EP0536233B1 - Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges - Google Patents

Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges Download PDF

Info

Publication number
EP0536233B1
EP0536233B1 EP91912127A EP91912127A EP0536233B1 EP 0536233 B1 EP0536233 B1 EP 0536233B1 EP 91912127 A EP91912127 A EP 91912127A EP 91912127 A EP91912127 A EP 91912127A EP 0536233 B1 EP0536233 B1 EP 0536233B1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
working
master cylinder
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91912127A
Other languages
English (en)
French (fr)
Other versions
EP0536233A1 (de
Inventor
Hans-Werner Meixner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pi-Patente (gmbh) Entwicklung und Verwertung GmbH
Pi Patente GmbH
Original Assignee
Pi-Patente (gmbh) Entwicklung und Verwertung GmbH
Pi Patente GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pi-Patente (gmbh) Entwicklung und Verwertung GmbH, Pi Patente GmbH filed Critical Pi-Patente (gmbh) Entwicklung und Verwertung GmbH
Publication of EP0536233A1 publication Critical patent/EP0536233A1/de
Application granted granted Critical
Publication of EP0536233B1 publication Critical patent/EP0536233B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/02Systems with continuously-operating input and output apparatus

Definitions

  • the invention relates to a device for driving a tool that can be moved back and forth in the axial direction.
  • Such tools and drives are known, for example as pneumatic hammers, pneumatic knives and the like, which operate according to this principle. These drives make a lot of noise even when idling, even if you only want a small amount of power for the drive. In the known drives, the weight and volume of the tool in relation to the power also leaves something to be desired, and the tool therefore requires a large amount of manual effort to operate.
  • a telemotor system in which a drive unit moves a piston in a cylinder, which acts on an oil column which acts on a piston acts in a cylinder of an implement and, for example, moves the cutting edge of a hedge trimmer.
  • the return of the master cylinder piston against the force-exerting cam disc is done by the springs acting on the piston. Since springs work too slowly, such drives can only be used for tools with a low stroke frequency. Otherwise, lifting and knocking occur between the piston and the cam disk. At a faster stroke frequency, for example greater than 12 Hz, there is also outgassing in the oil. As a result, the efficiency of the power transmission between the driving motor and the driven tool is greatly impaired.
  • an eccentric disc acts via a ball bearing ring on a piston which actuates an oil column against the pressure of a spring in the working cylinder, or two counter-rotating drive devices are acted upon by the eccentric disc in accordance with FIG. 5 such that two oil columns on the opposite sides of the drive piston for the Tool work.
  • Such a drive has the disadvantage that the oil column or the oil columns are briefly subjected to an undesired negative pressure with each work cycle, in particular if a rapid oscillation of the working cylinder piston is desired, so that cavitation phenomena occur.
  • the object of the invention is to provide a drive with a rapidly oscillating stroke frequency and high efficiency between drive (motor) and output (tool), which is designed such that the tool is advantageous to handle as a light, small in volume, but very powerful handheld device.
  • Sub-task a) is a prerequisite for an economically and economically sensible drive that can be designed so that it works with the greatest possible efficiency.
  • the drive according to the invention is supposed to have the reverse effect that the handling of the tool is made considerably easier.
  • the solution to sub-task d) has the effect that cavitations are to be avoided in every hydraulic transmission system and because cavitations, in particular in the drive according to the invention, would have a performance-reducing effect on the handheld device, so that these phenomena do not occur.
  • the solution to sub-task h) is expedient because, for example, a knife, including the drive, must be cleaned and such cleaning is expediently carried out by immersing it in the cleaning liquid (water) during the run.
  • the drive is the prerequisite for creating a rapidly oscillating handheld device with high efficiency, which is of significant economic importance and which is particularly user-friendly.
  • an electric motor for driving the piston of the master cylinder, this advantageously acts on the at least one eccentric disk in order to set it in rotation.
  • the eccentric disk then expediently carries the ball bearing on its circumference, the inner shell of which is connected to the eccentric disk, is advantageously shrunk onto the circumference of the disk, that is to say it rotates with the eccentric disk, and the outer shell of which is non-rotatable but can carry out a linear movement, such that the piston of the master cylinder articulated on it executes a reciprocating as well as a forced movement by the eccentric disk.
  • the piston of the master cylinder can also be articulated laterally with its piston rod on the eccentric disk.
  • the drive according to the invention has the advantage that both the force and the frequency and the stroke of the piston of the working cylinder can be easily regulated.
  • the frequency is determined by the speed of the drive motor.
  • the maximum stroke is predetermined by the design of the eccentric disc. Precise regulation and lowering of the stroke is possible through the measures described on the basis of the drawing.
  • the force primarily determines the pressure of the displaced liquid. This force can be regulated by a pressure relief valve. This makes the drive extremely versatile. Details on this can be found in the subclaims and the description of exemplary embodiments.
  • the master cylinder can not only drive the piston of a working cylinder, but can also act on a plurality of pistons, each of which drives a tool, by branching the transmission lines.
  • an automatic oil refill device with a venting device is provided between the master cylinder and the working cylinder or connected to the working cylinder itself.
  • the connecting hoses between master cylinder and working cylinder are useful with easily detachable plug-in couplings for the desired connection provided so that a tool without oil loss with its special drive is easily interchangeable with another.
  • each working piston has at least one counter-pressure spring, which counteracts the oil pressure when the piston is displaced in the master cylinder.
  • the outside air pressure continues to act on the piston of the working cylinder and increases the effect of the counter pressure spring.
  • the oil column is thus moved back and forth between the piston of the master cylinder and the piston of the working cylinder, without the oil ever falling below a predetermined minimum pressure during a work cycle and thereby causing cavitation phenomena. This measure makes a significant contribution to enabling a rapidly oscillating frequency of the oil column.
  • the counter-pressure spring can also be used, for example, to couple the tool to the working cylinder piston, which makes it easy to replace the tool.
  • an electric motor 1 which drives a shaft 2 which runs in ball bearings 3, 4.
  • an eccentric 5 is fixed, which rotates about the drive axis A-A of the shaft.
  • the eccentric 5 carries a ball bearing 6, the inner shell 6a of which is advantageously shrunk onto the eccentric disk 5.
  • the balls run between the shell 6a and an outer shell 7, which is not rotatable. However, the shell 7 can be moved back and forth in the direction of the line B-B. It is articulated to a piston rod 7a.
  • the piston rod 7a carries a piston 8 and moves it back and forth in a master cylinder 9.
  • the oil refill device 11 has a ventilation device 12 in its cover.
  • the working space 10 also has an outlet opening 12a for the oil.
  • a media pre-pressure screw 40 acts on the cylinder volume to compensate for a minimal pressure loss due to expansion of the hose.
  • the transmission medium oil is fed to a working cylinder 20 when the piston 8 moves forward.
  • a quick coupling 15 is provided in the line 14 in order to be able to produce different connections to different work tools.
  • the quick coupling is sensitive to pressure and prevents oil loss when changing the connection of another tool.
  • the working cylinder 20 has a piston 22, on which the oil acts when the piston 8 advances, in such a way that the piston 22 moves in the direction of the arrow 24. If the piston 8 moves back in the master cylinder 9, that is towards the eccentric, the oil pressure in the line 14 is reduced. A negative pressure is created in the working space 23 of the cylinder 20 so that it moves back, that is to the right in FIG. 1.
  • the tool to be moved (not shown) is fastened to the piston 22 with the aid of a spring 25.
  • the spring simultaneously acts as a counter-pressure spring on the working piston 22.
  • the force of the spring is such that it does not hinder the forward movement of the piston and thus the tool, but on the other hand ensures that the piston 22 is returned sufficiently quickly.
  • the volume of the compressed oil is changed at the same time, so that a greater or lesser amount of oil is pressed into the line 14 with each forward movement of the piston 8 and stroke control is thus possible.
  • the reciprocable piston 8 in FIG. 1 is replaced by a piston 41 which has an inclined surface 42.
  • the piston 41 closes the inlet opening 43 for the refill device 11, depending on the inclination of the inclined surface sooner or later.
  • the set screw 40a is additionally connected to the piston 41 in such a way that the piston can be rotated about its axis B-B, so that the inclination of the inclined surface 42 to the oil inlet opening 43 changes. That is, when the piston is reciprocated, the inlet opening 43 is opened or closed depending on the inclination of the inclined surface.
  • the adjusting screw 40a for adjusting the inclination of the inclined surface has two cams 50, 51 which lie in corresponding recesses in the piston and which rotate the screw 40a about the axis B-B. The set screw is locked in the desired position.
  • a plurality of inlet openings 43a, 43b, 43c can be provided one behind the other, which the piston closes one after the other as it moves. This allows the Liquid displacement and thus the stroke movement of the working piston 22 can also be regulated by the adjusting screw now successively closing one or more of the inlet openings.
  • the inclined surface of the piston need not be provided for this. In any case, one of the inlet openings provided must always be open.
  • the system is designed simultaneously for several working cylinders, for example for working cylinders 31 to 36, as shown schematically by branching the connecting lines at points 52 to 57.
  • the mode of action is the same.
  • Fig. 5 shows an embodiment in which two master cylinders 9 and 65 are provided.
  • the piston 8 of the master cylinder 9 is in turn moved back and forth by the eccentric disc 5.
  • the piston 66 of the master cylinder 65 is driven accordingly by an eccentric disk 64.
  • the disk 5, like the disk 64, is connected to an associated piston 8, 66.
  • the eccentric discs 5 and 66 are arranged on the shaft 2 of the electric motor 1 offset by 180 °, so that when the piston 8 is in the right position in the cylinder, the piston 66 is in the left position of the cylinder 65, that is , Pistons 8 and 66 work in opposite directions.
  • the piston 8 presses oil through the line 14 into the working space 23 of the cylinder 27.
  • the piston 66 presses oil via the line 67 into the space 68 in front of the piston 22 (complementary working space).
  • the opposing oil pressure in rooms 23 and 68 now pushes the piston 22 back and forth.
  • the spring for returning the piston can thus be omitted.
  • Fig. 7 shows a modified embodiment.
  • the master cylinders 9 and 65 of FIG. 5 are connected to two working cylinders 20 and 70 via lines 14 and 67.
  • One line 14, 67 is assigned to one of the working cylinders 20, 70.
  • the pistons 22, 71 of the working cylinders 20, 70 act on a plate 72 or a lever which can be moved back and forth about an axis 73 in the direction of the arrow 76.
  • the plate 72 acts on the tool so that it executes the oscillating movement again. 5, which has the same effect that the oil supply lines on the side facing away from the tool open into the working cylinder.
  • the master cylinder 9 acts via the line 14 on the working cylinder 20 with the interposition of a pressure-sensitive changeover valve 75.
  • a line 74 leads from the valve 75, which leads into the refill device 11. This device works as follows: If the piston of the cylinder 9 moves to the right, it presses the oil flowing in from the refill container 11 via the line 14, the now open valve 75 into the cylinder 20 and also moves its piston to the right. If the piston in cylinder 9 moves to the left, a negative pressure is created in line 14. The valve 75 now connects the cylinder 20 to a line 74 which opens into the oil refill container 11.
  • the training according to the invention shows the further advantages: Due to the selected drive, the weight and volume can be in an extremely favorable ratio to the transmitted force. If the weight of the working cylinder with piston is around 40 grams with a stroke length of 12 to 13 millimeters and the piston is moved at a frequency of ten Hertz, a force of 100 kilograms is generated per stroke, by driving an electric motor of 750 Watt.
  • the drive works with an extraordinarily high degree of efficiency. This is due to the fact that the power output of the drive motor is transmitted almost uniformly as both forward and backward movement to the piston of the master cylinder by the non-positive transmission of the rotary movement of the motor shaft during an entire revolution.
  • the drive works almost silently.
  • the coupling of a work unit is easily possible through the quick coupling 15 in the transmission line 14.
  • the connection is subject to virtually no wear.
  • the coupling enables the implement to be quickly replaced with another implement.
  • the vibration in the oscillating implement which is normally transmitted to the implement in conventional systems, for example in the case of a drive with compressed air, is derived here from the work unit by the oil pressure column as the drive means.
  • the implement itself is almost vibration-free.
  • the actual drive that is, the master cylinder unit and the working cylinder unit is not rigid, but is connected to one another by a flexible hose, so that the loads and in particular the weight of the transmitter unit are not transferred to the working unit.
  • Even for the highest power transmission only small hose cross-sections are necessary for the transmission line.
  • a hose with an outer diameter of five millimeters is required. Due to the low weight and the thin, flexible supply hose, excellent handling of each work unit is possible, as already mentioned above.
  • the drive unit is sealed, it can also be used with devices that run under water or at least can be cleaned with liquid.
  • the entire system is almost maintenance-free and has a very long life expectancy.
  • the system is easy to manufacture. The manufacturing costs are low, and much cheaper than a compressed air system or the like in the same performance size.
  • the work unit is not directly connected to electrical power, so that underwater operation is also possible. Even with high power transmission, the working cylinder, which is directly connected to the tool, is still very small. Another advantage is that the stroke frequency, the stroke height and the force of the tool unit can be regulated continuously and independently of one another, even during operation. Any liquid can be used as a transfer medium for simple applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Sawing (AREA)
  • Actuator (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Turning (AREA)
  • Vehicle Body Suspensions (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Antrieb eines in axialer Richtung hin- und herbewegbaren Werkzeuges.
  • Derartige Werkzeuge und Antriebe sind bekannt, beispielsweise als Preßlufthämmer, Preßluftmesser und dergleichen mehr, welche nach diesem Prinzip arbeiten. Diese Antriebe verursachen selbst im Leerlauf sehr viel Geräusch, auch wenn man nur eine geringfügige Kraft für den Antrieb wünscht. Bei den bekannten Antrieben läßt ferner das Gewicht und das Volumen des Werkzeuges im Verhältnis zur Leistung zu wünschen übrig, und das Werkzeug erfordert deshalb zu seiner Bedienung einen großen manuellen Kraftaufwand.
  • Aus der FR-A 2 402 127 ist ein Telemotorsystem bekannt, bei dem ein Antriebsaggregat einen Kolben in einem Zylinder bewegt, der auf eine Ölsäule wirkt, welche auf einen Kolben in einem Zylinder eines Arbeitsgerätes wirkt und zum Beispiel die Schneide einer Heckenschere bewegt. Die Rückführung des Geberzylinderkolbens mit Anlage an die kraftausübende Kurvenscheibe erfolgt durch die auf die Kolben wirkenden Federn. Da Federn zu träge arbeiten, lassen sich derartige Antriebe nur für Werkzeuge mit geringer Hubfrequenz verwenden. Andernfalls treten Abhebungen und Schläge zwischen Kolben und Nockenscheibe auf. Bei schneller Hubfrequenz, zum Beispiel größer als 12 Hz, kommt es ferner zu Ausgasungen im Öl. Hierdurch wird der Wirkungsgrad der Kraftübertragung zwischen antreibendem Motor und angetriebenem Werkzeug stark beeinträchtigt. Außerdem besteht bei derartigen Ausgasungen die Gefahr des Auftretens von Kavitationserscheinungen. Der Wirkungsgrad zwischen dem An- und Abtrieb einer solchen Anlage ist verhältnismäßig schlecht, da die gesamte Arbeitsleistung des Antriebes während eines Arbeitszyklusses in der ersten Hälfte des vollen Zyklusses erbracht werden muß. Außerdem ist in dieser ersten Hälfte des Arbeitszyklusses die abzugebende Motorleistung nicht linear verteilt. Vielmehr steigt sie proportional bis zum Ende des ersten halben Arbeitszyklusses an, um dann nach Überwindung dieses Punktes auf fast Null zurückzufallen. In der zweiten Hälfte des vollen Zyklusses wird deshalb fast keine Motorleistung übertragen.
  • Ähnliche Systeme mit denselben Nachteilen zeigen die AU-A-490,039 und CH-A-267 482.
  • Gemäß der AU-A-490,039, die eine Vorrichtung mit den in den Oberbegriffen der unabhängigen Ausprüche 1 und 2 definierten Merkmalen zeigt, wirkt eine Exzenterscheibe über einen Kugellagerring auf einen Kolben, welcher eine Ölsäule gegen den Druck einer Feder im Arbeitszylinder betätigt, oder es werden gemäß Fig. 5 zwei gegenläufig arbeitende Antriebseinrichtungen von der Exzenterscheibe derart beaufschlagt, daß zwei Ölsäulen auf die entgegengesetzten Seiten des Antriebskolbens für das Werkzeug wirken. Ein derartiger Antrieb hat den Nachteil, daß die Ölsäule oder die Ölsäulen kurzzeitig bei jedem Arbeitstakt einem ungewollten Unterdruck unterworfen werden, insbesondere, wenn eine schnelle Oszillation des Arbeitszylinderkolbens gewünscht wird, so daß Kavitationserscheinungen auftreten. Sind zwei gegenläufig arbeitende Ölsäulen vorgesehen, arbeiten diese, da sie nicht vollkommen inkompressibel sind und darüber hinaus durch die Druckschwankungen in den Leitungen Querschnittsänderungen in den Leitungen bewirken mit einer zeitlichen Verzögerung, welche für die Erzeugung einer schnellen Oszillationsbewegung nicht tragbar ist, weil bei schneller Oszillation in dem Antrieb Schläge auftreten und/oder wieder der vorgenannte Effekt der Kaviation, welches beides zu einer vorzeitigen Zerstörung der Anlage führt.
  • Aufgabe der Erfindung ist es, einen Antrieb mit schnell oszillierender Hubfrequenz und hohem Wirkungsgrad zwischen Antrieb (Motor) und Abtrieb (Werkzeug) anzugeben, der so ausgestaltet ist, daß das Werkzeug als leichtes, volumenmäßig kleines, jedoch sehr kraftvolles Handgerät vorteilhaft zu handhaben ist.
  • Diese Aufgabe wird durch die Merkmale der Ansprüche 1 oder 2 gelöst.
  • Die Ansprüche 1 und 2 lösen gleichzeitig folgende Unteraufgaben:
    • a) eine hohe Antriebskraft mit hohem Wirkungsgrad zu schaffen in Form einer axial oszillierenden schnellen Hubfrequenz,
    • b) die Antriebskraft auf ein Handgerät zu übertragen ohne Übertragung des Gewichtes des Antriebes auf das Handgerät,
    • c) beim Abtrieb ein besonders gutes Verhältnis zwischen Gewicht und Volumen und der freizusetzenden Kraft zu schaffen,
    • d) die Kraftübertragung hindernden Kavitationen (Ausgasungen aus dem Medium) weitgehendst zu vermeiden. Darüber hinaus ermöglichen die Lösungen gemäß den Ansprüchen 1 und 2 auch
    • e) ein leichtes Auswechseln des Werkzeuges,
    • f) ein nahezu geräuschloses Arbeiten des Antriebes und auch
    • g) ein erschütterungsfreies Arbeiten. Ferner ist der Antrieb
    • h) leicht zu reinigen, und er kann
    • i) auch unter Wasser benutzbar sein.
  • Die Unteraufgabe a) ist Voraussetzung für einen wirtschaftlich und ökonomisch sinnvollen Antrieb, der so ausgestaltet werden kann, daß er mit größtmöglichstem Wirkungsgrad arbeitet.
  • Die Unteraufgabe b) dient dazu, ein Handgerät antreiben zu können, bei dem das Gewicht des Antriebes auf das Handgerät nicht übertragen wird, so daß das Handgerät bei der gewünschten Leistung nicht übermäßig schwer wird, und in Verbindung mit
    • c) das Werkzeug auch berufsmäßig, beispielsweise als Entbeinmesser benutzen zu können, und zwar über einen längeren, ununterbrochenen Arbeitszeitraum, ohne daß der Benutzer (Metzger) durch das Gewicht oder eine schlechte Griffigkeit eines solchen Werkzeuges (Messers) ermüdet.
  • Der erfindungsgemäße Antrieb soll gerade umgekehrt bewirken, daß die Handhabung des Werkzeuges wesentlich erleichtert wird.
  • Die Lösung der Unteraufgabe d) bewirkt, weil einmal in jedem hydraulischen Übertragungssystem Kavitationen vermieden werden sollen und weil sich besonders bei dem erfindungsgemäßen Antrieb Kavitationen leistungsmindernd auf das Handgerät auswirken würden, daß diese Erscheinungen nicht auftreten.
  • Die Lösung der Unteraufgabe e) bewirkt ein schnelles und leichtes Wechseln, beispielsweise der Schneidklinge eines Metzgermessers, weil derartige Messer häufig nachgeschliffen werden müssen und das Messer mit dem eigentlichen Messerantrieb während dieser Zeit nicht dem Arbeitsgang entzogen werden soll.
  • Die Lösung der Unteraufgabe f) dient dazu, eine Lärmbelästigung, welche für den Benutzer störend und insbesondere gesundheitsschädlich ist, zu vermeiden, und die Lösung der Unteraufgabe
    • g) bewirkt, eine Ermüdung verursachende Vibrationen, welche darüber hinaus als unangenehm empfunden werden, auf ein Mindestmaß herabzusenken.
  • Die Lösung der Unteraufgabe h) ist zweckmäßig, weil beispielsweise ein Messer einschließlich des Antriebes gereinigt werden muß und eine solche Reinigung zweckmäßig durch Eintauchen in die Reinigungsflüssigkeit (Wasser) während des Laufes vorgenommen wird.
  • Die Lösung der Unteraufgabe i) bewirkt schließlich, daß das Werkzeug (Messer) auch unter Wasser benutzt werden kann, ohne daß der Benutzer befürchten muß, einen elektrischen Stromschlag zu erhalten.
  • Weitere den Unteransprüchen zu entnehmende Merkmale zeigen vorteilhafte Ausgestaltungen zur Lösung von Nebenaufgaben, wie die Hubfrequenz, die Hubhöhe und die Kraft auch während des Betriebes des Werkzeuges (Messers) einstellen zu können.
  • Insgesamt ist der Antrieb die Voraussetzung dafür, daß ein schnell oszillierendes Handgerät mit hohem Wirkungsgrad von wesentlicher wirtschaftlicher Bedeutung und besonderer Benutzerfreundlichkeit geschaffen werden kann.
  • Ist für den Antrieb des Kolbens des Geberzylinders ein Elektromotor vorgesehen, so wirkt dieser vorteilhaft auf die wenigstens eine Exzenterscheibe, um diese in Drehung zu versetzen. Die Exzenterscheibe trägt dann auf ihrem Umfang zweckmäßig das Kugellager, dessen innere Schale mit der Exzenterscheibe verbunden ist, vorteilhaft auf den Umfang der Scheibe aufgeschrumpft ist, sich also mit der Exzenterscheibe dreht, und dessen äußere Schale drehfest ist, aber eine lineare Bewegung ausführen kann, derart, daß der an ihr angelenkte Kolben des Geberzylinders eine von der Exzenterscheibe erzwungene sowohl Hin- als auch Herbewegung ausführt.
    Der Kolben des Geberzylinders kann aber auch mit seiner Kolbenstange seitlich an der Exzenterscheibe angelenkt sein.
  • Der erfindungsgemäße Antrieb hat den Vorteil, daß sowohl die Kraft als auch die Frequenz und der Hub des Kolbens des Arbeitszylinders leicht regelbar ist. Die Frequenz wird durch die Drehzahl des Antriebsmotors bestimmt. Der maximale Hub wird durch die Ausbildung der Exzenterscheibe vorbestimmt. Eine genaue Regulierung und Absenkung des Hubes ist durch die anhand der Zeichnung beschriebenen Maßnahmen möglich. Die Kraft bestimmt vornehmlich der Druck der verdrängten Flüssigkeit. Diese Kraft ist durch ein Überdruckventil regelbar. Damit ist der Antrieb äußerst vielseitig verwendbar. Einzelheiten hierzu können den Unteransprüchen und der Beschreibung von Ausführungsbeispielen entnommen werden.
  • Ein weiterer Vorteil ist, daß der Geberzylinder nicht nur den Kolben eines Arbeitszylinders antreiben kann, sondern durch Verzweigung der Übertragungsleitungen gleichzeitig auch auf eine Vielzahl von Kolben wirken kann, welche je ein Werkzeug antreiben.
  • Da bei hydraulischen Antrieben häufig ein Verlust des Übertragungsmittels, nachfolgend der Einfachheit halber als Öl bezeichnet, eintritt, ist zwischen Geberzylinder und Arbeitszylinder oder mit dem Arbeitszylinder selbst verbunden eine automatische Ölnachfülleinrichtung mit einer Entlüftungseinrichtung vorgesehen.
  • Die Verbindungsschläuche zwischen Geberzylinder und Arbeitszylinder sind zweckmäßig mit leicht lösbaren Steckkupplungen für den jeweiligen gewünschten Anschluß versehen, so daß ein Werkzeug ohne Ölverlust mit seinem speziellen Antrieb leicht gegen ein anderes austauschbar ist.
  • Jeder Arbeitskolben weist darüber hinaus wenigstens eine Gegendruckfeder auf, welche dem Öldruck beim Verschieben des Kolbens im Geberzylinder entgegenwirkt. Darüber hinaus wirkt auf den Kolben des Arbeitszylinders weiterhin der äußere Luftdruck und verstärkt die Wirkung der Gegendruckfeder. Damit wird die Ölsäule zwischen dem Kolben des Geberzylinders und dem Kolben des Arbeitszylinders, ohne daß jemals während eines Arbeitstaktes das Öl einen vorbestimmten Mindestdruck unterschreitet und dadurch Kavitationserscheinungen auftreten, hin- und hergeschoben. Diese Maßnahme trägt wesentlich dazu bei, eine schnell oszillierende Frequenz der Ölsäule zu ermöglichen.
  • Bei einstellbarem Öldruck (Kraft) und einstellbarer Hubhöhe und Hubfrequenz läßt sich darüber hinaus eine äußerst genaue Feineinstellung für die Hin- und Herbewegung des angeschlossenen Werkzeuges gewährleisten. Die Gegendruckfeder läßt sich darüber hinaus dazu benutzen, beispielsweise das Werkzeug am Arbeitszylinderkolben anzukuppeln, wodurch ein einfaches Auswechseln des Werkzeuges ermöglicht wird.
  • Auf der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt, und zwar zeigen:
  • Fig. 1
    den schematischen Aufbau der Anlage;
    Fig. 2
    ein geändertes Ausführungsbeispiel;
    Fig. 3
    einen Schnitt nach der Linie III-III der Fig. 2;
    Fig. 4
    ein geändertes Ausführungsbeispiel;
    Fig. 5
    ein geändertes Ausführungsbeispiel;
    Fig. 6
    ein geändertes Ausführungsbeispiel;
    Fig. 7
    ein geändertes Ausführungsbeispiel;
    Fig. 8
    ein geändertes Ausführungsbeispiel.
  • Gemäß Fig. 1 ist ein Elektromotor 1 vorgesehen, der eine Welle 2 antreibt, welche in Kugellagern 3, 4 läuft. Auf der Welle 2 ist eine Exzenterscheibe 5 fest angeordnet, welche sich um die Antriebsachse A-A der Welle dreht. Der Exzenter 5 trägt ein Kugellager 6, dessen innere Schale 6a vorteilhaft auf die Exzenterscheibe 5 aufgeschrumpft ist. Die Kugeln laufen zwischen der Schale 6a und einer äußeren Schale 7, welche nicht drehbar ist. Die Schale 7 ist jedoch in Richtung der Linie B-B hin- und herbewegbar. Sie ist mit einer Kolbenstange 7a gelenkig verbunden. Die Kolbenstange 7a trägt einen Kolben 8 und bewegt diesen in einem Geberzylinder 9 hin und her.
  • Im Arbeitsraum 10 hinter dem Kolben 8 befindet sich als Übertragungsmittel Öl, das mit Hilfe einer automatischen Ölnachfülleinrichtung 11 dem Arbeitsraum 10 zugeführt worden ist und bei einem Ölverlust selbsttätig nachfüllt. Außerdem weist die Ölnachfülleinrichtung 11 in ihrem Deckel eine Be- und Entlüftungseinrichtung 12 auf. Der Arbeitsraum 10 weist ferner eine Austrittsöffnung 12a für das Öl auf. Bei Vorwärtsbewegung des Kolbens 8 (in Fig. 1 nach rechts) wird das Öl über die Austrittsöffnung 12a in eine Schlauchleitung 14 gedrückt. Die Schlauchleitung 14 ist biegsam, aber in ihrem Querschnitt und ihrer Längsausdehnung fast unbeeinflußbar. Eine Medienvordruckschraube 40 wirkt auf das Zylindervolumen, um einen minimalen Druckverlust durch Dehnung des Schlauches auszugleichen. Das Übertragungsmittel Öl wird bei Vorwärtsbewegung des Kolbens 8 einem Arbeitszylinder 20 zugeführt. In der Leitung 14 ist eine Schnellkupplung 15 vorgesehen, um unterschiedliche Verbindungen zu unterschiedlichen Arbeitswerkzeugen herstellen zu können. Die Schnellkupplung ist druckempfindlich und verhindert beim Auswechseln des Anschlusses eines anderen Werkzeuges einen Ölverlust. Der Arbeitszylinder 20 weist einen Kolben 22 auf, auf den das Öl beim Vorlaufen des Kolbens 8 wirkt, derart, daß der Kolben 22 sich in Richtung des Pfeiles 24 bewegt. Bewegt sich der Kolben 8 im Geberzylinder 9 zurück, daß heißt in Richtung auf den Exzenter zu, wird der Öldruck in der Leitung 14 gemindert. Es entsteht ein Unterdruck im Arbeitsraum 23 des Zylinders 20, so daß sich dieser zurückbewegt, das heißt in Fig. 1 nach rechts. Am Kolben 22 ist das zu bewegende Werkzeug (nicht dargestellt unter Zuhilfenahme einer Feder 25 befestigt. Damit die Bewegung des Werkzeuges und damit des Kolbens 22 mit der gewünschten Schnelligkeit erfolgt, wirkt die Feder gleichzeitig als Gegendruckfeder auf den Arbeitskolben 22. Durch Einstellen des Druckes in der Ölleitung 14, zum Beispiel mit Hilfe eines Überdruckventiles, kann eine äußerst genaue Regelung der Kraft des Werkzeuges bewirkt werden. Die Kraft der Feder ist so bemessen, daß sie die Vorwärtsbewegung des Kolbens und damit des Werkzeuges nicht behindert, andererseits aber eine genügend schnelle Rückführung des Kolbens 22 gewährleistet.
  • Mit Hilfe der Stellschraube 40 wird gleichzeitig das Volumen des komprimierten Öles verändert, so daß eine größere oder geringere Menge an Öl in die Leitung 14 bei jeder Vorwärtsbewegung des Kolbens 8 gedrückt wird und damit eine Hubregelung möglich ist.
  • Gemäß Fig. 2 ist der hin- und herbewegbare Kolben 8 in Fig. 1 durch einen Kolben 41 ersetzt, welcher eine Schrägfläche 42 aufweist. Bei dieser Ausbildung verschließt der Kolben 41 die Einlaßöffnung 43 für die Nachfülleinrichtung 11, je nach Neigung der Schrägfläche früher oder später. Die Stellschraube 40a ist zusätzlich mit dem Kolben 41 verbunden, derart, daß der Kolben um seine Achse B-B gedreht werden kann, so daß sich die Neigung der Schrägfläche 42 zur Öleinlaßöffnung 43 ändert. Das heißt, bei einer Hin- und Herbewegung des Kolbens wird die Einlaßöffnung 43 in Abhängigkeit von der Neigung der Schrägfläche geöffnet oder geschlossen. Gemäß Fig. 3 weist die Stellschraube 40a für die Einstellung der Neigung der Schrägfläche zwei Nocken 50, 51 auf, welche in entsprechenden Ausnehmungen des Kolbens liegen und diesen beim Drehen der Schraube 40a um die Achse B-B verdrehen. In gewünschter Position wird die Stellschraube arretiert.
  • In geänderter Ausführung können gemäß Fig. 6 mehrere Einlaßöffnungen 43a, 43b, 43c hintereinanderliegend vorgesehen sein, welche der Kolben bei seiner Bewegung nacheinander verschließt. Hierdurch kann die Flüssigkeitsverdrängung und damit die Hubbewegung des Arbeitskolbens 22 ebenfalls geregelt werden, indem die Stellschraube nunmehr nacheinander eine oder mehrere der Einlaßöffnungen verschließt. Die Schrägfläche des Kolbens braucht hierzu nicht vorgesehen zu sein. In jedem Fall muß aber eine der vorgesehenen Einlaßöffnungen stets geöffnet sein.
  • Gemäß Fig. 4 ist die Anlage gleichzeitig für mehrere Arbeitszylinder ausgelegt, beispielsweise für Arbeitszylinder 31 bis 36, wie schematisch dargestellt, indem die Verbindungsleitungen in den Punkten 52 bis 57 verzweigt worden sind. Die Wirkungsweise ist dieselbe.
  • Fig. 5 zeigt ein Ausführungsbeispiel, bei dem zwei Geberzylinder 9 und 65 vorgesehen sind. Der Kolben 8 des Geberzylinders 9 wird wiederum durch die Exzenterscheibe 5 hin- und herbewegt. Der Kolben 66 des Geberzylinders 65 wird von einer Exzenterscheibe 64 entsprechend angetrieben. Die Scheibe 5 ist ebenso wie die Scheibe 64 mit einem zugeordneten Kolben 8, 66 verbunden. Die Exzenterscheiben 5 und 66 sind auf der Welle 2 des Elektromotors 1 um 180° versetzt angeordnet, so daß dann, wenn der Kolben 8 sich in der rechten Stellung im Zylinder befindet, der Kolben 66 in der linken Stellung des Zylinders 65 liegt, das heißt, die Kolben 8 und 66 arbeiten gegenläufig. Der Kolben 8 drückt Öl durch die Leitung 14 in den Arbeitsraum 23 des Zylinders 27. Der Kolben 66 drückt Öl über die Leitung 67 in den Raum 68 vor dem Kolben 22 (komplementärer Arbeitsraum). Der gegenläufige Öldruck in den Räumen 23 und 68 drückt jetzt den Kolben 22 hin und zurück. Die Feder für die Rückführung des Kolbens kann damit entfallen.
  • Fig. 7 zeigt ein geändertes Ausführungsbeispiel. Die Geberzylinder 9 und 65 der Fig. 5 sind über die Leitungen 14 und 67 mit zwei Arbeitszylindern 20 und 70 verbunden. Je eine Leitung 14, 67 ist einem der Arbeitszylinder 20, 70 zugeordnet. Die Kolben 22, 71 der Arbeitszylinder 20, 70 wirken auf eine Platte 72 oder einen Hebel, welcher um eine Achse 73 in Richtung des Pfeiles 76 hin- und herbewegbar ist. Die Platte 72 wirkt auf das Werkzeug, so daß dieses wieder die oszillierende Bewegung ausführt. Diese Ausbildung hat den Vorteil gegenüber der Ausbildung nach Fig. 5, welche dasselbe bewirkt, daß die Ölzuleitungen auf der dem Werkzeug abgewandten Seite in die Arbeitszylinder münden.
  • Gemäß Fig. 8 wirkt der Geberzylinder 9 über die Leitung 14 auf den Arbeitszylinder 20 unter Zwischenschaltung eines druckempfindlichen Umschaltventiles 75. Vom Ventil 75 geht als zweiter Weg eine Leitung 74 ab, welche in die Nachfülleinrichtung 11 mündet. Die Wirkungsweise dieser Einrichtung ist folgende:
    Bewegt sich der Kolben des Zylinders 9 nach rechts, dann drückt er das aus dem Nachfüllbehälter 11 zugeströmte Öl über die Leitung 14, das jetzt offene Ventil 75 in den Zylinder 20 und bewegt dessen Kolben ebenfalls nach rechts. Bewegt sich der Kolben im Zylinder 9 nach links, entsteht in der Leitung 14 ein Unterdruck. Das Ventil 75 verbindet jetzt den Zylinder 20 mit einer Leitung 74, welche in den Ölnachfüllbehälter 11 mündet. Da der Kolben des Zylinders 9 die Öffnung des Ölnachfüllbehälters freigibt, saugt der Kolben aus dem Nachfüllbehälter 11 Öl an, welches über die Leitung 74 nachströmt, und zwar aus dem Arbeitsraum des Zylinders 20. Bewegt sich der Kolben 9 nach rechts, schaltet das Ventil 75 um, so daß die Verbindung der Leitungen 14 zum Arbeitszylinder wieder gegeben ist. Bei dieser Ausbildung befindet sich das Öl in einem Kreislauf und nicht in einer ausschließlichen oszillierenden Bewegung. Diese Ausbildung hat den Vorteil, daß das Öl beispielsweise gekühlt werden kann, indem es durch eine Kühleinrichtung strömt.
    Diese Ausbildung eignet sich ferner für eine genaue Krafteinstellung für die Bewegung des Werkzeuges, wenn man die Druckbeaufschlagung des Ventiles 75 geeignet wählt oder einstellt.
  • Die Vorteile der vorliegenden Erfindung werden in folgenden Merkmalen gesehen:
  • Dadurch, daß der Kolben des Geberzylinders an der Kurvenscheibe 5 kraftschlüssig angelenkt ist, wird er vom Antriebsmotor 1 hin- und herbewegt. Er schiebt demzufolge die Ölsäule in der Leitung 14 entsprechend hin und her und drückt somit einmal auf den Kolben 22 des Arbeitszylinders und saugt zum anderen die Ölsäule wieder zurück und damit den Kolben 22. Diese rückwärtige Bewegung wird durch die auf den Kolben 22 wirkende Feder 25 wesentlich unterstützt, außerdem durch den äußeren Luftdruck, welcher auf den Kolben 22 wirkt.
  • Die erfindungsgemäße Ausbildung zeigt die weiteren Vorteile:
       Das Gewicht und das Volumen können aufgrund des gewählten Antriebes in einem überaus günstigen Verhältnis zur übertragenden Kraft stehen. Beträgt das Gewicht des Arbeitszylinders mit Kolben etwa 40 Gramm bei einer Hublänge von 12 bis 13 Millimetern und wird der Kolben mit einer Frequenz von zehn Hertz bewegt, dann wird je Hub eine Kraft von 100 Kilogramm erzeugt, und zwar durch den Antrieb eines Elektromotors von 750 Watt.
  • Wie sich ebenfalls aus dem obigen Zahlenbeispiel ergibt, arbeitet der Antrieb mit einem außergewöhnlich hohen Wirkungsgrad. Dies ist dadurch begründet, daß die Arbeitsleistung des Antriebmotors durch die kraftschlüssige Übertragung der Drehbewegung der Motorwelle während einer gesamten Umdrehung fast gleichmäßig sowohl als Vorwärtsals auch als Rückwärtsbewegung auf den Kolben des Geberzylinders übertragen wird.
  • Der Antrieb arbeitet fast geräuschlos. Die Ankupplung einer Arbeitseinheit ist leicht möglich durch die Schnellkupplung 15 in der Übertragungsleitung 14. Die Verbindung unterliegt so gut wie keiner Abnutzung. Durch die Kupplung wird ermöglicht, das Arbeitsgerät schnell gegen ein anderes Arbeitsgerät auszuwechseln.
  • Die Vibration in dem oszillierenden Arbeitsgerät, welche sich normalerweise bei herkömmlichen Anlagen, zum Beispiel bei einem Antrieb mit Preßluft stets auf das Arbeitsgerät überträgt, wird hier durch die Öldrucksäule als Antriebsmittel von der Arbeitseinheit abgeleitet. Dadurch ist das Arbeitsgerät selbst fast vibrationsfrei.
  • Zu diesen Vorteilen trägt auch bei, daß der eigentliche Antrieb, das heißt die Geberzylindereinheit und die Arbeitszylindereinheit nicht starr, sondern durch einen biegsamen Schlauch miteinander verbunden sind, so daß sich die Belastungen und insbesondere das Gewicht der Gebereinheit nicht auf die Arbeitseinheit überträgt.
    Selbst für höchste Kraftübertragungen sind nur kleine Schlauchquerschnitte für die Übertragungsleitung notwendig.
    Bei dem oben angegebenen Kraftgewichtsbeispiel ist nur ein Schlauch von fünf Millimetern Außendurchmesser erforderlich. Durch das geringe Gewicht und den dünnen flexiblen Zuleitungsschlauch ist eine hervorragende Handhabung jeder Arbeitseinheit, wie oben bereits erwähnt, möglich.
    Da die Antriebseinheit dicht ist, kann sie auch bei Geräten verwendet werden, die unter Wasser laufen oder zumindest mit Flüssigkeit gereinigt werden.
    Die gesamte Anlage ist fast wartungsfrei und hat eine sehr hohe Lebenserwartung.
    Die Anlage ist leicht herzustellen. Die Herstellungskosten sind gering, und zwar wesentlich billiger als eine Preßluftanlage oder dergleichen in gleicher Leistungsgröße.
  • Die Arbeitseinheit ist nicht direkt mit elektrischem Strom verbunden, so daß auch ein Unterwasserbetrieb möglich ist.
    Selbst bei hoher Kraftübertragung ist der Arbeitszylinder, welcher mit dem Werkzeug unmittelbar verbunden ist, immer noch sehr klein.
    Ein weiterer Vorteil ist der, daß die Hubfrequenz, die Hubhöhe und die Kraft der Werkzeugeinheit stufenlos und unabhängig voneinander auch während des Betriebes geregelt werden können.
    Für einfache Anwendungen kann eine beliebige Flüssigkeit als Übertragungsmittel Verwendung finden.
  • Bezugszahlen
  • 1
    Elektromotor
    2
    Welle
    3
    Kugellager
    4
    Kugellager
    5
    Exzenterscheibe
    6
    Kugellager
    6a
    innere Schale
    7
    äußere Schale
    7a
    Kolbenstange
    8
    Kolben
    9
    Geberzylinder
    10
    Arbeitszylinder
    11
    Ölnachfülleinrichtung
    12
    Be- und Entlüftungseinrichtung
    12a
    Austrittsöffnung für das Öl
    14
    Schlauchleitung
    15
    Schnellkupplung
    20
    Arbeitszylinder
    22
    Kolben im Arbeitszylinder
    23
    Arbeitsraum
    24
    Pfeil
    25
    Feder
    26
    Gegendruckfeder
    27
    Zylinder
    28
    Gelenkstück
    29
    Schlauchleitung
    30
    Schraubverbindung
    31
    Arbeitszylinder
    32
    Arbeitszylinder
    33
    Arbeitszylinder
    34
    Arbeitszylinder
    35
    Arbeitszylinder
    36
    Arbeitszylinder
    40
    Stellschraube
    40a
    Stellschraube
    41
    Kolben des Geberzylinders
    42
    Schrägfläche (Stirnfläche) des Kolbens 41
    43
    Einlaßöffnung für das Übertragungsmittel (Öl)
    43a
    Bohrung
    43b
    Bohrung
    43c
    Bohrung
    44
    Arretierschraube
    50
    Nocken
    51
    Nocken
    52
    Verzweigung der Ölübertragungsleitung
    53
    Verzweigung der Ölübertragungsleitung
    54
    Verzweigung der Ölübertragungsleitung
    55
    Verzweigung der Ölübertragungsleitung
    56
    Verzweigung der Ölübertragungsleitung
    57
    Verzweigung der Ölübertragungsleitung
    64
    zweite Exzenterscheibe
    65
    Zylinder
    66
    Kolben
    67
    Leitung
    68
    komplementärer Arbeitsraum
    70
    zweiter Arbeitszylinder
    71
    Kolben (Verlängerung)
    72
    Platte oder Hebel
    73
    Achse
    74
    zweite Schlauchleitung
    75
    Umschaltventil
    76
    Pfeil
    A-A
    Achse des Elektromotors
    B-B
    Achse des Geberzylinders

Claims (34)

  1. Vorrichtung zum Antrieb eines in axialer Richtung hin- und herbewegbaren Werkzeuges, bei der:
    - in einem Geberzylinder (9, 65) ein hin- und herbewegbarer Kolben (8, 41, 66) vorgesehen ist, der ein flüssiges Medium verdrängt oder ansaugt, das einen Kolben (22) in einem Arbeitszylinder (20, 27, 31-36) betätigt;
    - eine Exzenterscheibe (5, 64) den Kolben (8, 41, 66) des Geberzylinders (9, 65) vorwärts bewegt;
    - der Geberzylinder (9, 65) zur Vermeidung einer Gewichtsübertragung vom Arbeitszylinder (20, 27, 31-36) räumlich getrennt angeordnet ist;
    - der Geberzylinder (9, 65) und der Arbeitszylinder (20, 27, 31-36) durch eine biegsame Schlauch- oder Rohrleitung (14, 29) miteinander verbunden sind;
    - der Kolben (22) des Arbeitszylinders (20, 27, 31-36) unter der Wirkung wenigstens einer Gegendruckfeder (25, 26) steht;
    - der äußere Luftdruck zur Unterstützung der Rückführung des Arbeitszylinderkolbens (22) beiträgt;
    - auf dem äußeren Durchmesser der Exzenterscheibe (5, 64) ein Kugellager 6 vorgesehen ist, dessen innerer Ring (6a) sich mit der Exzenterscheibe (5, 64) dreht und dessen äußerer Ring (7) undrehbar, jedoch linear hin- und herbewegbar ist;
    dadurch gekennzeichnet, daß
    - der äußere Ring (7) des Kugellagers (6) gelenkig mit dem Kolben (8, 41, 66) des Geberzylinders (9, 65) verbunden ist und den Kolben (8, 41, 66) des Geberzylinders (9, 65) vorwärts- und zurückbewegt.
  2. Vorrichtung zum Antrieb eines in axialer Richtung hin- und herbewegbaren Werkzeuges, bei der:
    - in einem Geberzylinder (9, 65) ein hin- und herbewegbarer Kolben (8, 41, 66) vorgesehen ist, der ein flüssiges Medium verdrängt oder ansaugt, das einen Kolben (22) in einem Arbeitszylinder (20, 27, 31-36) betätigt;
    - eine Exzenterscheibe (5, 64) den Kolben (8, 41, 66) des Geberzylinders (9, 65) vorwärts bewegt;
    - der Geberzylinder (9, 65) zur Vermeidung einer Gewichtsübertragung vom Arbeitszylinder (20, 27, 31-36) räumlich getrennt angeordnet ist;
    - der Geberzylinder (9, 65) und der Arbeitszylinder (20, 27, 31-36) durch eine biegsame Schlauch- oder Rohrleitung (14, 29) miteinander verbunden sind;
    - der Kolben (22) des Arbeitszylinders (20, 27, 31-36) unter der Wirkung wenigstens einer Gegendruckfeder (25, 26) steht;
    - der äußere Luftdruck zur Unterstützung der Rückführung des Arbeitszylinderkolbens (22) beiträgt, dadurch gekennzeichnet, daß
    - der Kolben des Geberzylinders (9, 65) mit seiner Kolbenstange (7a) seitlich an der Exzenterscheibe (5) angelenkt ist und den Kolben (8, 41, 66) des Geberzylinders (9, 65) vorwärts- und zurückbewegt.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Werkzeug (27) am Arbeitszylinderkolben (22) durch Zuhilfenahme der Gegendruckfeder (26) angekoppelt ist.
  4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das benutzte flüssige Medium bei der Bewegung des Werkzeuges eine oszillierende Hin- und Herbewegung ausführt.
  5. Vorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch die Ausbildung als ein in sich geschlossenes mit Unter- und Überdruck arbeitendes System.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der äußere Ring über ein Gelenkstück (28) mit der Kolbenstange (7a) des Kolbens (8) des Geberzylinders (9) verbunden ist.
  7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Exzenterscheibe (5) mit einem Antriebsmotor (Elektromotor (1)) verbunden ist, dessen Drehzahl regelbar ist.
  8. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein an der Werkzeugeinheit (20, 22, 26, 27) vorgesehener Schalter das Ein- und Ausschalten des jeweils gewählten Antriebes (Motorantrieb oder Elektromagnetantrieb) bewirkt.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Schalter über ein Kabel mit der Antriebseinheit (1, 60) elektrisch verbunden ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Kabel mit der Schlauch- (14) oder Rohrleitung mitgeführt ist.
  11. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für die Hubfrequenzverstellung (Motordrehzahländerung) ein Schalter an der Werkzeugeinheit vorgesehen ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß als Schalter ein Dimmer vorgesehen ist.
  13. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vorrichtung eine automatische Nachfülleinrichtung (11) für den Ausgleich eines Verlustes an flüssigen Arbeitsmedium und für das Befüllen der Anlage aufweist.
  14. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vorrichtung eine automatische Be- und Entlüftungseinheit (12) für das flüssige Medium aufweist.
  15. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Geberzylinder (9) und/oder der Arbeitszylinder (20) eine in den Arbeitsraum des Zylinders eindringende Stellschraube (40) für den Ausgleich von Druckverlusten durch Volumenänderung der Schlauchleitung (29) aufweist.
  16. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Stirnfläche des Kolbens (41) des Geberzylinders (9), in Bewegungsrichtung des Kolbens gesehen, als Schrägfläche (42) ausgebildet ist, und die zur Wirkung kommende Neigung der Schrägfläche (42) des Kolbens (41) durch Drehen des Kolbens (41) um seine Achse einstellbar und arretierbar ist.
  17. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Einfüllöffnung (43) der automatischen Nachfülleinrichtung (11) für das flüssige Medium im Geberzylinder (9) als Längsschlitz oder in Form von mehreren Bohrungen (43a, 43b, 43c) in Zylinderrichtung hintereinanderliegend ausgebildet ist, so daß in Abhängigkeit von der Stellung des Kolbens (8, 41) dieser längs seines Arbeitsweges eine oder mehrere dieser Öffnungen oder den Längsschlitz früher oder später verschließt.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Einfüllöffnungen (43a, 43b, 43c) in der Zylinderwand des Geberzylinders (9) durch eine arretierbare Stellschraube nacheinander bis auf mindestens eine absperrbar sind.
  19. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schlauchleitung (14) zwischen dem Geberzylinder (9) und dem Arbeitszylinder (20) flexibel, jedoch im Querschnitt und in der Länge fast undehnbar ist.
  20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Schlauchleitung (14) spiralförmig ausgebildet ist.
  21. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Geberzylinder (9) mit Hilfe verzweigter Druckleitungen (29) auf mehrere Arbeitszylinder (31 bis 36) gleichzeitig wirkt.
  22. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Druckleitung (14) zwischen dem Geberzylinder (9) und dem zugeordneten Arbeitszylinder (20) mittels einer selbsttätig schließenden Schnellkupplung (15) trennbar und zusammenschließbar ist.
  23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, daß die Kupplung in der Nähe des Arbeitszylinders (20) vorgesehen ist.
  24. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, daß ein Teil (29) der Schlauchleitung (14) mit der Werkzeugeinheit verbunden (verschraubt (30)) ist.
  25. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Antriebsmotor (1) auf mehrere Exzenterscheiben (5, 64) wirkt und jeder Exzenterscheibe ein Geberzylinder mit wenigstens einem Arbeitszylinder zugeordnet ist.
  26. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Geberzylinder (9) über ein druckempfindliches Umschaltventil (75) mit dem Arbeitskolben (22) über eine erste Leitung (14) verbunden ist und vom Umschaltventil (75) eine zweite Leitung (74) über die Ölnachfülleinrichtung (11) zum Geberzylinder (9) zurückführt, derart, daß bei der Vorschubbewegung des Kolbens (8) des Geberzylinders (9) über die Leitung (14) das Öl in den Arbeitszylinder (10) gedrückt wird und bei der Rückwärtsbewegung des Kolbens (8) des Geberzylinders (9) das Umschaltventil (75) das Öl über die Leitung (74) durch den Druck des ArbeitszylinderkolbenS (22) zur Nachfülleinrichtung (11) zurückströmen läßt.
  27. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kolben (22) in dem ihm zugeordneten Arbeitszylinder (20) unter der Wirkung wenigstens einer von Baugröße und Druck abhängigen, einen Gegendruck auf den Kolben (22) ausübenden Feder (25) steht.
  28. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das verwendete flüssige Medium ein Hydrauliköl ist.
  29. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, daß das flüssige Medium bei Einsatz der Vorrichtung im Lebensmittelbereich ein lebensmittelverträgliches Hydrauliköl ist.
  30. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das verwendete flüssige Medium ein unter Druck und entsprechender Temperatur verflüssigtes Gas ist.
  31. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Einheit (Arbeitszylinder (20) mit Schlauch (14)) gegen die äußere Umgebung so dicht ist, daß sie in Flüssigkeiten (unter Wasser) arbeiten kann.
  32. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Regelung der Kolbenkraft in dem System ein regelbares Überdruckventil vorgesehen ist, welches das unter Druck stehende flüssige Medium ab einem vorbestimmten Druck in den Vorratsbehälter der Nachfüllanlage (11) zur Kraftregulierung überströmen läßt.
  33. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Vermeidung oder wenigstens Minimierung von Vibrationen im Arbeitsgerät der Arbeitszylinder in oder auf einem gummiartigen Belag befestigt ist.
  34. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Minimierung oder zur Vermeidung von Vibrationen die Eigenresonanz der Gegendruckfeder (26) auf die Arbeit des Arbeitszylinders abgestimmt ist.
EP91912127A 1990-06-29 1991-06-20 Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges Expired - Lifetime EP0536233B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4020776A DE4020776A1 (de) 1990-06-29 1990-06-29 Vorrichtung zum antrieb eines werkzeuges fuer eine axiale hin- und herbewegung des werkzeuges
DE4020776 1990-06-29
PCT/EP1991/001146 WO1992000460A1 (de) 1990-06-29 1991-06-20 Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges

Publications (2)

Publication Number Publication Date
EP0536233A1 EP0536233A1 (de) 1993-04-14
EP0536233B1 true EP0536233B1 (de) 1995-02-22

Family

ID=6409359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91912127A Expired - Lifetime EP0536233B1 (de) 1990-06-29 1991-06-20 Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges

Country Status (9)

Country Link
US (1) US5337565A (de)
EP (1) EP0536233B1 (de)
JP (1) JP2534420B2 (de)
AT (1) ATE118860T1 (de)
AU (1) AU8069191A (de)
CA (1) CA2086431C (de)
DE (2) DE4020776A1 (de)
DK (1) DK0536233T3 (de)
WO (1) WO1992000460A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1256093B (it) * 1992-11-04 1995-11-27 Gruppo di comando per carrelli di tiro,in particolare per banchi di trafilatura
US6193476B1 (en) * 1999-09-13 2001-02-27 Gerald T. Sweeney 1½ Piston force pump
US20050169776A1 (en) * 2004-01-29 2005-08-04 Mcnichol Richard F. Hydraulic gravity ram pump
US9115710B2 (en) 2004-01-29 2015-08-25 Richard F. McNichol Coaxial pumping apparatus with internal power fluid column
GB0412810D0 (en) * 2004-06-09 2004-07-14 Imi Norgren Ltd Actuator assembly
CA2676847C (en) 2007-01-30 2016-05-17 Norman A. Fisher Coaxial pumping apparatus with internal power fluid column
EP3670095A1 (de) * 2018-12-20 2020-06-24 Hilti Aktiengesellschaft Handwerkzeugmaschine
EP4239218A1 (de) * 2022-03-03 2023-09-06 FNF Innovation SH.P.K. Leistungsübertragungsvorrichtung

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735255A (en) * 1956-02-21 Hydraulic tree shaker
US2001749A (en) * 1932-04-11 1935-05-21 Detroit Hydrostatic Brake Corp Valve assembly for compensators
US2429390A (en) * 1942-12-10 1947-10-21 John Waldron Corp Hydraulic oscillator
US2544134A (en) * 1943-09-16 1951-03-06 United Aircraft Prod Liquid pulsator system with pressure compensation
CH267480A (it) * 1945-10-16 1950-03-31 Anonima G D Societa Dispositivo di comando idraulico di una macchina automatica.
CH267482A (it) * 1945-11-14 1950-03-31 Anonima G D Societa Meccanismo idraulico di comando di un organo di una macchina automatica.
US2602434A (en) * 1947-03-29 1952-07-08 Worthington Pump & Mach Corp Hydraulic valve operating mechanism operable to vary valve lift and valve timing
DE1086028B (de) * 1955-05-10 1960-07-28 Iaelinia Ag Fuer Elek Sche Ind Elektrohydraulisches Hubgeraet
GB936153A (en) * 1960-06-09 1963-09-04 Bamford Excavators Ltd Improvements relating to hydraulic transmission of power
GB934942A (en) * 1960-06-09 1963-08-21 Bamford Excavators Ltd Improvements relating to hydraulic transmission of power
US3113433A (en) * 1962-03-07 1963-12-10 Kohlman John William Brake system
US3548594A (en) * 1968-04-22 1970-12-22 Mattel Inc Power-transmitting device to actuate the moving part of toys
DE2205999A1 (de) * 1972-02-09 1973-08-16 Bosch Gmbh Robert Wechselstromhydraulikanlage
DE2251672A1 (de) * 1972-10-21 1974-04-25 Vni K I T I Gidromaschinostroj Pulsator fuer oszillierend wirkende hydraulikantriebe
US3945209A (en) * 1974-10-04 1976-03-23 Dexter Robert G Hydraulic linkage
AU490039B2 (en) * 1975-02-19 1976-08-12 Richard Clifford Geary William Improvements in or relating to shearing handpieces
PH10374A (en) * 1975-09-05 1977-02-16 Roces M Improvement of hydraulic coupling and speed multiplying mechanism
FR2402127A1 (fr) * 1977-09-05 1979-03-30 Vicaire Maurice Dispositif hydraulique de transmission de mouvement alternatif
DD216987A1 (de) * 1983-07-22 1985-01-02 Werkzeugmasch Forschzent Hydraulischer telemotor-reversierantrieb
EP0244878B1 (de) * 1985-02-11 1990-10-31 INTERATOM Gesellschaft mit beschränkter Haftung Elektromagnetisch-hydraulischer Ventiltrieb für Verbrennungskraftmaschinen
DE3508737A1 (de) * 1985-03-12 1986-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Vorrichtung zum vereinzeln und zum transport blattfoermiger gegenstaende
JPS61273229A (ja) * 1985-05-29 1986-12-03 Hitachi Ltd 熱間鋼片連続巾プレス装置
US4791895A (en) * 1985-09-26 1988-12-20 Interatom Gmbh Electro-magnetic-hydraulic valve drive for internal combustion engines
JPH0624915B2 (ja) * 1986-02-05 1994-04-06 トヨタ自動車株式会社 ブ−スタ付タンデムマスタシリンダ
GB8628601D0 (en) * 1986-11-29 1987-01-07 Lucas Ind Plc Pressure cylinder
HU208569B (en) * 1988-05-11 1993-11-29 Magyar Szenhidrogenipari Telemotor
WO1989011600A1 (en) * 1988-05-16 1989-11-30 Alfred Teves Gmbh Piston/cylinder unit made of plastic and process and device for making it
DE3928873C1 (de) * 1989-08-31 1991-02-21 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De

Also Published As

Publication number Publication date
DE4020776A1 (de) 1992-01-09
CA2086431A1 (en) 1991-12-30
JP2534420B2 (ja) 1996-09-18
EP0536233A1 (de) 1993-04-14
DK0536233T3 (da) 1995-06-26
US5337565A (en) 1994-08-16
JPH05507428A (ja) 1993-10-28
DE4020776C2 (de) 1992-05-21
CA2086431C (en) 1999-02-02
DE59104721D1 (de) 1995-03-30
ATE118860T1 (de) 1995-03-15
AU8069191A (en) 1992-01-23
WO1992000460A1 (de) 1992-01-09

Similar Documents

Publication Publication Date Title
DE2909204C2 (de) Schwingungserreger mit zwei Unwuchten
DE2443800A1 (de) Hydraulisch betriebene schlagvorrichtung
EP0536233B1 (de) Vorrichtung zum antrieb eines in axialer richtung hin- und herbewegbaren werkzeuges
EP1102646B1 (de) Fräsgerät für die rohrreinigungs- und rohrsanierungstechnik
DE3804163A1 (de) Druckmittelbetriebene stell- oder arbeitsvorrichtung
DE60023509T2 (de) Stellglied zum positionieren eines ventils o.ä. in eine erwünschte stelle
EP2015938A2 (de) Walze einer druckmaschine mit einer vorrichtung zum erzeugen einer axialen oszillationsbewegung der rotierenden walze
EP3077135B1 (de) Oszillierend antreibbare werkzeugmaschine
EP0145701B1 (de) Regelung einer Schlagbohrmaschine
DE4223340A1 (de) Vorschubeinrichtung zum schrittweisen Material- und/oder Werkstücktransport an bzw. in intermittierend arbeitenden Produktionsmaschinen
DE2857176C1 (de) Hydraulischer Antrieb fuer den Schuetzen einer Webmaschine
DE3236803A1 (de) Verbindung eines zylinderantriebes mit einem druckverstaerker zur baueinheit zur erzielung hoeherer kolbenkraefte
EP0351632A2 (de) Antriebsvorrichtung für taktweise arbeitende Schneidvorrichtungen
AT210716B (de) Einrichtung zum Antrieb des Werkzeugträgers einer Schere, Presse od. dgl.
DE906892C (de) Vorrichtung zur Umwandlung der Energie einer mit hin und her gehendem Kolben ausgeruesteten Brennkraftmaschine in Stroemungsarbeit eines stroemungsfaehigen Mediums
EP0111049B1 (de) Einrichtung zum Verstellen der Flügelblätter von Strömungsmaschinen
DE906294C (de) Vorrichtung zur Umwandlung der Energie einer mit hin und her gehendem Kolben ausgeruesteten Brennkraftmaschine in Stroemungs- arbeit eines stroemungsfaehigen Mediums
DE145671C (de)
DE134598C (de)
CH681872A5 (en) Mechanism for powering working stroke of hydraulic press - has flywheel mounted on motor shaft and toggle link mechanism for distributing thrust and reducing peak demand on motor throughout cycle
DE844419C (de) Manoevriereinrichtung mit Servomotor fuer Schiffsschrauben, Pumpen oder Turbinen mit verstellbaren Fluegeln und einer Reibungskupplung in der Antriebswelle
DE2304752A1 (de) Vorrichtung zur pneumatisch - hydraulischen uebertragung von kraeften
DE3933445A1 (de) Hochdruck pumpen aggregat
EP4370294A1 (de) Kontaktwalze für eine wickeleinrichtung
EP3766437A1 (de) Kraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931008

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950222

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950222

Ref country code: BE

Effective date: 19950222

REF Corresponds to:

Ref document number: 118860

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 59104721

Country of ref document: DE

Date of ref document: 19950330

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950620

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000608

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000613

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000614

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000626

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010620

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020219

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050620