacion Y Microondas, S.A. Broad band mechanical phase shifter
    US7741999B2 (en) 2006-06-15 2010-06-22 Kathrein-Werke Kg Multilayer antenna of planar construction
    US7477196B2 (en) * 2006-12-20 2009-01-13 Motorola, Inc. Switched capacitive patch for radio frequency antennas
    US7675465B2 (en) * 2007-05-22 2010-03-09 Sibeam, Inc. Surface mountable integrated circuit packaging scheme
    US7768455B2 (en) * 2008-01-10 2010-08-03 Samsung Electronics Co., Ltd. Antenna for controlling radiation direction
    EP2291923B1 (fr) * 2008-06-26 2017-08-02 Thomson Licensing DTV Bloc frontal avec antenne intégrée
    US8072384B2 (en) * 2009-01-14 2011-12-06 Laird Technologies, Inc. Dual-polarized antenna modules
    FR2965411B1 (fr) * 2010-09-29 2013-05-17 Bouygues Telecom Sa Antenne compacte a fort gain
    JP5644702B2 (ja) * 2011-07-01 2014-12-24 ミツミ電機株式会社 アンテナ装置
    RU2495518C2 (ru) * 2012-01-11 2013-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Двухдиапазонная микрополосковая антенна круговой поляризации
    US9537208B2 (en) * 2012-11-12 2017-01-03 Raytheon Company Dual polarization current loop radiator with integrated balun
    JP6439481B2 (ja) * 2015-02-13 2018-12-19 富士通株式会社 アンテナ装置
    RU2601215C1 (ru) * 2015-10-05 2016-10-27 Открытое акционерное общество "Объединенная ракетно-космическая корпорация" (ОАО "ОРКК") Многочастотная микрополосковая антенна
    DE102015220372B3 (de) * 2015-10-20 2016-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Multiband-GNSS Antenne
    CN107026316A (zh) * 2016-02-01 2017-08-08 西安中兴新软件有限责任公司 圆极化介质谐振天线及其参数确定方法和通信设备
    JP6437942B2 (ja) * 2016-02-23 2018-12-12 株式会社Soken アンテナ装置
    JP6761737B2 (ja) * 2016-11-14 2020-09-30 株式会社日立産機システム アンテナ装置
    US11088467B2 (en) 2016-12-15 2021-08-10 Raytheon Company Printed wiring board with radiator and feed circuit
    US10581177B2 (en) 2016-12-15 2020-03-03 Raytheon Company High frequency polymer on metal radiator
    US10541461B2 (en) 2016-12-16 2020-01-21 Ratheon Company Tile for an active electronically scanned array (AESA)
    US11205847B2 (en) * 2017-02-01 2021-12-21 Taoglas Group Holdings Limited 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
    RU173890U1 (ru) * 2017-06-27 2017-09-18 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Антенный модуль
    US10361485B2 (en) 2017-08-04 2019-07-23 Raytheon Company Tripole current loop radiating element with integrated circularly polarized feed
    US10424847B2 (en) 2017-09-08 2019-09-24 Raytheon Company Wideband dual-polarized current loop antenna element
    JP7023683B2 (ja) 2017-11-29 2022-02-22 Tdk株式会社 パッチアンテナ
    US11552411B2 (en) 2018-05-04 2023-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Cavity-backed antenna element and array antenna arrangement
    CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端
    CN110444863A (zh) * 2019-07-18 2019-11-12 河源广工大协同创新研究院 一种Sub6GHz天线和MmWaveMIMO天线共口径放置的跨频段小尺寸天线
    SG10201909947YA (en) * 2019-10-24 2021-05-28 Pci Private Ltd Antenna system
    CN115101930B (zh) * 2022-07-15 2022-11-15 广东工业大学 边缘加载谐振枝节的双频卫星导航天线
    US11719732B1 (en) * 2022-07-25 2023-08-08 Divirod, Inc. Reflectometer sensor

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5943006B2 (ja) * 1979-06-18 1984-10-19 日本電信電話株式会社 自動車用アンテナ
    DE3150236A1 (de) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zum anschluss von gruppenstrahlern an ein verzweigungsnetzwerk
    CA1266325A (fr) * 1985-07-23 1990-02-27 Fumihiro Ito Antenne micro-ondes
    US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna
    US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
    US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
    FR2623020B1 (fr) * 1987-11-05 1990-02-16 Alcatel Espace Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
    JPH02262703A (ja) * 1989-04-03 1990-10-25 Yamatake Honeywell Co Ltd レードームを備えたマイクロストリップアンテナ
    FR2651926B1 (fr) * 1989-09-11 1991-12-13 Alcatel Espace Antenne plane.
    JPH03165103A (ja) * 1989-11-22 1991-07-17 Nec Corp アレーアンテナ位相校正装置
    JPH03204204A (ja) * 1989-12-29 1991-09-05 Toyota Central Res & Dev Lab Inc アレイアンテナ
    DE69020319T2 (de) * 1989-12-11 1996-03-14 Toyoda Chuo Kenkyusho Kk Mobiles Antennensystem.
    FR2706085B1 (fr) * 1993-06-03 1995-07-07 Alcatel Espace Structure rayonnante multicouches à directivité variable.
    US5621571A (en) * 1994-02-14 1997-04-15 Minnesota Mining And Manufacturing Company Integrated retroreflective electronic display

    Also Published As

    Publication number Publication date
    GR3032025T3 (en) 2000-03-31
    CA2082580C (fr) 2002-04-02
    DE69230365D1 (de) 2000-01-05
    DE69230365T2 (de) 2000-03-23
    ATE187280T1 (de) 1999-12-15
    JPH0629724A (ja) 1994-02-04
    EP0542595A1 (fr) 1993-05-19
    JP2868197B2 (ja) 1999-03-10
    FR2683952A1 (fr) 1993-05-21
    FR2683952B1 (fr) 1994-04-22
    US5995047A (en) 1999-11-30
    CA2082580A1 (fr) 1993-05-15
    ES2140405T3 (es) 2000-03-01
    RU2117366C1 (ru) 1998-08-10
    DK0542595T3 (da) 2000-03-27
    PT542595E (pt) 2000-04-28

    Similar Documents

    Publication Publication Date Title
    EP0542595B1 (fr) Dispositif d&#39;antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite
    EP0805512B1 (fr) Antenne imprimée compacte pour rayonnement à faible élévation
    EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
    CA2004870C (fr) Dispositif rayonnant multifrequence
    EP0708492B1 (fr) Antenne à microbande notamment pour des applications horlogères
    EP1073143B1 (fr) Antenne imprimée bi-polarisation et réseau d&#39;antennes correspondant
    EP0315141B1 (fr) Dispositif d&#39;excitation d&#39;un guide d&#39;onde en polarisation circulaire par une antenne plane
    FR2810163A1 (fr) Perfectionnement aux antennes-sources d&#39;emission/reception d&#39;ondes electromagnetiques
    FR2863110A1 (fr) Antenne en reseau multi-bande a double polarisation
    EP0605338B1 (fr) Antenne plaquée à double polarisation et dispositif d&#39;émission/réception correspondant
    EP0377155B1 (fr) Dispositif rayonnant bifréquence
    EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
    WO2000079649A1 (fr) Dispositif d&#39;emission et/ou de reception de signaux
    EP2432072B1 (fr) Symétriseur large bande sur circuit multicouche pour antenne réseau
    EP3900113B1 (fr) Antenne microruban élémentaire et antenne réseau
    EP0520908A1 (fr) Antenne réseau linéaire
    FR2724491A1 (fr) Antenne plaquee miniaturisee, a double polarisation, a tres large bande
    EP0762534B1 (fr) Procédé d&#39;élargissement du faisceau d&#39;une antenne stérique
    FR2705167A1 (fr) Antenne plaquée large bande à encombrement réduit, et dispositif d&#39;émission/réception correspondant.
    EP3506429A1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
    EP0617480A1 (fr) Structure rayonnante à directivité variable
    EP3537541B1 (fr) Découplage électromagnétique
    EP1376758A1 (fr) Antenne pastille compacte avec un moyen d&#39;adaptation
    WO2015189136A1 (fr) Antenne plate de telecommunication par satellite
    WO2001028039A1 (fr) Antenne imprimee a bande passante elargie et faible niveau de polarisation croisee, et reseau d&#39;antennes correspondant

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL PT SE

    17P Request for examination filed

    Effective date: 19930904

    17Q First examination report despatched

    Effective date: 19950608

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: THOMSON CSF DETEXIS

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES GB GR IE IT LI LU MC NL PT SE

    REF Corresponds to:

    Ref document number: 187280

    Country of ref document: AT

    Date of ref document: 19991215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69230365

    Country of ref document: DE

    Date of ref document: 20000105

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991217

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2140405

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20000114

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020924

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20020927

    Year of fee payment: 11

    Ref country code: GB

    Payment date: 20020927

    Year of fee payment: 11

    Ref country code: CH

    Payment date: 20020927

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: MC

    Payment date: 20021002

    Year of fee payment: 11

    Ref country code: LU

    Payment date: 20021002

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20021014

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20021024

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20021028

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20021029

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20031007

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031027

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031027

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031027

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031027

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20031027

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031031

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20031128

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20031211

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040501

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040504

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20031027

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20040501

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041028

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041028

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050427

    BERE Be: lapsed

    Owner name: *THOMSON CSF DETEXIS

    Effective date: 20041031

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20050427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051027

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20041028

    BERE Be: lapsed

    Owner name: *THOMSON CSF DETEXIS

    Effective date: 20041031