EP0537264A1 - Alliages mixtes organiques-metalliques pour realisation de projectiles - Google Patents

Alliages mixtes organiques-metalliques pour realisation de projectiles

Info

Publication number
EP0537264A1
EP0537264A1 EP19910913023 EP91913023A EP0537264A1 EP 0537264 A1 EP0537264 A1 EP 0537264A1 EP 19910913023 EP19910913023 EP 19910913023 EP 91913023 A EP91913023 A EP 91913023A EP 0537264 A1 EP0537264 A1 EP 0537264A1
Authority
EP
European Patent Office
Prior art keywords
projectile
sub
alloy
metallic
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19910913023
Other languages
German (de)
English (en)
Inventor
Jean-Claude Sauvestre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0537264A1 publication Critical patent/EP0537264A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • F42B12/745Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin

Definitions

  • the present invention relates to sub-projectiles or projectiles with caliber stabilized by empennage for kinetic energy ammunition of small, medium and large caliber and in particular for hunting ammunition. Big game shooting is done using lead alloy bullet cartridges, whether or not coated with a metal casing. This bullet is commonly called a projectile when its diameter is equal to the caliber of the weapon and a sub-projectile when its diameter is less than the caliber of the weapon. In 12, 16 or 20 caliber hunting weapons, the stabilization of the projectile is obtained by a dragging or stabilizing element located at the rear of said projectile.
  • the most commonly used lead alloy which also consists of antimony and tin, has the following advantages:
  • the object of the present invention is to replace lead alloys with an alloy composed in part of a organic material and metallic particles.
  • the invention relates to a sub-projectile or projectile of caliber, stabilized by tail, for ammunition with kinetic energy of small, medium and large caliber and in particular for hunting ammunition characterized in that it is made of an organic mixed alloy- metallic consisting of at least one organic material ensuring the cohesion of the assembly and at least one metallic filler.
  • the sub-projectile or projectile according to the invention is characterized: - in that the mixed organic-metallic alloy has physical and / or mechanical properties which are homogeneous longitudinally and radially
  • the mixed organic-metallic alloy has physical and / or mechanical properties varying longitudinally and radially
  • the organic material and / or the metallic charge of the mixed organic-metallic alloy make it possible to adapt the physical and / or mechanical properties according to a longitudinal variation - in that the organic material and / or the metallic charge of the mixed organic-metallic alloy makes it possible to adapt the physical and / or mechanical properties according to a radial variation - in that the organic material of the mixed organic alloy - metallic is loaded with carbon, glass or organic fibers
  • the organic material contains an adjuvant such as a lubricant, a stabilizer or a colorant - in that there is a longitudinal variation in the density, from the highest value at the top to the lowest value on foot
  • Figure 1 is a half-sectional view of a kinetic energy munition composed of a sub-projectile made of an alloy according to the present invention.
  • FIG. 2 is a view showing a magnification of the structure of the alloy along the section AA of FIG. 1.
  • Figure 3 is a half-sectional view of a sub-projectile having homogeneous physical and mechanical properties longitudinally and radially.
  • FIG. 4 is a half-section view of a simplified sub-projectile having longitudinally variable physical and mechanical properties.
  • FIG. 5 is a half-section view of a simplified sub-projectile having radially variable physical and mechanical characteristics.
  • FIG. 6 is a half-section view of a sub-projectile with high density and high brittleness at the head.
  • FIG. 1, specified above, represents an ammunition for a hunting weapon with a smooth or slightly striped core of caliber 12, 16 or 20 for example.
  • Figures 3, 4, 5 and 6 show the sub-projectile of this munition whose stability on the trajectory is ensured by a tail.
  • Figure 1 is a half-sectional view which gives a use of the present invention for a hunting ammunition 1.
  • the latter comprises a socket 2 of metallic material or not carrying a primer not shown, socket containing the propellant powder 3 and the projectile 4 constituted by a launching device 5 and a sub-projectile 6 composed of a body 7 and a tail unit.
  • the launching device 5, composed of 2 elements with longitudinal separation, comprises teeth 9 which cooperate with grooves 10 formed on the body 7 of the sub-projectile 6.
  • the launching device 5 is therefore secured to the body 7 of the sub-projectile 6. From the exit of the tube . the weapon, the longitudinal separation of the elements of the launching device 5 is achieved mainly thanks to the aerodynamic forces which are exerted on the front of said elements, thus releasing the sub-projectile 6 which achieves the intended objective.
  • Figure 2 gives the magnification of the structure of the mixed organic-metallic alloy used (in section AA of Figure 1)
  • the body 7 of the sub-projectile 6, made of this alloy, consists of metallic particles 11 embedded in an organic binder 12. This assembly obtained essentially by injection makes it possible to easily control the physical and mechanical properties for the intended application.
  • the potentially usable organic materials 12 are:
  • thermoplastics which are injected into cold molds and which essentially comprise polyamides, polycarbonates, polyethylenes and polybutylenes.
  • Thermosets which are injected into hot molds and which include in particular EPOXY resins, polyides and phenoplasts. All these materials can be loaded in variable proportions with carbon, glass or organic fibers (example: Kevlar).
  • the ranges for the main physical and mechanical properties of the abovementioned organic materials are given below by family.
  • the metallic materials 11 introduced into the organic material 12 are either in the form of particles with dimensions of between 0.005 and several millimeters or in the form of fibers of diameter varying from 0.001 to 2 millimeters and of adjustable length.
  • the first family includes pure metals such as: tungsten, molybdenum, tantalum, iron, copper, aluminum, boron, nickel, cobalt and titanium.
  • the second family includes alloys, some of which are listed below:
  • alloy steels example: 35 NCD 16 (Nickel + chromium + molybdenum)
  • alloyed aluminum such as AU 4 G for example (aluminum + copper + magnesium) - copper alloys such as bronzes, brasses and cuproalus.
  • titanium alloys such as TA6V (titanium + aluminum + vanadium)
  • the density of the mixed alloy obtained can reach that of the highest density metallic load of 19,300 kg / m 3 .
  • this high limit has never been reached, but the production of an organic mixed alloy of 18,800 kg / m3 is perfectly possible (the filling rate of the metallic charge of
  • the density of the mixed alloy obtained is 14580 kg / m 3 .
  • a mixed alloy of homogeneous longitudinal and radially homogeneous physical and mechanical characteristics and density 11,300 kg / m3 was produced, corresponding to that of a lead alloy for bullet of hunting.
  • the proportions observed were 10,798 kg of tungsten powder (corresponding to a filling ratio of 0.56) and 502 kg of polyamide 6.6.
  • Figure 3 is a half-sectional view of the sub-projectile thus produced.
  • the body 7 of the sub-projectile 6 has circular grooves 10 on the outer part, the function of which has been described previously.
  • Other circular grooves 13 and adents 14 are formed at the foot of the body 7 of the sub-projectile 6 thus allowing the correct attachment of the tail 8 obtained by over-injection of a plastic alloy.
  • FIGS. 3a and 3b show that the body 7 of the sub-projectile 6 has homogeneous physical and mechanical characteristics both longitudinally and radially. To compare with shooting the polyamide 6,6 mixed alloy of tungsten powder with the lead alloy, it was produced in each of these materials, an equal number of sub-projectiles 6 with identical mass and geometry.
  • the mechanical strength of the mixed alloy during the pressure build-up phase was excellent as well as the ballistic dispersion obtained 100 meters from the weapon.
  • a lower dispersion of the speed was observed at 100 meters than with the same sub-projectile provided with a body 7 of lead alloy. This is explained by the fact that this mixed alloy is very homogeneous during its implementation and does not create internal volume defects as with the lead alloy.
  • the mixed organic-metallic alloy used for producing the body 7 of the sub-projectile 6 has homogeneous characteristics longitudinally and radially.
  • these homogeneous characteristics can be obtained by starting either from an intimate mixture of an organic material and a metallic charge (case developed above cf fig 3), or from an intimate mixture of several organic materials and a metallic charge, either of an intimate mixture of an organic material with several metallic charges and finally either of an intimate mixture of several organic materials with several metallic charges.
  • the mixture of organic material and metallic filler is carried out during the processing of the alloy.
  • the organic material (s) can be reinforced with carbon, glass or organic fibers (example: KEVLAR).
  • Adjuvants such as lubricants can also be introduced to facilitate processing (for example metal stearates), stabilizers for molecular chains (for example phenols and polyphenols) and colorants for essentially aesthetic purposes (for example oxides minerals such as calcium oxides).
  • FIG. 4 is a half-section view of a sub-projectile 6 consisting of a body 7 composed of three elements 15, 16 and 17 making it possible to obtain a longitudinal gradient of the physical and / or mechanical properties and of a empennage 8.
  • the connections of elements 15, 16 and 17 between them as well as the interfaces of the sub-projectile 6 with the launching device 5 and the empennage 8 itself have not been shown. diagrammed in dotted lines.
  • Each element 15, 16 and 17 is composed of a mixed organic-metallic alloy with homogeneous characteristics longitudinally and radially. The implementation is carried out successively in a longitudinal fashion from head to foot or from foot to head. For example, element 15 is first produced which receives superinjection on the interface 18 element 16, which receives superinjection on the interface 19 element 17, which also receives superinjection on the interface 20 empennage 8 which itself is simply a plastic alloy.
  • this configuration makes it possible to make the best use of the physical and / or mechanical properties of the alloy as a function of the objectives to be ensured by each of them.
  • Figure 4a gives an illustration of the characteristics imposed on each element. Among other things, it was favored a low resilience (k) therefore a great ease of rupture upon impact of the element 15 placed at the head of the sub-projectile 6. This element easily fragments against the soft parts of a game.
  • Element 16 located in the middle of the sub-projectile 6 has the highest breaking strength (RT) to ensure the mechanical resistance of the sub-projectile to the mechanical stresses generated during the travel phase of the projectile 4 in the core of the barrel of the weapon.
  • This element is not very fragile on impact (k) which makes it difficult to fragment when crossing the soft parts of the game but sufficiently resistant to properly attack the hard parts of said game.
  • the element 17, located at the foot of the sub-projectile 6 has a relatively high resistance to rupture (RT) and an elongation (Al). These characteristics allow it to have an intermediate behavior between the element 15 and the element 16 and to withstand all the transverse stresses generated by the transverse gradients induced by the pressure of the gases during the combustion of the propellant powder 3 and transmitted by the 'empennage 8. Furthermore, the density (MV) of the element 17 is the lowest to give good stability of the sub-projectile 6 on trajectory.
  • RT resistance to rupture
  • Al elongation
  • FIG. 5 is a half-section view of a sub-projectile comprising a body 7 composed of three elements of tubular form for elements 21 and 22 and cylindrical for element 23 nested one inside the other, making it possible to obtain a radial gradient of the physical properties and / or mechanical and a tail 8 shown only in dotted lines.
  • the connections of the elements 21, 22, 23 are not shown, as well as the sub-projectile 6 - launching device 5 and sub-projectile 6 - tailplane 8 interfaces.
  • Each element 21, 22 or 23 is composed of a mixed organic-metallic alloy with homogeneous characteristics longitudinally and radially. The implementation is carried out successively from the axis of the sub-projectile 6 towards the outside. Element 23 is first produced which receives over-injection of element 22 which receives over-injection of element 21. The tail 8 is linked to element 23 during injection.
  • This configuration different from the previous one, also makes it possible to exploit the physical and / or mechanical properties of the mixed alloy of each element as a function of the objectives targeted for each of them.
  • Figure 5a gives an illustration of the characteristics imposed on each element.
  • element 21 an alloy was chosen which presents a compromise between its brittleness (low k), to fragment or peel easily in the soft parts of a game, and its resistance (RT and A% quite high ) to the mechanical stresses generated during the phase of travel of the projectile 4 in the core of the barrel of the weapon.
  • MV high density
  • the element 22 has an intermediate role making it possible to ensure good mechanical resistance of the elements between them during the course of the projectile 4 in the core of the barrel of the weapon and to supplement the destructive effects of the element 21 and those of the element 23. Its mechanical characteristics are on average intermediate between those of elements 21 and 23.
  • Element 23 is the hard element of the sub-projectile 6. It has both a high resilience (k) to resist breaking by shock, a high resistance (RT) to allow to attack under good conditions the hard parts of a game and a high density to obtain surface kinetic energy (kinetic energy delivered by this element compared to the transverse surface of said element ) as high as possible. This kinetic energy is essential to ensure good penetration of hard parts of game.
  • the mixed organic-mechanical alloys polyamide 6, 6-steel for element 21, polysulfone-tungsten for element 22 and polyamide imide-tungsten for element 23 are an example of association to meet the requirements.
  • the body 7 of the sub-projectile 6 may consist of only two elements, the external element having characteristics situated between those of elements 21 and 22 and the central element having characteristics identical to those of element 23.
  • polyamide imide-tungsten with a filling rate of 0.74 density of 14670 kg / m3, resilience 80 J / m, breaking strength 110 MPa
  • polyamide 6,6-tungsten with a filling rate of 0.36 (density of 7680 kg / m3, resilience 10 J / m, breaking strength 53 MPa).
  • Figure 6 is a half-sectional view schematically showing a sub-projectile 6 comprising a body 7 by combination of elements of type 15, 16, 17 specified in Figure 4 and of elements. type 21, 22, 23 indicated by FIG. 5. This combination makes it possible to obtain both a longitudinal gradient and a radial gradient of the physical and / or mechanical properties.
  • the invention described here applied to hunting ammunition can be adapted to any other type of small, medium and large caliber ammunition and very particularly to shooting practice ammunition.

Abstract

L'invention concerne les sous-projectiles ou projectiles au calibre stabilisés par empennage pour munition à énergie cinétique de petit, moyen et gros calibre et en particulier pour munition de chasse. Le sous-projectile ou projectile au calibre, stabilisé par empennage, pour munition à énergie cinétique de petit, moyen et gros calibre et en particulier pour munition de chasse est caractérisé en ce qu'il est réalisé en un alliage mixte organique-métallique constitué au moins d'un matériau organique assurant la cohésion de l'ensemble et au moins d'une charge métallique. Application au domaine des munitions de tous calibres.

Description

Alliages mixtes organiques-métalliques pour réalisation de projectiles.
La présente invention concerne les sous-projectiles ou projectiles au calibre stabilisés par empennage pour munition à énergie cinétique de petit, moyen et gros calibre et en particulier pour munition de chasse. Le tir au gros gibier se pratique à l'aide de cartouches à balle en alliage de plomb revêtue ou non d'une enveloppe métallique. Cette balle est couramment appelée projectile lorsque son diamètre est égal au calibre de l'arme et sous- projectile lorsque son diamètre est inférieur au calibre de l'arme. Dans les armes de chasse de calibre 12, 16 ou 20, la stabilisation du projectile est obtenue par un élément traînant ou empennage situé à l'arriére dudit projectile.
L'alliage de plomb le plus souvent utilisé, constitué également d'antimoine et d'étain, présente les avantages suivants:
- Masse volumique élevée (de l'ordre de 11300 kg/m3) permettant ainsi d'avoir une énergie cinétique encore suffisante à des distances de tir raisonnables.
- Coût relativement faible de la matière de base. - Mise en oeuvre facile par les moyens classiques de transformation.
Eu égard aux avantages précités, les inconvénients sont importants :
- Surveillance médicale accrue des personnels travaillant directement sur ledit alliage
- Pollution importante de la nature
- Concentration importante de cette pollution sur certains territoires de chasse et sur certains stands de tir
- Métallisation possible du tube de l'arme par l'alliage de plomb constituant le projectile
Pouvoir d'arrêt du gibier parfois inefficace dû essentiellement à la trop grande ductilité de l'alliage utilisé
- Tenue limitée aux sollicitations mécaniques pendant la phase de lancement du projectile (balistique intérieure) .
Le but de la présente invention est de remplacer les alliages de plomb par un alliage composé pour partie d'un matériau organique et de particules métalliques.
Tout en conservant les avantages de l'alliage de plomb, c'est à dire :
- Masse volumique élevée dépassant même celle de l'alliage de plomb.
- Mise en oeuvre facile avec maîtrise complète de la géométrie
- Prix de revient de la pièce accessible.
Les inconvénients majeurs cités pour l'alliage de plomb disparaissent :
- Pas de surveillance médicale particulière des personnels travaillant pour la fabrication des produits
- Aucune pollution de la nature
- Grand pouvoir d'arrêt du gibier par maîtrise de la composition de la dureté de l'alliage organique-métallique et de la géométrie
- Maîtrise totale de la tenue mécanique aux sollicitations mécaniques générées pendant la phase de lancement du projectile. - Aucun risque de métallisation du tube de l'arme au tir.
L'invention concerne un sous-projectile ou projectile au calibre, stabilisé par empennage, pour munition à énergie cinétique de petit, moyen et gros calibre et en particulier pour munition de chasse caractérisé en ce qu'il est réalisé en un alliage mixte organique-métallique constitué au moins d'un matériau organique assurant la cohésion de l'ensemble et au moins d'une charge métallique.
Plus particulièrement, le sous-projectile ou projectile selon l'invention est caractérisé : - en ce que l'alliage mixte organique-métallique présente des propriétés physiques et/ou mécaniques homogènes longitudinalement et radialement
- en ce que l'alliage mixte organique-métallique présente des propriétés physiques et/ou mécaniques variables longitudinalement et radialement
- en ce que le matériau organique et/ou la charge métallique de l'alliage mixte organique-métallique permettent d'adapter les propriétés physiques et/ou mécaniques selon une variation longitudinale - en ce que le matériau organique et/ou la charge métallique de l'alliage mixte organique-métallique permettent d'adapter les propriétés physiques et/ou mécaniques selon un variation radiale - en ce que le matériau organique de l'alliage mixte organique-métallique est chargé de fibres de carbone, de verre ou organiques
- en ce que le matériau organique contient un adjuvant tel qu'un lubrifiant, un stabilisant ou un colorant - en ce qu'il existe une variation longitudinale de la masse volumique, de la valeur la plus forte en tête à la valeur la plus faible en pied
- en ce qu'il existe une variation longitudinale de la masse volumique, de la valeur de 14530 kg/m3 en tête à la valeur de 4730 kg/m3 en pied
- en ce qu'il existe une variation longitidinale de la resilience, la valeur la plus faible étant en tête
- en ce qu'il existe une variation longitudinale de la resilience, variant de 4 J/m à 80 J/m
- en ce qu'il existe une variation radiale de la masse volumique, de la valeur la plus forte au coeur à la valeur la plus faible en périphérie
- en ce qu'il existe une variation radiale de la masse volumique, de la valeur de 14670 kg/m3 au coeur à la valeur de
7680 kg/m3 en périphérie
- en ce qu'il existe une variation radiale de la resilience, de la valeur la plus forte au coeur à la valeur la plus faible en périphérie - en ce qu'il existe une variation radiale de la resilience, de la valeur de 80 J/m au coeur à la valeur de 10 J/m en périphérie
- en ce qu'il comporte un élément central constitué par un alliage mixte polyamide imide - tungstène avec un taux de remplissage de 0,74 et un élément extérieur constitué par un alliage mixte polyamide 6,6 - tungstène avec un taux de remplissage de 0,36
- en ce qu'il est constitué par un alliage mixte tel qu'un polyamide 6, 6 chargé de poudre de tungstène dont la masse volumique est comprise entre 8500 et 13500 kg/m3
- en ce qu'il est constitué par un alliage mixte tel qu'un polyamide 6,6 chargé de poudre de tungstène dont la masse volumique est d'environ 11300 kg/m3 L'invention sera mieux comprise à la lecture de la description ci-après d'un exemple de réalisation, description faite en référence aux dessins annexés dans lesquels :
La figure 1 est une vue en demi-coupe d'une munition à énergie cinétique composée d'un sous-projectile fabriqué en alliage conforme à la présente invention.
La figure 2 est une vue présentant un grossissement de la structure de l'alliage suivant la coupe AA de la figure 1.
La figure 3 est une vue en demi-coupe d'un sous-projectile ayant des propriétés physiques et mécaniques homogènes longitudinalement et radialement.
La figure 4 est une vue en demi-coupe d'un sous-projectile simplifié ayant des propriétés physiques et mécaniques variables longitudinalement.
La figure 5 est une vue en demi-coupe d'un sous-projectile simplifié ayant des caractéristiques physiques et mécaniques variables radialement.
La figure 6 est une vue en demi-coupe d'un sous-projectile à masse volumique et à fragilité élevées en tête.
La figure 1 précisée ci-dessus représente une munition pour une arme de chasse à âme lisse ou faiblement rayée de calibre 12,16 ou 20 par exemple.
Les figures 3, 4, 5 et 6 représentent le sous-projectile de cette munition dont la stabilité sur trajectoire est assurée par un empennage. La figure 1 est une vue en demi-coupe qui donne une utilisation de la présente invention pour une munition de chasse 1. Cette dernière comprend une douille 2 en matière métallique ou non portant une amorce non représentée, douille contenant la poudre propulsive 3 et le projectile 4 constitué par un dispositif de lancement 5 et un sous-projectile 6 composé d'un corps 7 et d'un empennage 8. Le dispositif de lancement 5, composé de 2 éléments à séparation longitudinale, comporte des adents 9 qui coopèrent avec des gorges 10 pratiquées sur le corps 7 du sous-projectile 6. Pendant la phase du parcours du projectile 4 dans l'âme du tube, le dispositif de lancement 5 est donc solidaire du corps 7 du sous-projectile 6. Dès la sortie du tube de .l'arme, la séparation longitudinale des éléments du dispositif de lancement 5 se réalise grâce essentiellement aux forces aérodynamiques qui s'exercent sur l'avant desdits éléments, libérant ainsi le sous-projectile 6 qui atteint l'objectif visé.
La figure 2 donne le grossissement de la structure de l'alliage mixte organique-métallique utilisé (dans la section AA de la figure 1)
Le corps 7 du sous-projectile 6, fabriqué dans cet alliage, est constitué de particules métalliques 11 noyées dans un liant organique 12. Cet assemblage obtenu essentiellement par injection permet de maîtriser aisément les propriétés physiques et mécaniques à l'application envisagée.
Les matériaux organiques 12 potentiellement utilisables sont les :
- thermoplastiques qui s'injectent dans des moules froids et qui comprennent essentiellement les polyamides, les polycarbonates, les polyéthylènes et les polybutylènes.
- Thermodurcissables qui s'injectent dans des moules chauds et qui comprennent notamment les résines EPOXY, les polyi ides et les phénoplastes . Tous ces matériaux peuvent être chargés en proportions variables de fibres de carbone, de verre ou organiques (exemple : Kevlar) . Il est donné ci-après, par famille les fourchettes des principales propriétés physiques et mécaniques des matériaux organiques précités.
Les matériaux métalliques 11 introduits dans le matériau organique 12 se présentent soit sous forme de particules de dimensions comprises entre 0,005 et plusieurs millimètres soit sous formes de fibres de diamètre variant de 0,001 à 2 millimètres et de longueur ajustable.
Deux grandes familles composent ces matériaux métalliques potentiellement utilisables en excluant les matériaux polluants tels que l'uranium appauvri et le plomb et les métaux précieux tels l'argent, l'or et le platine. La première famille comprend les métaux purs comme par exemple : le tungstène, le molybdène, le tantale, le fer, le cuivre, l'aluminium, le bore, le nickel, le cobalt et le titane.
La deuxième famille comprend les alliages dont certains sont cités ci-après :
- les alliages ferreux : aciers alliés exemple : 35 NCD 16 (Nickel + chrome + molybdène)
- les alliages d'aluminium : aluminiums alliés comme l'AU 4 G par exemple (aluminium + cuivre + magnésium) - les alliages cuivreux tels les bronzes, les laitons et les cuproalus .
- les alliages de titane comme le TA6V (titane + aluminium + vanadium)
Il est donné ci-après, par famille, les fourchettes des principales propriétés physiques et mécaniques des matériaux métalliques précités.
De ces deux tableaux il ressort qu'un nombre important de combinaisons matériaux organiques-matériaux métalliques est possible, avec éventuellement un choix orienté de certaines caractéristiques physiques et/ou mécaniques à obtenir sur l'alliage final, en fonction du prix de revient, de sa mise en oeuvre et de l'utilisation envisagée du produit fabriqué. Les caractéristiques mécaniques minimales dudit produit correspondent au minimum à celles du matériau organique utilisé. La masse volumique minimale de l'alliage mixte organique est légèrement supérieure à celle du matériau organique de masse volumique la plus faible soit 880 kg/m3- La masse volumique maximale de l'alliage mixte organique- métallique est obtenue en considérant l'empilage le plus compact possible des particules de la charge métallique 11 avec un remplissage complet des interstices par le matériau organique 12. Dans le cas d'un empilage à grains cubiques parfaitement rangés, la masse volumique de l'alliage mixte obtenue peut atteindre celle de la charge métallique de masse volumique la plus élevée soit 19300 kg/m3. Au plan industriel, compatible avec une production de grande série, cette limitation haute n'a jamais été atteinte mais la réalisation d'un alliage mixte organique de 18800 kg/m3 est parfaitement possible (le taux de remplissage de la charge métallique de
0,97 étant la valeur utilisée dans certains alliages métalliques élaborés par d'autres technologies telles que la réalisation d'alliages frittes) .
A titre d'exemple pour un alliage mixte composé d'un matériau organique 12 de type polyamide 6, 6 de masse volumique
1140 kg/m3, et d'une charge métallique 11 de type poudre de tungstène de masse volumique réelle 19300 kg/m3, et en considérant que la structure de la poudre de tungstène est à grains sphériques, grains disposés suivant un empilage compact
(structure cubique à faces centrées) permettant un taux maximal de remplissage de 0,74, la masse volumique de l'alliage mixte obtenu est de 14580 kg/m3. A partir de la composition polyamide 6, 6 et poudre de tungstène, il a été réalisé un alliage mixte de caractéristiques physiques et mécaniques homogènes longitudinalement et radialement et de masse volumique 11300 kg/m3 correspondant à celle d'un alliage de plomb pour balle de chasse. Pour lm3 de cet alliage, les proportions observées étaient de 10798 kg de poudre de tungstène (correspondant à un taux de remplissage de 0,56) et de 502 kg de polyamide 6,6.
La figure 3 est une vue en demi-coupe du sous-projectile ainsi réalisé. Le corps 7 du sous-projectile 6 comporte des gorges circulaires 10 sur la partie extérieure dont la fonction a été décrite précédemment. D'autres gorges circulaires 13 et des adents 14 sont pratiqués en pied du corps 7 du sous-projectile 6 permettant ainsi l'accrochage correct de l'empennage 8 obtenu par surinjection d'un alliage de plastique.
Les figures 3a et 3b précisent que le corps 7 du sous- projectile 6 présentent des caractéristiques physiques et mécaniques homogènes tant longitudinalement que radialement . Pour comparer au tir l'alliage mixte polyamide 6,6 poudre de tungstène à l'alliage de plomb, il a été réalisé dans chacune de ces matières, un nombre égal de sous-projectiles 6 à masse et à géométrie identiques.
Les résultats obtenus sont les suivants : la tenue mécanique de l'alliage mixte pendant la phase de montée en pression a été excellente ainsi que la dispersion balistique obtenue à 100 mètres de l'arme. Par ailleurs il a été observé une dispersion plus faible de la vitesse à 100 mètres qu'avec le même sous-projectile doté d'un corps 7 en alliage de plomb. Ceci s'explique par le fait que cet alliage mixte est très homogène lors de sa mise en oeuvre et ne crée pas de défauts volumiques internes comme avec l'alliage de plomb.
Sur les trois premières figures, l'alliage mixte organique- métallique utilisé pour la réalisation du corps 7 du sous- projectile 6 présente des caractéristiques homogènes longitudinalement et radialement.
Ces caractéristiques homogènes peuvent être obtenues en partant soit d'un mélange intime d'un matériau organique et d'une charge métallique (cas développé ci-dessus cf fig 3), soit d'un mélange intime de plusieurs matériaux organiques et d'une charge métallique, soit d'un mélange intime d'un matériau organique avec plusieurs charges métalliques et enfin soit d'un mélange intime de plusieurs matériaux organiques avec plusieurs charges métalliques. Dans tous les cas, le mélange matériau organique - charge métallique se réalise au cours de la mise en oeuvre de l'alliage. Par ailleurs, le ou les matériaux organiques peuvent être renforcés par des fibres de carbone, de verre ou organiques (exemple : KEVLAR) . II peut être introduit également des adjuvants comme des lubrifiants pour faciliter la mise en oeuvre (par exemple des stéarates métalliques) , des stabilisants des chaînes moléculaires (par exemple des phénols et des polyphénols) et des colorants à but essentiellement esthétiques (par exemple des oxydes minéraux tels que les oxydes de calcium) .
La figure 4 est une vue en demi-coupe d'un sous-projectile 6 constitué d'un corps 7 composé de trois éléments 15, 16 et 17 permettant d'obtenir un gradient longitudinal des propriétés physiques et/ou mécaniques et d'un empennage 8. Sur cette figure, il n'a pas été représenté les liaisons des éléments 15, 16 et 17 entre eux ainsi que les interfaces du sous-projectile 6 avec le dispositif de lancement 5 et l'empennage 8 lui-même a été schématisé en traits pointillés. Chaque élément 15, 16 et 17 est composé d'un alliage mixte organique-métallique de caractéristiques homogènes longitu¬ dinalement et radialement. La mise en oeuvre se fait successivement d'une façon longitudinale de la tête au pied ou du pied à la tête. Par exemple, il est d'abord réalisé l'élément 15 qui reçoit en surinjection sur l'interface 18 l'élément 16, lequel reçoit en surinjection sur l'interface 19 l'élément 17, lequel reçoit également en surinjection sur l'interface 20 l'empennage 8 qui, lui-même est simplement en alliage de plastique.
Pour chaque élément, cette configuration permet d'exploiter au mieux les propriétés physiques et/ou mécaniques de l'alliage en fonction des objectifs à assurer par chacun d'eux.
La figure 4a donne une illustration des caractéristiques imposées à chaque élément. Entre autres, il a été privilégié une faible resilience (k) donc une grande facilité de rupture au choc de l'élément 15 placé en tête du sous-projectile 6. Cet élément se fragmente facilement contre les parties molles d'un gibier.
L'élément 16, situé au milieu du sous-projectile 6 possède la résistance à la rupture (RT) la plus élevée pour assurer le tenue mécanique du sous-projectile aux sollicitations mécaniques générées pendant la phase de parcours du projectile 4 dans l'âme du tube de l'arme. Cet élément est peu fragile au choc (k) ce qui le rend difficilement fragmentable à la traversée des parties molles du gibier mais suffisamment résistant pour agresser correctement les parties dures dudit gibier.
L'élément 17, situé en pied du sous-projectile 6 possède une bonne résistance à la rupture (RT) et un allongement (Al) assez élevés. Ces caractéristiques lui permettent d'avoir un comportement intermédiare entre l'élément 15 et l'élément 16 et de supporter toutes les sollicitations transversales générées par les gradients transversaux induits par la pression des gaz pendant la combustion de la poudre propulsive 3 et transmises par l'empennage 8. Par ailleurs, la masse volumique (MV) de l'élément 17 est la plus faible pour conférer une bonne stabilité du sous-projectile 6 sur trajectoire. La réalisation de l'alliage mixte organique-métallique suivante :
- polypropylène-tungstène pour l'élément 15, (masse volumique 14530 kg/m3, resilience 4 J/m, résistance à la rupture 35 MPa) - polyamide imide - tungstène pour l'élément 16 (masse volumique 11300 kg/m3, resilience 80 J/m, résistance à la rupture 110 MPa)
- polyamide6, 6-acier pour l'élément 17 (masse volumique
4730 kg/m3, resilience 10 J/m, résistance à la rupture 53 MPa) répond aux critères imposés .
Le corps 7 du sous-projectile 6 peut être constitué de deux éléments seulement, en conservant notamment l'élément de tête identique à l'élément 15. La figure 5 est une vue en demi-coupe d'un sous-projectile comprenant un corps 7 composé de trois éléments de forme tubulaire pour les éléments 21 et 22 et cylindrique pour l'élément 23 emboîtés les uns dans les autres, permettant d'obtenir un gradient radial des propriétés physiques et/ou mécaniques et d'un empennage 8 représenté seulement en traits pointillés. Sur cette figure, il n'a pas été représenté les liaisons des éléments 21, 22, 23 entre eux ainsi que les interfaces sous-projectile 6 - dispositif de lancement 5 et sous-projectile 6 - empennage 8.
Chaque élément 21, 22 ou 23 est composé d'un alliage mixte organique-métallique de caractéristiques homogènes longitudinalement et radialement. La mise en oeuvre se fait successivement de l'axe du sous-projectile 6 vers l'extérieur. II est d'abord réalisé l'élément 23 qui reçoit en surinjection l'élément 22 lequel reçoit en surinjection l'élément 21. L'empennage 8 est lié à l'élément 23 au cours de l'injection.
Cette configuration, différente de la précédente, permet également d'exploiter les propriétés physiques et/ou mécaniques de l'alliage mixte de chaque élément en fonction des objectifs visés pour chacun d'eux.
La figure 5a donne une illustration des caractéristiques imposées à chaque élément. Par exemple pour l'élément 21 il a été choisi un alliage présentant un compromis entre sa fragilité (k faible) , pour se fragmenter ou se peler facilement dans les parties molles d'un gibier, et sa résistance (RT et A% assez élevés) aux sollicitations mécaniques générées pendant la phase de parcours du projectile 4 dans l'âme du tube de l'arme. Pour cet élément, il n'est pas nécessaire d'observer une masse volumique (MV) élevée. L'élément 22 a un rôle intermédiaire permettant d'assurer une bonne résistance mécanique des éléments entre eux pendant le parcours du projectile 4 dans l'âme du tube de l'arme et compléter les effets destructeurs de l'élément 21 et ceux de l'élément 23. Ses caractéristiques mécaniques sont en moyenne intermédiaires entre celles des éléments 21 et 23. L'élément 23 est l'élément dur du sous-projectile 6. Il possède à la fois une resilience (k) élevée pour résister à la rupture par choc, une résistance (RT) élevée pour permettre d'agresser dans de bonnes conditions les parties dures d'un gibier et une masse volumique élevée pour obtenir une énergie cinétique surfacique (énergie cinétique délivrée par cet élément rapportée à la surface transversale dudit élément) la plus élevée possible. Cette énergie cinétique est indispensable pour assurer une bonne pénétration des parties dures d ' un gibier .
Les alliages mixtes organiques-mécaniques polyamide 6, 6 -acier pour l ' élément 21 , polysulfone-tungstène pour l ' élément 22 et polyamide imide-tungstène pour l ' élément 23 sont un exemple d ' association pour répondre aux exigences . Le corps 7 du sous-projectile 6 peut être constitué de deux éléments seulement , l ' élément extérieur ayant des caractéristiques situées entre celles des éléments 21 et 22 et l ' élément central ayant des caractéristiques identiques à celles de l ' élément 23 .
La réalisation particulière du corps 7 du sous-projectile 6 const itué de deux éléments , l ' un cent ral , l ' aut re périphérique , a conduit à l ' emploi des alliages mixtes suivants :
- pour l'élément central : polyamide imide-tungstène avec un taux de remplissage de 0,74 (masse volumique de 14670 kg/m3, resilience 80 J/m, résistance à la rupture 110 MPa)
- pour l'élément extérieur : polyamide 6, 6-tungstène avec un taux de remplissage de 0,36 (masse volumique de 7680 kg/m3, resilience 10 J/m, résistance à la rupture 53 MPa) .
La figure 6 est une vue en demi-coupe schématisant un sous- projectile 6 comprenant un corps 7 par combinaison d'éléments de type 15, 16, 17 précisés par la figure 4 et d'éléments de . type 21, 22, 23 indiques par la figure 5. Cette combinaison permet d'obtenir à la fois un gradient longitudinal et un gradient radial des propriétés physiques et/ou mécaniques.
Comme le sous-projectile 6 est stabilisé sur trajectoire par l'empennage 8, il est obligatoire d'avoir le centre de gravité
(G) le plus en avant possible pour obtenir la marge statique notée 1 la plus grande possible (1 étant la distance entre le centre de gravité (G) et le centre de poussée (P) ou foyer aérodynamique) . Ceci est réalisé grâce à l'emploi d'alliages mixtes organiques-métalliques utilisant des charges métalliques très denses en tête du sous-projectile 6 et des charges métalliques moins denses en pied de ce même sous- projectile. Ces charges métalliques sont associées à des matériaux organiques de façon à assurer une fragilisation accentuée en tête du sous-projectile et diminuée en pied de ce même sous-projectile. La figure 6a illustre ce type de réalisation.
D'autres variantes d'alliages mixtes organiques-métalliques sont possibles sans pour autant sortir du cadre de l'invention. Il est possible par exemple de préorienter les éléments de la charge métallique et d'injecter le matériau organique pour les lier entre eux. Il est possible également d'obtenir une courbe quasi-continue de gradient longitudinal et/ou radial en multipliant le nombre d'éléments placés de façon longitudinale (cf figure 4) et/ou le nombre d'éléments placés de façon radiale (cf figure5) .
L'invention décrite ici appliquée aux munitions de chasse peut être adaptée à n'importe quel autre type de munition de petit, moyen et gros calibre et tout particulièrement aux munitions d'exercice de tir.

Claims

REVENDT A TONS
1 - Sous-projectile ou projectile au calibre, stabilisé pa empennage, pour munition à énergie cinétique de petit, moye et gros calibre et en particulier pour munition de chass caractérisé en ce qu'il est réalisé en un alliage mixt organique-métallique constitué au moins d'un matéria organique assurant la cohésion de l'ensemble et au moins d'un charge métallique.
2 - Sous-pro ectile ou projectile, selon la revendicatio 1, caractérisé en ce que l'alliage mixte organique-métalliqu présente des propriétés physiques et/ou mécaniques homogène longitudinalement et radialement
3 - Sous-projectile ou projectile, selon la revendicatio 1, caractérisé en ce que l'alliage mixte organique-métalliqu présente des propriétés physiques et/ou mécaniques variable longitudinalement et radialement
4 - Sous-projectile ou projectile, selon la revendication ou 3, caractérisé en ce que le matériau organique et/ou l charge métallique de l'alliage mixte organique-métalliqu permettent d'adapter les propriétés physiques et/ou mécanique selon une variation longitudinale
5 - Sous-projectile ou projectile, selon la revendication ou 3, caractérisé en ce que le matériau organique et/ou l charge métallique de l'alliage mixte organique-métalliqu permettent d'adapter les propriétés physiques et/ou mécanique selon un variation radiale
6 - Sous-projectile ou projectile, selon l'une de revendications 1 à 5, caractérisé en ce que le matéria organique de l'alliage mixte organique-métallique est charg de fibres de carbone, de verre ou organiques 7 - Sous-projectile ou projectile, selon l'une de revendications 1 à 6, caractérisé en ce que le matéria organique contient un adjuvant tel qu'un lubrifiant, u stabilisant ou un colorant
8 - Sous-projectile ou projectile, selon l'une de revendications 1, 3, 4, 5, 6 ou 7 caractérisé en ce qu'i existe une variation longitudinale de la masse volumique, de la valeur la plus forte en tête à la valeur la plus faible en pied
9 - Sous-projectile ou projectile, selon la revendication 8, caractérisé en ce qu'il existe une variation longitudinale de la masse volumique, de la valeur de 14530 kg/m3 en tête à la valeur de 4730 kg/m3 en pied
10 - Sous-projectile ou projectile, selon l'une des revendications 1, 3, 4, 5, 6, 7, 8 ou 9, caractérisé en ce qu'il existe une variation longitudinale de la resilience, la valeur la plus faible étant en tête
11 - Sous-projectile ou projectile, selon la revendication 10, caractérisé en ce qu'il existe une variation longitudinale de la resilience, variant de 4 J/m à 80 J/m
12 - Sous-projectile ou projectile, selon l'une des revendications 1, 3, 4, 5, 6, 7, 8, 9, 10 ou 11, caractérisé en ce qu'il existe une variation radiale de la masse volumique, de la valeur la plus forte au coeur à la valeur la plus faible en périphérie
13 - Sous-projectile ou projectile, selon la revendication 12, caractérisé en ce qu'il existe une variation radiale de la masse volumique, de la valeur de 14670 kg/m3 au coeur à la valeur de 7680 kg/m3 en périphérie
14 - Sous-projectile ou projectile, selon 1 '.une des revendications 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ou 13, caractérisé en ce qu'il existe une variation radiale de la resilience, de la valeur la plus forte au coeur à la valeur la plus faible en périphérie
15 - Sous-projectile ou projectile, selon la revendication 14, caractérisé en ce qu'il existe une variation radiale de la resilience, de la valeur de 80 J/m au coeur à la valeur de 10 J/m en périphérie
16 - Sous-projectile ou projectile, selon l'une des revendications 1, 5, 6, 7, 12, 13, 14 ou 15, caractérisé en ce qu'il comporte un élément central constitué par un alliage mixte polyamide imide - tungstène avec un taux de remplissage de 0,74 et un élément extérieur constitué par un alliage mixte polyamide 6,6 - tungstène avec un taux de remplissage de 0,36
17 - Sous-projectile ou projectile, selon l'une des revendications 1 ou 2, caractérisé en ce qu'il est constitué par un alliage mixte tel qu'un polyamide 6,6 chargé de poudre de tungstène dont la masse volumique est comprise entre 8500 et 13500 kg/m3
18 - Sous-projectile ou projectile, selon la revendication 17, caractérisé en ce qu'il est constitué par un alliage mixte tel qu'un polyamide 6,6 chargé de poudre de tungstène dont la masse volumique est d'environ 11300 kg/m3
EP19910913023 1990-07-02 1991-07-02 Alliages mixtes organiques-metalliques pour realisation de projectiles Withdrawn EP0537264A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9008649 1990-07-02
FR9008649A FR2664039B1 (fr) 1990-07-02 1990-07-02 Alliages mixtes organiques-metalliques pour realisation de projectiles.

Publications (1)

Publication Number Publication Date
EP0537264A1 true EP0537264A1 (fr) 1993-04-21

Family

ID=9398475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910913023 Withdrawn EP0537264A1 (fr) 1990-07-02 1991-07-02 Alliages mixtes organiques-metalliques pour realisation de projectiles

Country Status (3)

Country Link
EP (1) EP0537264A1 (fr)
FR (1) FR2664039B1 (fr)
WO (1) WO1992000499A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9308287D0 (en) * 1993-04-22 1993-06-09 Epron Ind Ltd Low toxicity shot pellets
BE1008136A6 (fr) * 1994-03-01 1996-01-30 Edb Sa Projectile non polluant pour arme a feu.
DK175171B1 (da) * 1998-02-27 2004-06-21 Frans Joergen Andersen Blyfrit projektil og fremgangsmåde til dets fremstilling
FR2787182B1 (fr) * 1998-12-10 2005-07-08 Poudres & Explosifs Ste Nale Projectile non letal pour arme a feu
DE10140600A1 (de) * 2001-08-18 2003-03-06 Rheinmetall W & M Gmbh Brandsatz für ein flügelstabilisiertes Wuchtgeschoß

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545383A (en) * 1946-11-18 1951-03-13 George P Regan Stem support for artistic flower arrangements
US3545383A (en) * 1965-10-27 1970-12-08 Singer General Precision Flechette
GB2092274A (en) * 1981-01-29 1982-08-11 Spence Geoffrey Martin Projectiles
DE3476117D1 (en) * 1983-11-23 1989-02-16 Voest Alpine Ag Sub-calibre penetrator and method of making the same
DE3705382A1 (de) * 1987-02-20 1988-09-01 Diehl Gmbh & Co Penetrator und verfahren zu seiner herstellung
GB8712082D0 (en) * 1987-05-21 1987-07-22 Sprintvale Ltd Training aids
DE3835808A1 (de) * 1988-10-21 1990-04-26 Rheinmetall Gmbh Verfahren zur herstellung von hartkerngeschossen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9200499A1 *

Also Published As

Publication number Publication date
FR2664039A1 (fr) 1992-01-03
WO1992000499A1 (fr) 1992-01-09
FR2664039B1 (fr) 1994-09-23

Similar Documents

Publication Publication Date Title
CH650073A5 (fr) Projectile pour armes de poing et d'epaule et cartouche munie d'un tel projectile.
CA2375292C (fr) Balle a fleche interne portee
US11473887B2 (en) Castable frangible projectile
FR2599828A1 (fr) Munition de petit ou moyen calibre a efficacite amelioree et portee limitee, en particulier pour la chasse
EP0737298B1 (fr) Balle de chasse a fleche telescopee, comportant un sous-projectile associe a un lanceur
EP0143720B1 (fr) Munition pour arme de chasse
EP0537264A1 (fr) Alliages mixtes organiques-metalliques pour realisation de projectiles
EP2516355B1 (fr) Composition explosive fusible/coulable et a vulnerabilite reduite
EP0407288B1 (fr) Projectile d'exercice pour arme automatique ou manuelle
EP3349929B1 (fr) Penetrateur comportant un coeur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur
EP0728293B1 (fr) Balle de chasse a double penetration et a portee reduite
EP0664877B1 (fr) Sabot a separation controlee des segments pour projectiles sous calibres
EP0748434B1 (fr) Projectile non polluant pour arme a feu
US20200284563A1 (en) Multipurpose projectile for use in sporting competition or armor penetration
US20050115452A1 (en) Decoppering agent
FR2475210A1 (fr) Perfectionnements aux balles pour armes a feu
CA2945685C (fr) Composant de cartouche sans plomb et cartouche le comprenant
EP0752571B1 (fr) Projectile à trajectoire raccourcie
FR2602583A1 (fr) Balle de chasse sous-calibree de type fleche a efficacite terminale accrue sur cibles molles
EP2192376B1 (fr) Dispositif propulsif à progressivité regulée
FR2728068A1 (fr) Projectile sous calibre, chemise et expansif pour armes a canons lisses
FR2923003A1 (fr) Obus d'exercice fragmentable.
EP1367357A1 (fr) Enveloppe génératrice d'éclats et munition à charge explosive comprenant une telle enveloppe
FR2499709A1 (fr) Projectile de tir, tel que balle, obus ou fusee
EP0120736A1 (fr) Munition d'instruction pour matériel d'artillerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940119