EP0542422A1 - Mikrotiterplatte mit mehreren Vertiefungen - Google Patents

Mikrotiterplatte mit mehreren Vertiefungen Download PDF

Info

Publication number
EP0542422A1
EP0542422A1 EP92309172A EP92309172A EP0542422A1 EP 0542422 A1 EP0542422 A1 EP 0542422A1 EP 92309172 A EP92309172 A EP 92309172A EP 92309172 A EP92309172 A EP 92309172A EP 0542422 A1 EP0542422 A1 EP 0542422A1
Authority
EP
European Patent Office
Prior art keywords
well
microtiter tray
tray
liquid
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92309172A
Other languages
English (en)
French (fr)
Inventor
Harold R. Garner
Glen Shepherd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Atomics Corp
Original Assignee
General Atomics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Atomics Corp filed Critical General Atomics Corp
Publication of EP0542422A1 publication Critical patent/EP0542422A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Definitions

  • the present invention generally pertains to multi-well microtiter trays which are useful for holding a plurality of minute liquid samples. More particularly, the present invention pertains to microtiter trays which can hold a plurality of liquid specimens while they are being cultivated by a temperature varying regimen and during periodic photometric or fluorometric measurements of the specimens. The present invention is particularly, but not exclusively, useful for DNA amplification and sequencing.
  • Microtiter trays with many wells for separately receiving liquid specimens have been used in the past to hold and store small specimens of sample material.
  • these earlier trays have been designed for use with robotics which are capable of engaging the microtiter tray to deposit the specimens in the wells of the tray.
  • the industry standard has been to provide microtiter trays which are separated by a center-to-center distance of nine millimeters.
  • the robotics which are used with currently available microtiter trays have been designed to comply with this standard. This restriction on spacing between the wells. of the tray can be perceived as a disadvantage if the desire is to process as many discrete samples as possible. There are, however, other potential disadvantages in presently available microtiter trays.
  • microtiter tray which can be used in processes which vary and maintain the temperature of the specimens according to predetermined temperature regimens, and which can be used during photometric or fluorometric analysis of the specimens.
  • an object of the present invention to provide a multi-well microtiter tray which is useful for simultaneously processing a high volume of minute liquid samples. Another object of the present invention is to provide a multi-well microtiter tray which is efficient in handling a very large number of individual minute liquid specimens. Yet another object of the present invention is to provide a multi-well microtiter tray which is useful with robotics which function in accordance with existing standards of the industry. Still another object of the present invention is to provide a multi-well microtiter tray which minimizes the storage space which is required for a very large number of minute liquid specimens. Another object of the present invention is to provide a multi-well microtiter tray which allows for substantially even heating of all liquid specimens being held in the tray.
  • a multi-well microtiter tray for use in a system, or in a method, for high volume processing of a plurality of minute liquid specimens includes a generally rectangular base having a substantially flat underside.
  • the top of the base is formed with a very large number of wells for holding a very large number of individual liquid specimens.
  • the top of the microtiter tray is formed with eight hundred and sixty four wells which are arranged in a rectangular array that is thirty-six by twenty-four.
  • Each well in the array has an opening and a bottom and is substantially cylindrical shaped to define a curved wall which tapers inwardly from the opening of the well to the bottom of the well.
  • the bottom of each well is distanced from the underside of the base and has an optical quality surface for transmitting light through the underside and through the liquid specimens held in the well.
  • the bottom of each well may be either flat, or rounded, or cone-shaped.
  • the system for using the multi-well microtiter tray includes a support structure which has a heat exchanger that is engageable with the microtiter tray.
  • the heat exchanger is a heat source which conductively transfers heat to the liquid specimens in the well through the base of the microtiter tray.
  • the heat exchanger acts as a heat sink and the support structure further includes a heating element.
  • this heating element may be a heat radiator such as would be the case for a microwave oven.
  • the heating element comprises a plurality of heating probes which can be inserted into selected wells of the microtiter tray to conduct heat through the tray to the other wells in the microtiter tray.
  • the system can also include a controller to coordinate the operation of the heating element with the operation of the heat exchanger to cycle the liquid specimens through predetermined temperature regimens.
  • microtiter tray Due to the construction of the base of the microtiter tray, light can be transmitted through the liquid specimens for photometrically or fluorometrically measuring the characteristics of the liquid specimens. This can be simultaneously done for all of liquid specimens held by the microtiter tray as they are being processed. Processes which can be accomplished using the system and methods for using a microtiter tray as intended for the present invention include DNA amplification sequencing and library construction.
  • the system for high volume processing a plurality of minute liquid specimens is shown and generally designated 10.
  • the system 10 includes a microtiter tray 12 which has a base 14. Formed into the top surface 16 of the base 14 are a plurality of wells 18.
  • base 14 of microtiter tray 12 is formed with eight hundred and sixty four (864) wells 18 which are arranged in a rectangular array that is thirty-six by twenty-four (36X24).
  • the center-to-center distances 20 and 22 between the rows and lines of the wells 18 are set at three millimeters (3mm).
  • base 14 is of a solid construction. Stated differently, there is no space between the wells 18. Instead, the material of base 14 fills what could otherwise be empty space between the wells 18. This construction helps provide temperature uniformity for all of the liquid specimens held in the wells 18 because base 14 establishes a shorter thermal path from a well 18 to another well 18 to facilitate heat transfer therebetween.
  • microtiter tray 12 is made of an optically clear rigid plastic such as polystyrene, polypropelene, or polycarbonate.
  • the plastic of tray 12 can include carbon fibers, alumina, aluminum oxide, or other metals which will enhance the thermal conductivity of the tray 12 but which will not interfere with its biological performance.
  • the tray 12 can be manufactured by any process well known in the pertinent art, such as by injection molding.
  • FIG. 1 also shows that microtiter tray 12 has an overhang 24 which forms a detent 26 between the overhang 24 and the base 14 of tray 12. Additionally, a pair of registration points 28a and 28b can be formed into top surface 16 of tray 12 in order to align the tray 12 with a robot (not shown in Figure 1) for purposes to be discussed below. Also, the top surface 16 of microtiter tray 12 has a flat area 30 and a flat area 32 on which an identification strip, such as bar code 33, can be placed. As will be appreciated by the skilled artisan, some ability to identify the microtiter tray 12 and the liquid specimens held in the wells 18 of the tray 12 can be essential.
  • the system 10 of the present invention includes a support structure on which microtiter tray 12 can be placed.
  • the support structure may be merely a storage shelf.
  • the support structure may be part of a library for biological specimens", such as a shelf in a standard refrigerator (not shown) or an incubator (not shown).
  • the support structure may encompass any platform where the microtiter tray 12, and the liquid specimens in the wells 18 of tray 12, can be stored for prolonged periods of time.
  • a more operational function is for heat transfer with the liquid specimens.
  • the support structure is as a heat exchanger 34.
  • heat exchanger 34 can be either a heat source or a heat sink. In either case, it must be operatively engageable with the microtiter tray 12.
  • heat exchanger 34 can have a surface 36 which will directly abut against the flat underside 38 of base 14 of the microtiter tray 12.
  • a thermal grease, or some other such substance well known in the pertinent art can be placed on the surface 36 to facilitate heat transfer between the heat exchanger 34 and the microtiter tray 12.
  • thermoelectric tray 12 An additional feature of the system 10 of the present invention which promotes good heat transfer characteristics for the microtiter tray 12 is that both the top surface 16 and underside 38 of the tray 12 are flat and each have a relatively large area.
  • heat exchanger 34 can be formed with a ridge 40 which is matingly received into the detent 26 of microtiter tray 12 to help hold the tray 12 in position on heat exchanger 34.
  • the exchanger 34 can include controls 42a,b for the purpose of precisely controlling the amount of heat which is to be applied from the heating coils 44 of heat exchanger 34 to the tray 12 during the processing of the liquid specimens in the wells 18.
  • each of the wells 18 in microtiter tray 12 is essentially a hollow cylindrical recess which is formed into the top surface 16 of the tray 12.
  • each well 18 has an opening 46 and is defined by a cylindrical sidewall 48 which extends from the opening 46 to the bottom of the well.
  • a well 18 is shown to have a substantially flat bottom 50, whereas in Figure 2B the well 18 has a rounded bottom 52, and in Figure 2C the well 18 is shown with a cone shaped bottom 54.
  • a particular shape for the bottom of well 18 may be preferable.
  • the rounded bottom 52 of well 18 is better suited for use with liquid specimens which include cells which might tend to cling to the angled surfaces presented by a flat surface 50.
  • the cone-shaped surface 54 might be preferable for use with automatic pipetting.
  • the bottoms 50, 52, and 54 of wells 18, as well as underside 38 of base 14, must be optically clear. Stated differently, sufficient light with which to make photometric or fluorometric measurements of the liquid specimens 56 being held in the well 18 must be able to pass through underside 38, through the bottom 50, 52, 54 of well 18 and through the liquid specimen held in well 18.
  • optically clear means that the bottom 50, 52, or 54 has a smoothness such that deviations in their surface do not exceed more than one quarter wavelength of the light which is passed through tray 12 and the liquid specimen 56 to make photometric or fluorometric measurements of the liquid specimen 56.
  • the light used for photometric or fluorometric measurements of the liquid specimen 56 will be primarily in the visual range.
  • the preferred dimensions for a typical well 18 will be best appreciated with specific reference to Figure 2D.
  • center-to-center distance 20 between adjacent wells 18 along either a line or a row of wells 18 is approximately three millimeters (3mm).
  • a standard tool having a nine millimeter (9mm) spacing between probes can be used with the 3mm spacing of tray 12 if it is repeatedly used three times. This can be carried further.
  • the center-to-center distance can be four and a half millimeters (4.5mm).
  • the standard robot would then need to be used twice. It happens that several configurations of the tray 12 can be used with standard robotics just so long as the center-to-center spacing is equal to nine divided by n, where n is an integer. Obviously, the volume capacity of the wells 18 will be sacrificed as more wells 18 and incorporated into the tray 12.
  • the diameter 58 of the opening 46 is approximately two millimeters (2mm).
  • Figure 2D shows that the sidewalls 48 of well 18 are tapered inwardly from the opening 46 of well 18 to its bottom 50.
  • the angle of taper 60 is approximately one degree (1°).
  • the depth 62 of well 18 is approximately seven millimeters (7mm) with the result that well 18 is dimensioned to hold a liquid specimen 56 having a volume of approximately twenty microliters (20 ul).
  • the actual volume of the liquid specimen 56 which is to be deposited into a well 18 may have a liquid volume that is more on the order of one or two microliters (1-2 ul).
  • liquid specimens which have total volumes on the order of one or two microliters can be hard to handle.
  • a specific problem confronted by the present invention involves the transfer of such a small liquid specimen 56 into a well 18 of the microtiter tray 12. This problem stems from the fact that surface tension of the liquid specimen 56 will, at this level, be sufficient to prevent the specimen from forming into a drop which will fall into the well 18. Consequently, to assist the transfer of the liquid specimen 56 into the well 18, the sidewalls 46 of the well 18 are tapered.
  • a liquid specimen 56 will be transferred from a source of the liquid (not shown) to the well 18' of microtiter tray 12 by a device such as the probe 66.
  • the size of the liquid specimen 56 may be so small that it cannot form into a drop which will fall into the well 18'.
  • probe 66 can be made to contact the sidewall 48' when it is inserted into the well 18'. This contact, a mere kiss if you will, is sufficient to wet the sidewall 48' with the liquid specimen 56 and cause the liquid specimen 56 to flow into the bottom 50' of the well 18'.
  • a robot 68 may be used to transfer liquid specimens 56 form a source of the specimens (not shown) to the microtiter tray 12.
  • the robot 68 is outfitted with an end effector 70 which has a plurality of probes 66 (e.g eight hundred and sixty four) for this purpose.
  • Each of the probes 66 is designed, in a manner well known in the pertinent art, to carry a minute quantity of a liquid specimen 56 for deposit on the tray 12.
  • the robot 68 can include well known means (not shown) on end effector 70 which will register with the registration points 28a,b on microtiter tray to properly align the probes 66 on end effector 70 with the wells 18 on microtiter tray 12.
  • robot 68 is operable to engage end effector 70 with the microtiter tray 12 to deposit liquid specimens 18 in the wells 18 of tray 12.
  • heat exchanger 34 can be operated to heat the specimens 56 as desired by the user. This, of course, is for the embodiment of the system 10 wherein the heat exchanger 34 acts as a heat source. According to the present invention, various temperature regimens may be followed by the heat exchanger 34 when heating the specimens 56. DNA amplification is but one example of such a regimen.
  • microtiter tray 12 is intended to be used during photometric or fluorometric measurements of the liquid specimens 56 which are deposited into the wells 18 of the tray 12.
  • a light source 72 is schematically shown in a relationship with the tray 12 for making such photometric or fluorometric measurements.
  • the light source 72 may be of any type well known in the pertinent art, but it is preferably of a type which will emit a light 74 in the visual range having identifiable wavelengths, for example ⁇ 1. According to standard photometric or fluorometric analysis a resultant light 76 having a different wavelength, for example ⁇ 2, will result due to the particular characteristics of the liquid specimen 56.
  • This resultant light 76 will then be received at a light detector 78 and the wavelength difference between light 74 and resultant light 76 can be used to measure the characteristics of the liquid specimen 56.
  • a photometric or fluorometric analysis of the liquid specimens 56 in microtiter tray 12 can be made at any time.
  • the heat exchanger 34 can be used as a heat sink as well as a heat source. Accordingly, when heat exchanger 34 is to a heat sink, another source of heat is needed for procedures wherein the liquid specimens 56 are to be cycled through a temperature regimen.
  • Figure 4 indicates that heat exchanger 34 can be incorporated as part of an oven 80 and that the microtiter tray 12 can be positioned on the exchanger 34 in oven 80. The door 82 of oven 80 can then be shut (not shown) to enclose microtiter tray 12 with its liquid specimens 56 inside the oven 80. Both the heating function of the oven 80, and the cooling function of the heat sink exchanger 34, can then be controlled from the control panel 84 to cycle the liquid specimens 56 in tray 12 through any temperature regimen desired by the user.
  • oven 80 may be of any type well known in the pertinent art.
  • oven 80 may be a microwave oven or it may be an air thermal cycler.
  • the system 10 of the present invention may also include a heat transfer tool 86.
  • the heat transfer tool 86 comprises a block member 88 on which are mounted a plurality of heat probes 90 that extend through the block member 88.
  • the heat probes 90 each have and extension 92 which extends upwardly from the block member 88 and an engager 94 which extends downwardly from the block member 88.
  • the heat probes 90 are mounted on the block member 88 of heat transfer tool 86 so that when the tool 86 is engaged with a microtiter tray 12 an engager 94 is inserted into only every other one of the wells 18.
  • the probes 90 may be spaced more than one well 18 apart from each other. This alternating engagement between the heat probes 90 of heat transfer tool 86 and the wells 80 of tray 12 is followed along both the lines and rows of the array of wells 18 in microtiter tray 12.
  • Figure 6 also indicates that a thermal grease 96 can be placed on the engagers 94 to assist in the transfer of heat from each of the heat probes 90 to the liquid specimens 56 in adjacent wells 18.
  • Figures 7 and 8 show yet another embodiment for the system 10 of the present invention wherein heat exchanger 34 is used as a heat sink.
  • the heating element for transferring heat to the liquid specimens 56 in wells 18 of the microtiter tray 12 incorporates a robot 98 which operatively maneuvers an end effector 100.
  • the end effector 100 includes a plurality of probes 102 which are each engageable with one of the wells 18 of microtiter tray 12 substantially as shown in Figure 8. Similar to the arrangement disclosed above for heat transfer tool 86, the probes 102 of end effector 100 are spaced to be engageable with alternate wells 18 of the tray 18.
  • this alternating arrangement extends along both the lines and the rows of wells 18 in tray 12.
  • the ability of the probes 102 to transfer heat from the probes 102 to the tray 12, and eventually to the liquid specimens 56 in the adjacent wells 18, will be enhanced by the use of a thermal grease 104 which can be placed on each of the probes 102.
  • Figure 7 shows that a control box 106 is connected with heat exchanger 34 through a line 108, and that the control box is connected with robot 96 through a line 110.
  • the control box 106 can be used to establish the temperature of the heating probes 102.
  • the control box 106 can be used to control heat sink 34 for removing heat from the specimens 56 in tray 12. Consequently, as with the other embodiments of the system 10 of the present invention, the embodiment shown in Figures 7 and 8 can be used to cycle the temperature of the liquid specimens 56 in the wells 18 of microtiter tray 12 according to any predetermined temperature regimen desired by the operator.
  • photometric or fluorometric measurements can be made as desired. Specifically, the general procedure discussed above with reference to Figure 2A can be accomplished whenever required by the particular process being followed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
EP92309172A 1991-11-12 1992-10-08 Mikrotiterplatte mit mehreren Vertiefungen Withdrawn EP0542422A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79036591A 1991-11-12 1991-11-12
US790365 1991-11-12

Publications (1)

Publication Number Publication Date
EP0542422A1 true EP0542422A1 (de) 1993-05-19

Family

ID=25150472

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92309172A Withdrawn EP0542422A1 (de) 1991-11-12 1992-10-08 Mikrotiterplatte mit mehreren Vertiefungen

Country Status (1)

Country Link
EP (1) EP0542422A1 (de)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030393A1 (en) * 1995-03-27 1996-10-03 Warner-Lambert Company A method for the synthesis of mixtures of compounds
WO1997010896A1 (en) * 1995-09-22 1997-03-27 Berlex Laboratories, Inc. Apparatus and process for multiple chemical reactions
WO1997018455A1 (en) * 1995-11-13 1997-05-22 Idexx Laboratories, Inc. Method for quantification of biological material in a sample
EP0803063A1 (de) * 1995-01-11 1997-10-29 Panlabs Incorporated Verfahren zur erzeugung von grossen katalogisierten chemischen bibliotheken
WO1998009728A1 (en) * 1996-09-06 1998-03-12 Central Research Laboratories Limited Apparatus for, and method of, thermally cycling a sample
FR2760838A1 (fr) * 1997-03-13 1998-09-18 Corning Inc Circuit fluidique integre d'execution d'un processus de preparation ou d'analyse d'un echantillon de matiere fluide, son procede de fabrication et appareil d'exploitation de ce circuit
EP0892672A1 (de) * 1996-04-09 1999-01-27 Sarnoff Corporation Platte fur reaktionssystem
US5888830A (en) * 1995-09-22 1999-03-30 Berlex Laboratories, Inc. Apparatus and process for multiple chemical reactions
WO1999019729A1 (de) * 1997-10-09 1999-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zur zelluntersuchung mittels der patch clamp-methode bestimmte vorrichtung und verfahren
WO1999049973A1 (de) * 1998-03-27 1999-10-07 Aventis Pharma Deutschland Gmbh Miniaturisierte mikrotiterplatte für hochdurchsatz-screening
USD420743S (en) 1998-06-24 2000-02-15 Advanced Biotechnologies Limited Multi-well plate
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
EP1017498A1 (de) * 1997-01-17 2000-07-12 Corning Incorporated Mehrfachlochplatte
EP1037044A1 (de) * 1997-12-02 2000-09-20 Hitachi Chemical Company, Ltd. Verfahren zur messung von iod, reaktor zur probenvorbehandlung und vorrichtung zur hermetischen abdichtung eines reaktors zur probenvorbehandlung
US6171780B1 (en) 1997-06-02 2001-01-09 Aurora Biosciences Corporation Low fluorescence assay platforms and related methods for drug discovery
US6171850B1 (en) * 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6197572B1 (en) * 1998-05-04 2001-03-06 Roche Diagnostics Corporation Thermal cycler having an automatically positionable lid
WO2001052988A1 (de) * 2000-01-21 2001-07-26 Greiner Labortechnik Gmbh Behälter zur lagerung von biologischem material
WO2001085901A2 (en) * 2000-05-08 2001-11-15 Interuniversitair Micro-Elektronica Centrum Microphysiometer
WO2002018051A1 (de) * 2000-08-28 2002-03-07 Cybio Ag Selektiv erwärmbarer substanzträger
EP1188840A2 (de) * 2000-07-26 2002-03-20 Agilent Technologies, Inc. Chemisches Reaktionsverfahren und Vorrichtung
GB2370112A (en) * 2000-12-15 2002-06-19 Hybaid Ltd Multiwell sample plates
WO2002047821A1 (en) * 2000-12-12 2002-06-20 3-Dimensional Pharmaceuticals, Inc. Microtiter plate with integral heater
GB2334688B (en) * 1998-02-24 2002-07-24 Michael Cole Method and apparatus for the evaporation of liquid samples
DE10106339A1 (de) * 2001-02-09 2002-08-22 Hans-Joachim Mueller Verfahren zum Hochdurchsatz-Screening von Kandidaten-Verbindungen über die Hochdurchsatz-Direktsynthese von rekombinanten Polypeptiden
US6488892B1 (en) 1998-04-17 2002-12-03 Ljl Biosystems, Inc. Sample-holding devices and systems
US6514464B1 (en) * 1997-03-25 2003-02-04 Greiner Bio-One Gmbh Micro plate with transparent base
JP2003070456A (ja) * 2001-09-07 2003-03-11 Shimadzu Corp マイクロウエルチップ
US6555792B1 (en) * 1999-09-29 2003-04-29 Tecan Trading Ag Thermocycler and lifting element
EP1315566A1 (de) * 2000-09-05 2003-06-04 Kevin R. Oldenburg Vorrichtung zum schnellen thermischen recycling
WO2003069322A2 (de) * 2002-02-15 2003-08-21 Henkel Kommanditgesellschaft Auf Aktien Vorrichtung und verfahren zum gleichzeitigen testen der einwirkung von flüssigkeiten (z.b. waschmittel bzw. korrosionsinhibitoren) auf flächengebilde (z.b. textilien bzw. stahlblech) sowie verwendung der vorrichtung
KR20030078250A (ko) * 2002-03-28 2003-10-08 대한제당 주식회사 마이크로-웰 플레이트를 이용한 미세체적 반응장치 겸미생물 판별장치 및 그 이용방법
WO2004018105A1 (en) * 2002-08-20 2004-03-04 Quanta Biotech Limited Thermal engine for a thermocycler with interchangeable sample block
JP2004097200A (ja) * 2001-12-28 2004-04-02 Enplas Corp プラスチックプレート及びプラスチックプレート組立体
US6730520B2 (en) 1998-02-24 2004-05-04 Aurora Discovery, Inc. Low fluorescence assay platforms and related methods for drug discovery
EP1438137A1 (de) * 2001-09-20 2004-07-21 3-Dimensional Pharmaceuticals, Inc. Leitende mikrotiterplatte
WO2004078352A2 (en) * 2003-03-05 2004-09-16 Amersham Biosciences (Sv) Corp Microtiter plate for holding small volumes of liquids
US6800491B2 (en) 2001-06-08 2004-10-05 Nalge Nunc International Corporation Robotic reservoir without liquid hangup
US6821787B2 (en) 2000-11-17 2004-11-23 Thermogenic Imaging, Inc. Apparatus and methods for infrared calorimetric measurements
US6835574B2 (en) 2000-11-17 2004-12-28 Flir Systems Boston, Inc. Apparatus and methods for infrared calorimetric measurements
EP1499442A1 (de) * 2002-04-15 2005-01-26 Cool Options, Inc. Wärmeleitende biologische analyseplatten
US6861035B2 (en) 1998-02-24 2005-03-01 Aurora Discovery, Inc. Multi-well platforms, caddies, lids and combinations thereof
WO2005028110A2 (en) * 2003-09-19 2005-03-31 Applera Corporation Microplates useful for conducting thermocycled nucleotide amplification
US6875604B2 (en) 2000-02-02 2005-04-05 Applera Corporation Thermal cycling device with mechanism for ejecting sample well trays
DE102004025538A1 (de) * 2004-05-25 2005-12-22 Advalytix Ag Temperierverfahren und -vorrichtung für die Temperaturbehandlung kleiner Flüssigkeitsmengen
WO2006099255A2 (en) * 2005-03-10 2006-09-21 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
US7122338B2 (en) 1995-11-14 2006-10-17 Biocontrol Systems, Inc. Method for quantification of biological material in a sample
KR100719029B1 (ko) * 2002-03-28 2007-05-16 대한제당 주식회사 마이크로-웰 플레이트
US7429479B2 (en) 2003-09-19 2008-09-30 Applied Biosystems Inc. Inverted orientation for a microplate
WO2008140524A1 (en) * 2007-05-14 2008-11-20 Stratagene Compositions and reaction tubes with improved thermal conductivity
US7666681B2 (en) 1998-05-01 2010-02-23 Gen-Probe Incorporated Method for agitating the fluid contents of a container
DE102009015869A1 (de) * 2009-04-01 2010-10-21 Schneckenburger, Herbert, Prof. Dr. Vorrichtung zum Temperieren von Mikrotiterplatten
US8192992B2 (en) 1998-05-01 2012-06-05 Gen-Probe Incorporated System and method for incubating the contents of a reaction receptacle
US8718948B2 (en) 2011-02-24 2014-05-06 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
EP1909108A3 (de) * 2005-03-10 2014-05-28 Gen-Probe Incorporated Systeme und Verfahren zur Durchführung von Tests zum Nachweis oder zur Quantifizierung von Analyten
US8840848B2 (en) 2010-07-23 2014-09-23 Beckman Coulter, Inc. System and method including analytical units
US8973736B2 (en) 2011-11-07 2015-03-10 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
US9046506B2 (en) 2011-11-07 2015-06-02 Beckman Coulter, Inc. Specimen container detection
US9168532B2 (en) 2013-01-24 2015-10-27 Sabic Global Technologies B.V. Microwell plate
US9180456B2 (en) 2013-01-24 2015-11-10 Sabic Global Technologies B.V. Microwell plate
US9186674B2 (en) 2013-01-24 2015-11-17 Sabic Global Technologies B.V. Polycarbonate microfluidic articles
US9446418B2 (en) 2011-11-07 2016-09-20 Beckman Coulter, Inc. Robotic arm
US9482684B2 (en) 2011-11-07 2016-11-01 Beckman Coulter, Inc. Centrifuge system and workflow
US9506943B2 (en) 2011-11-07 2016-11-29 Beckman Coulter, Inc. Aliquotter system and workflow
US9910054B2 (en) 2011-11-07 2018-03-06 Beckman Coulter, Inc. System and method for processing samples
WO2020120517A1 (de) 2018-12-13 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Probenaufnahmeeinrichtung für biologische proben mit einer probenaufnahme aus kohlenstoff-basiertem werkstoff
WO2021112855A1 (en) * 2019-12-05 2021-06-10 Hewlett-Packard Development Company, L.P. Substrate stages with corner ribs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2250991A1 (de) * 1973-11-14 1975-06-06 Suovaniemi Osmo Antero
GB1528424A (en) * 1975-12-30 1978-10-11 Mueszeripari Muevek Lab Apparatus for and a method of determination of influenza neuraminidase
US4599315A (en) * 1983-09-13 1986-07-08 University Of California Regents Microdroplet test apparatus
WO1989009437A1 (en) * 1988-03-26 1989-10-05 Peter Duncan Goodearl Dean Reaction temperature control
WO1989012502A1 (en) * 1988-06-23 1989-12-28 Lep Scientific Limited Biochemical reaction machine
EP0408280A2 (de) * 1989-07-08 1991-01-16 Techne (Cambridge) Limited Wärmebeständige Mehrfachlochplatten
EP0438883A2 (de) * 1989-12-22 1991-07-31 Beckman Instruments, Inc. Beheizter Deckel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2250991A1 (de) * 1973-11-14 1975-06-06 Suovaniemi Osmo Antero
GB1528424A (en) * 1975-12-30 1978-10-11 Mueszeripari Muevek Lab Apparatus for and a method of determination of influenza neuraminidase
US4599315A (en) * 1983-09-13 1986-07-08 University Of California Regents Microdroplet test apparatus
WO1989009437A1 (en) * 1988-03-26 1989-10-05 Peter Duncan Goodearl Dean Reaction temperature control
WO1989012502A1 (en) * 1988-06-23 1989-12-28 Lep Scientific Limited Biochemical reaction machine
EP0408280A2 (de) * 1989-07-08 1991-01-16 Techne (Cambridge) Limited Wärmebeständige Mehrfachlochplatten
EP0438883A2 (de) * 1989-12-22 1991-07-31 Beckman Instruments, Inc. Beheizter Deckel

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803063A1 (de) * 1995-01-11 1997-10-29 Panlabs Incorporated Verfahren zur erzeugung von grossen katalogisierten chemischen bibliotheken
EP0803063A4 (de) * 1995-01-11 1998-04-29 Panlabs Inc Verfahren zur erzeugung von grossen katalogisierten chemischen bibliotheken
WO1996030393A1 (en) * 1995-03-27 1996-10-03 Warner-Lambert Company A method for the synthesis of mixtures of compounds
US5888830A (en) * 1995-09-22 1999-03-30 Berlex Laboratories, Inc. Apparatus and process for multiple chemical reactions
WO1997010896A1 (en) * 1995-09-22 1997-03-27 Berlex Laboratories, Inc. Apparatus and process for multiple chemical reactions
US6274091B1 (en) 1995-09-22 2001-08-14 Berlex Laboratories, Inc. Apparatus and process for multiple chemical reactions
WO1997018455A1 (en) * 1995-11-13 1997-05-22 Idexx Laboratories, Inc. Method for quantification of biological material in a sample
US7122338B2 (en) 1995-11-14 2006-10-17 Biocontrol Systems, Inc. Method for quantification of biological material in a sample
US6509168B2 (en) 1995-11-14 2003-01-21 Biocontrol Systems, Inc. Method for quantification of biological material in a sample
US6287797B1 (en) 1995-11-14 2001-09-11 Biocontrol Systems, Inc. Method for quantification of biological material in a sample
EP0892672A1 (de) * 1996-04-09 1999-01-27 Sarnoff Corporation Platte fur reaktionssystem
EP0892672A4 (de) * 1996-04-09 2001-02-28 Sarnoff Corp Platte fur reaktionssystem
WO1998009728A1 (en) * 1996-09-06 1998-03-12 Central Research Laboratories Limited Apparatus for, and method of, thermally cycling a sample
EP1017498A1 (de) * 1997-01-17 2000-07-12 Corning Incorporated Mehrfachlochplatte
EP1017498A4 (de) * 1997-01-17 2000-07-19 Corning Inc Mehrfachlochplatte
FR2760838A1 (fr) * 1997-03-13 1998-09-18 Corning Inc Circuit fluidique integre d'execution d'un processus de preparation ou d'analyse d'un echantillon de matiere fluide, son procede de fabrication et appareil d'exploitation de ce circuit
US8512652B2 (en) * 1997-03-25 2013-08-20 Greiner Bio-One Gmbh Multiwell microplate with transparent bottom having a thickness less than 200 micrometers
US6514464B1 (en) * 1997-03-25 2003-02-04 Greiner Bio-One Gmbh Micro plate with transparent base
US6171780B1 (en) 1997-06-02 2001-01-09 Aurora Biosciences Corporation Low fluorescence assay platforms and related methods for drug discovery
WO1999019729A1 (de) * 1997-10-09 1999-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zur zelluntersuchung mittels der patch clamp-methode bestimmte vorrichtung und verfahren
EP1037044A4 (de) * 1997-12-02 2005-11-16 Hitachi Chemical Co Ltd Verfahren zur messung von iod, reaktor zur probenvorbehandlung und vorrichtung zur hermetischen abdichtung eines reaktors zur probenvorbehandlung
EP1037044A1 (de) * 1997-12-02 2000-09-20 Hitachi Chemical Company, Ltd. Verfahren zur messung von iod, reaktor zur probenvorbehandlung und vorrichtung zur hermetischen abdichtung eines reaktors zur probenvorbehandlung
US6589796B1 (en) * 1997-12-02 2003-07-08 Hitachi Chemical Co., Ltd. Method for measuring iodine and reaction instrument for specimen pretreatment
US7459130B2 (en) 1998-02-24 2008-12-02 Aurora Discovery, Inc. Multi-well platforms, caddies, lids and combinations thereof
US7854898B2 (en) 1998-02-24 2010-12-21 Nexus Biosystems, Inc. Multi-well platforms, caddies, lids and combinations thereof
US6861035B2 (en) 1998-02-24 2005-03-01 Aurora Discovery, Inc. Multi-well platforms, caddies, lids and combinations thereof
US6730520B2 (en) 1998-02-24 2004-05-04 Aurora Discovery, Inc. Low fluorescence assay platforms and related methods for drug discovery
GB2334688B (en) * 1998-02-24 2002-07-24 Michael Cole Method and apparatus for the evaporation of liquid samples
JP2002510036A (ja) * 1998-03-27 2002-04-02 アベンティス・ファーマ・ドイチユラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 高スループット・スクリーニング用の小型化マイクロタイタ・プレート
WO1999049973A1 (de) * 1998-03-27 1999-10-07 Aventis Pharma Deutschland Gmbh Miniaturisierte mikrotiterplatte für hochdurchsatz-screening
US7951337B2 (en) 1998-03-27 2011-05-31 Sanopi-Aventis Deutschland GmbH Miniaturized microtiter plate for HT-screening
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
US6488892B1 (en) 1998-04-17 2002-12-03 Ljl Biosystems, Inc. Sample-holding devices and systems
US8546110B2 (en) 1998-05-01 2013-10-01 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US8318500B2 (en) 1998-05-01 2012-11-27 Gen-Probe, Incorporated Method for agitating the contents of a reaction receptacle within a temperature-controlled environment
US7666602B2 (en) 1998-05-01 2010-02-23 Gen-Probe Incorporated Method for agitating the fluid contents of a container
US7666681B2 (en) 1998-05-01 2010-02-23 Gen-Probe Incorporated Method for agitating the fluid contents of a container
US8569020B2 (en) 1998-05-01 2013-10-29 Gen-Probe Incorporated Method for simultaneously performing multiple amplification reactions
US8709814B2 (en) 1998-05-01 2014-04-29 Gen-Probe Incorporated Method for incubating the contents of a receptacle
US8337753B2 (en) 1998-05-01 2012-12-25 Gen-Probe Incorporated Temperature-controlled incubator having a receptacle mixing mechanism
US8221682B2 (en) 1998-05-01 2012-07-17 Gen-Probe Incorporated System for incubating the contents of a reaction receptacle
US8012419B2 (en) 1998-05-01 2011-09-06 Gen-Probe Incorporated Temperature-controlled incubator having rotatable door
US8137620B2 (en) 1998-05-01 2012-03-20 Gen-Probe Incorporated Temperature-controlled incubator having an arcuate closure panel
US8192992B2 (en) 1998-05-01 2012-06-05 Gen-Probe Incorporated System and method for incubating the contents of a reaction receptacle
US9598723B2 (en) 1998-05-01 2017-03-21 Gen-Probe Incorporated Automated analyzer for performing a nucleic acid-based assay
US9150908B2 (en) 1998-05-01 2015-10-06 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US8569019B2 (en) 1998-05-01 2013-10-29 Gen-Probe Incorporated Method for performing an assay with a nucleic acid present in a specimen
US8309358B2 (en) 1998-05-01 2012-11-13 Gen-Probe Incorporated Method for introducing a fluid into a reaction receptacle contained within a temperature-controlled environment
US8883455B2 (en) 1998-05-01 2014-11-11 Gen-Probe Incorporated Method for detecting the presence of a nucleic acid in a sample
US6197572B1 (en) * 1998-05-04 2001-03-06 Roche Diagnostics Corporation Thermal cycler having an automatically positionable lid
USD420743S (en) 1998-06-24 2000-02-15 Advanced Biotechnologies Limited Multi-well plate
US6171850B1 (en) * 1999-03-08 2001-01-09 Caliper Technologies Corp. Integrated devices and systems for performing temperature controlled reactions and analyses
US6541274B2 (en) 1999-03-08 2003-04-01 Caliper Technologies Corp. Integrated devices and method of use for performing temperature controlled reactions and analyses
US6337212B1 (en) 1999-03-08 2002-01-08 Caliper Technologies Corp. Methods and integrated devices and systems for performing temperature controlled reactions and analyses
USRE39566E1 (en) 1999-09-29 2007-04-17 Applera Corporation Thermocycler and lifting element
US6555792B1 (en) * 1999-09-29 2003-04-29 Tecan Trading Ag Thermocycler and lifting element
WO2001052988A1 (de) * 2000-01-21 2001-07-26 Greiner Labortechnik Gmbh Behälter zur lagerung von biologischem material
US7169355B1 (en) 2000-02-02 2007-01-30 Applera Corporation Apparatus and method for ejecting sample well trays
US6875604B2 (en) 2000-02-02 2005-04-05 Applera Corporation Thermal cycling device with mechanism for ejecting sample well trays
WO2001085901A3 (en) * 2000-05-08 2002-06-06 Imec Inter Uni Micro Electr Microphysiometer
WO2001085901A2 (en) * 2000-05-08 2001-11-15 Interuniversitair Micro-Elektronica Centrum Microphysiometer
EP1188840A2 (de) * 2000-07-26 2002-03-20 Agilent Technologies, Inc. Chemisches Reaktionsverfahren und Vorrichtung
EP1188840A3 (de) * 2000-07-26 2003-04-23 Agilent Technologies, Inc. (a Delaware corporation) Chemisches Reaktionsverfahren und Vorrichtung
WO2002018051A1 (de) * 2000-08-28 2002-03-07 Cybio Ag Selektiv erwärmbarer substanzträger
EP1315566A4 (de) * 2000-09-05 2004-03-31 Kevin R Oldenburg Vorrichtung zum schnellen thermischen recycling
EP1315566A1 (de) * 2000-09-05 2003-06-04 Kevin R. Oldenburg Vorrichtung zum schnellen thermischen recycling
US6835574B2 (en) 2000-11-17 2004-12-28 Flir Systems Boston, Inc. Apparatus and methods for infrared calorimetric measurements
US6821787B2 (en) 2000-11-17 2004-11-23 Thermogenic Imaging, Inc. Apparatus and methods for infrared calorimetric measurements
US6940055B2 (en) 2000-12-12 2005-09-06 Johnson & Johnson Pharmaceutical Research & Development, L.L.C. Microtiter plate with integral heater
US6423948B1 (en) * 2000-12-12 2002-07-23 3-Dimensional Pharmaceuticals, Inc. Microtiter plate with integral heater
WO2002047821A1 (en) * 2000-12-12 2002-06-20 3-Dimensional Pharmaceuticals, Inc. Microtiter plate with integral heater
GB2370112A (en) * 2000-12-15 2002-06-19 Hybaid Ltd Multiwell sample plates
DE10106339A1 (de) * 2001-02-09 2002-08-22 Hans-Joachim Mueller Verfahren zum Hochdurchsatz-Screening von Kandidaten-Verbindungen über die Hochdurchsatz-Direktsynthese von rekombinanten Polypeptiden
US6800491B2 (en) 2001-06-08 2004-10-05 Nalge Nunc International Corporation Robotic reservoir without liquid hangup
JP4639558B2 (ja) * 2001-09-07 2011-02-23 株式会社島津製作所 マイクロウエルチップ
KR100473709B1 (ko) * 2001-09-07 2005-03-10 가부시키가이샤 시마즈세이사쿠쇼 마이크로 어레이 칩
JP2003070456A (ja) * 2001-09-07 2003-03-11 Shimadzu Corp マイクロウエルチップ
EP1438137A1 (de) * 2001-09-20 2004-07-21 3-Dimensional Pharmaceuticals, Inc. Leitende mikrotiterplatte
EP1438137A4 (de) * 2001-09-20 2010-07-07 Johnson & Johnson Pharm Res Leitende mikrotiterplatte
EP1457553A4 (de) * 2001-12-28 2005-02-16 Enplas Corp Plastikplatte und zusammenbau der plastikplatte
JP2004097200A (ja) * 2001-12-28 2004-04-02 Enplas Corp プラスチックプレート及びプラスチックプレート組立体
EP1457553A1 (de) * 2001-12-28 2004-09-15 Enplas Corporation Plastikplatte und zusammenbau der plastikplatte
JP4566509B2 (ja) * 2001-12-28 2010-10-20 株式会社エンプラス プラスチックプレート及びプラスチックプレート組立体
WO2003069322A2 (de) * 2002-02-15 2003-08-21 Henkel Kommanditgesellschaft Auf Aktien Vorrichtung und verfahren zum gleichzeitigen testen der einwirkung von flüssigkeiten (z.b. waschmittel bzw. korrosionsinhibitoren) auf flächengebilde (z.b. textilien bzw. stahlblech) sowie verwendung der vorrichtung
WO2003069322A3 (de) * 2002-02-15 2004-04-08 Henkel Kgaa Vorrichtung und verfahren zum gleichzeitigen testen der einwirkung von flüssigkeiten (z.b. waschmittel bzw. korrosionsinhibitoren) auf flächengebilde (z.b. textilien bzw. stahlblech) sowie verwendung der vorrichtung
KR100719029B1 (ko) * 2002-03-28 2007-05-16 대한제당 주식회사 마이크로-웰 플레이트
KR20030078250A (ko) * 2002-03-28 2003-10-08 대한제당 주식회사 마이크로-웰 플레이트를 이용한 미세체적 반응장치 겸미생물 판별장치 및 그 이용방법
EP1499442A4 (de) * 2002-04-15 2006-06-07 Cool Options Inc Wärmeleitende biologische analyseplatten
EP1499442A1 (de) * 2002-04-15 2005-01-26 Cool Options, Inc. Wärmeleitende biologische analyseplatten
WO2004018105A1 (en) * 2002-08-20 2004-03-04 Quanta Biotech Limited Thermal engine for a thermocycler with interchangeable sample block
WO2004078352A2 (en) * 2003-03-05 2004-09-16 Amersham Biosciences (Sv) Corp Microtiter plate for holding small volumes of liquids
WO2004078352A3 (en) * 2003-03-05 2005-01-13 Amersham Biosciences Sv Corp Microtiter plate for holding small volumes of liquids
WO2005028110A3 (en) * 2003-09-19 2005-08-18 Applera Corp Microplates useful for conducting thermocycled nucleotide amplification
US7460223B2 (en) 2003-09-19 2008-12-02 Applied Biosystems Inc. Inverted orientation for a microplate
US7429479B2 (en) 2003-09-19 2008-09-30 Applied Biosystems Inc. Inverted orientation for a microplate
WO2005028110A2 (en) * 2003-09-19 2005-03-31 Applera Corporation Microplates useful for conducting thermocycled nucleotide amplification
WO2005028109A3 (en) * 2003-09-19 2005-07-14 Applera Corp Microplates useful for conducting thermocycled nucleotide amplification
DE102004025538A1 (de) * 2004-05-25 2005-12-22 Advalytix Ag Temperierverfahren und -vorrichtung für die Temperaturbehandlung kleiner Flüssigkeitsmengen
AU2006223223B2 (en) * 2005-03-10 2012-04-12 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
US9726607B2 (en) 2005-03-10 2017-08-08 Gen-Probe Incorporated Systems and methods for detecting multiple optical signals
US8501461B2 (en) 2005-03-10 2013-08-06 Gen-Probe Incorporated System for performing multi-formatted assays
WO2006099255A2 (en) * 2005-03-10 2006-09-21 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
WO2006099255A3 (en) * 2005-03-10 2006-12-07 Gen Probe Inc Systems and methods to perform assays for detecting or quantifying analytes within samples
JP2008532526A (ja) * 2005-03-10 2008-08-21 ジェン−プロウブ インコーポレイテッド サンプル内の検体を検出または定量化するためのアッセイを実施するためのシステムおよび方法
JP2015126734A (ja) * 2005-03-10 2015-07-09 ジェン−プロウブ インコーポレイテッド サンプル内の検体を検出または定量化するためのアッセイを実施するためのシステムおよび方法
US8615368B2 (en) 2005-03-10 2013-12-24 Gen-Probe Incorporated Method for determining the amount of an analyte in a sample
US8663922B2 (en) 2005-03-10 2014-03-04 Gen-Probe Incorporated Systems and methods for detecting multiple optical signals
US8008066B2 (en) 2005-03-10 2011-08-30 Gen-Probe Incorporated System for performing multi-formatted assays
JP2015158513A (ja) * 2005-03-10 2015-09-03 ジェン−プロウブ インコーポレイテッド サンプル内の検体を検出または定量化するためのアッセイを実施するためのシステムおよび方法
US7794659B2 (en) 2005-03-10 2010-09-14 Gen-Probe Incorporated Signal measuring system having a movable signal measuring device
US7897337B2 (en) 2005-03-10 2011-03-01 Gen-Probe Incorporated Method for performing multi-formatted assays
US10006862B2 (en) 2005-03-10 2018-06-26 Gen-Probe Incorporated Continuous process for performing multiple nucleic acid amplification assays
EP1909108A3 (de) * 2005-03-10 2014-05-28 Gen-Probe Incorporated Systeme und Verfahren zur Durchführung von Tests zum Nachweis oder zur Quantifizierung von Analyten
EP1930730A3 (de) * 2005-03-10 2014-05-28 Gen-Probe Incorporated Systeme und Verfahren zur Durchführung von Tests zum Nachweis oder zur Quantifizierung von Analyten
US8349564B2 (en) 2005-03-10 2013-01-08 Gen-Probe Incorporated Method for continuous mode processing of the contents of multiple reaction receptacles in a real-time amplification assay
US7964413B2 (en) 2005-03-10 2011-06-21 Gen-Probe Incorporated Method for continuous mode processing of multiple reaction receptacles in a real-time amplification assay
US7932081B2 (en) 2005-03-10 2011-04-26 Gen-Probe Incorporated Signal measuring system for conducting real-time amplification assays
US9372156B2 (en) 2005-03-10 2016-06-21 Gen-Probe Incorporated System for processing contents of a receptacle to detect an optical signal emitted by the contents
WO2008140524A1 (en) * 2007-05-14 2008-11-20 Stratagene Compositions and reaction tubes with improved thermal conductivity
DE102009015869B4 (de) * 2009-04-01 2011-03-03 Schneckenburger, Herbert, Prof. Dr. Mikrotiterplatte mit Heizeinrichtung
DE102009015869A1 (de) * 2009-04-01 2010-10-21 Schneckenburger, Herbert, Prof. Dr. Vorrichtung zum Temperieren von Mikrotiterplatten
US8962308B2 (en) 2010-07-23 2015-02-24 Beckman Coulter, Inc. System and method including thermal cycler modules
US9274132B2 (en) 2010-07-23 2016-03-01 Beckman Coulter, Inc. Assay cartridge with reaction well
US8932541B2 (en) 2010-07-23 2015-01-13 Beckman Coulter, Inc. Pipettor including compliant coupling
US9046455B2 (en) 2010-07-23 2015-06-02 Beckman Coulter, Inc. System and method including multiple processing lanes executing processing protocols
US8996320B2 (en) 2010-07-23 2015-03-31 Beckman Coulter, Inc. System and method including analytical units
US9140715B2 (en) 2010-07-23 2015-09-22 Beckman Coulter, Inc. System and method for controlling thermal cycler modules
US8956570B2 (en) 2010-07-23 2015-02-17 Beckman Coulter, Inc. System and method including analytical units
US9285382B2 (en) 2010-07-23 2016-03-15 Beckman Coulter, Inc. Reaction vessel
US9519000B2 (en) 2010-07-23 2016-12-13 Beckman Coulter, Inc. Reagent cartridge
US8840848B2 (en) 2010-07-23 2014-09-23 Beckman Coulter, Inc. System and method including analytical units
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
US9915613B2 (en) 2011-02-24 2018-03-13 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US8718948B2 (en) 2011-02-24 2014-05-06 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US10641707B2 (en) 2011-02-24 2020-05-05 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
US10048284B2 (en) 2011-11-07 2018-08-14 Beckman Coulter, Inc. Sample container cap with centrifugation status indicator device
US8973736B2 (en) 2011-11-07 2015-03-10 Beckman Coulter, Inc. Magnetic damping for specimen transport system
US9482684B2 (en) 2011-11-07 2016-11-01 Beckman Coulter, Inc. Centrifuge system and workflow
US9446418B2 (en) 2011-11-07 2016-09-20 Beckman Coulter, Inc. Robotic arm
US9506943B2 (en) 2011-11-07 2016-11-29 Beckman Coulter, Inc. Aliquotter system and workflow
US9910054B2 (en) 2011-11-07 2018-03-06 Beckman Coulter, Inc. System and method for processing samples
US9046506B2 (en) 2011-11-07 2015-06-02 Beckman Coulter, Inc. Specimen container detection
US10274505B2 (en) 2011-11-07 2019-04-30 Beckman Coulter, Inc. Robotic arm
US9186674B2 (en) 2013-01-24 2015-11-17 Sabic Global Technologies B.V. Polycarbonate microfluidic articles
US9168532B2 (en) 2013-01-24 2015-10-27 Sabic Global Technologies B.V. Microwell plate
US9180456B2 (en) 2013-01-24 2015-11-10 Sabic Global Technologies B.V. Microwell plate
WO2020120517A1 (de) 2018-12-13 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Probenaufnahmeeinrichtung für biologische proben mit einer probenaufnahme aus kohlenstoff-basiertem werkstoff
DE102018132120A1 (de) 2018-12-13 2020-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Probenaufnahmeeinrichtung für biologische Proben mit einer Probenaufnahme aus Kohlenstoff-basiertem Werkstoff
DE102018132120B4 (de) 2018-12-13 2024-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Probenaufnahmeeinrichtung für biologische Proben mit einer Probenaufnahme aus Kohlenstoff-basiertem Werkstoff
WO2021112855A1 (en) * 2019-12-05 2021-06-10 Hewlett-Packard Development Company, L.P. Substrate stages with corner ribs

Similar Documents

Publication Publication Date Title
EP0542422A1 (de) Mikrotiterplatte mit mehreren Vertiefungen
US9956559B2 (en) Instrument and method for the automated thermal treatment of liquid samples
US8389288B2 (en) Device for the carrying out of chemical or biological reactions
US7727479B2 (en) Device for the carrying out of chemical or biological reactions
US10253361B2 (en) Sample block apparatus and method for maintaining a microcard on a sample block
JP4977708B2 (ja) サンプルプレートアセンブリおよび生体サンプルを処理する方法
US7829028B2 (en) Storage unit and transfer system for storing and providing biological samples
US20030064508A1 (en) Conductive microtiter plate
US8035811B2 (en) Devices and methods for visualization of a sample in a microplate
US9068947B2 (en) Optical system for multiple reactions
EP1656994B1 (de) Heizung von Mehrkammerbehältern
KR20210014739A (ko) 열블록(thermal block)
KR20040048754A (ko) 온도 제어가 가능한 리얼타임 형광 검색 장치
US20140338860A1 (en) Combination Vessel Holder for Heat Block Incubation
WO2023016834A1 (en) Image acquisition system for acquiring an image of a liquid sample

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19931221