EP0532134A1 - Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen - Google Patents

Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen Download PDF

Info

Publication number
EP0532134A1
EP0532134A1 EP92250231A EP92250231A EP0532134A1 EP 0532134 A1 EP0532134 A1 EP 0532134A1 EP 92250231 A EP92250231 A EP 92250231A EP 92250231 A EP92250231 A EP 92250231A EP 0532134 A1 EP0532134 A1 EP 0532134A1
Authority
EP
European Patent Office
Prior art keywords
plastic
jet
metallic
coating
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92250231A
Other languages
English (en)
French (fr)
Other versions
EP0532134B1 (de
Inventor
Rudolf Dr.-Ing. Henne
Joachim Dipl.-Ing. Hauff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haldenwanger W KG
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Haldenwanger W KG
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldenwanger W KG, Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Haldenwanger W KG
Publication of EP0532134A1 publication Critical patent/EP0532134A1/de
Application granted granted Critical
Publication of EP0532134B1 publication Critical patent/EP0532134B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/30Change of the surface
    • B05D2350/33Roughening
    • B05D2350/40Roughening by adding a porous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • B05D2507/01Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers

Definitions

  • the invention relates to a method and a device for coating a substrate with high-temperature-resistant plastics.
  • thermoplastics for application temperatures up to around 100 ° C, which are applied to the metallic bodies, for example, by fluidized bed sintering or electrostatic processes. Plastic coatings for higher temperatures, for example 200 to 250 ° C, could not be produced.
  • plastics based on polyphenylene sulfide (PPS) or polyether ketone (PEK) have been available, which have a high chemical resistance, relatively high operating temperatures (maximum continuous use temperature of PPS about 220 ° C, of PEK of about 260 ° C) and good electrical have insulating properties.
  • PPS polyphenylene sulfide
  • PEK polyether ketone
  • These plastics are currently used for the production of bodies by means of injection molding. It has been shown that the firm and dense application to metallic base bodies as a coating has not previously been possible. Due to the inherent process properties, electrostatic methods can only apply thin layers that are not suitable for tribological or flexing loads or for high applied voltages. In many technical fields of application, however, there is great interest in dense layers of plastic which adhere well to metallic base bodies and have the properties indicated above.
  • plastic coatings are required, for example, to protect metallic walls against wet corrosion and as chemical-resistant electrical insulation of components;
  • roll coatings with a smooth surface that can withstand heavy loads are required, which are suitable for use in aggressive media;
  • insulating coatings are required from electrode rollers in order to activate the plastic surfaces by means of corona discharge and to make them printable, whereby besides the resistance of the coating to ozone and UV radiation, high voltage and dielectric strength and low loss angles in the case of HF discharges are required.
  • the invention is therefore based on the object of providing a method and a device for coating substrates with high-temperature-resistant plastics with which dense and well-adhering layers can be produced without continuous pores or cracks.
  • plasma spraying and high-speed flame spraying are known as thermal spray processes for applying materials, for example high-melting metallic or ceramic materials.
  • plasma spraying there are atmospheric plasma spraying, vacuum plasma spraying and inert gas plasma spraying, in which a plasma flow (plasma jet) originating from a high-current discharge serves to melt, accelerate and deposit the sprayed material which is supplied in powder form.
  • the sprayed material is injected near the plasma generation area via injectors which are arranged or fastened in or on the plasma torch.
  • the plasma can reach temperatures of 10,000 ° C and more, which would result in thermal decomposition of the sprayed material if the highly resistant plastic material were fed in via the injectors.
  • the speed of the spray droplets is too slow in conventional burners to overcome their high surface tension, so that no dense, uniform layers can be produced.
  • combustion gases such as propane, propylene, etc. or acetylene react with oxygen in the interior of the burner, as a result of which a reaction mixture under increased pressure is formed, which is formed by a nozzle in the form of a Flame relaxed.
  • the spray material to be applied is supplied in powder form axially in this reaction space or in the initial region of the flame flow, which results in a long desired heating and acceleration time for the spray material.
  • the combustion chamber temperature which is around 3000 ° C, is too high to process the high-temperature-resistant plastic. This in turn can cause cracking of the plastic and, moreover, the particles of the plastic settle on the nozzle walls, which leads to rapid failure of the burner.
  • the coating with high-temperature-resistant plastics is carried out by means of thermal spraying processes with high jet speed, i.e. Speeds greater than 500 m / sec. applied, the powdered plastic being supplied in the colder region of the jet or flame.
  • An essential idea of the invention is to use the powdered plastic material downstream in the colder beam region, i.e. in the plasma process and in high-speed flame spraying, i.e. in the range of temperatures lower than 3000 ° C outside the nozzle or the burner.
  • the distance of the respective injector to the nozzle or the burner depends on the temperature of the emerging flame or the emerging jet.
  • Burners are used with such a nozzle geometry that a widened high-speed jet results, which results in a wider jet and temperature profile with a lower temperature level is generated and the thermal load on the input plastic material is reduced.
  • the nozzle geometry for high jet speed is characterized by a cross-section that initially narrows and then widens again, as viewed from the source. With the correct design and choice of pressure conditions, the flow at the narrow point assumes the speed of sound in order to then become supersonic in the expanding part.
  • the spray material is preferably supplied in powder form, but can also be input in another form, for example in the form of endless threads or tubes filled with powder.
  • the high-temperature-resistant plastics have a high viscosity and surface tension, so that the plastic particles must hit the surface to be coated at high speed, e.g. greater than 200 m / sec and thus high kinetic energy, so that they are as dense as possible , stable and firmly adhering layer is created.
  • additives made of ceramic or metal which can also be in powder form, the viscosity and surface tension can be reduced, which improves the layer quality.
  • additives can be added together with the plastic material, but they are preferably fed separately in the hotter blasting area or into the blasting source, ie to the burner itself, as a result of the thermal Energy the melting of the plastic material is improved.
  • the reduction in the surface tension of the plastic particles promotes a denser layer and at the same time the ceramic or metallic additional particles have a densifying effect due to their higher density and energy due to the transmission of impulses.
  • the hardness of the layer is increased by the additional particles, so that a greater mechanical strength is possible.
  • the thermal expansion of the layer is reduced, thus reducing the risk of stress cracks.
  • the surface can be roughened, for metal, for example, by blasting.
  • a metallic adhesive layer made of NiAl, NiCr, Zn or the like can also be applied to improve the adhesion of the plastic layer to the substrate, the same spray burner as for the plastic coating or an additional spray burner being provided.
  • the plastics considered can be partially crystalline after deposition. They then tend to recrystallize with a decrease in volume, i.e. shrinkage stresses and cracks occur. These properties can be counteracted by preheating the substrate or workpiece at or above about 130 ° C in the case of PPS.
  • Another possibility is the application of a porous intermediate layer, which absorbs the shrinkage stresses, it being possible for this porous intermediate layer to use coarser plastic powder which only melts on the surface but therefore does not shrink.
  • the desired porosity of the intermediate layer can also be achieved by reducing the jet and particle speed, by lowering the burner output and thus the jet enthalpy, and by shifting the particle addition further downstream.
  • the incorporation of hollow spheres made of the same plastic material, the incorporation of yielding material, such as polyethylene, and the aforementioned incorporation of material with low thermal expansion, such as Al2O3, are conceivable.
  • the reference numeral 1 denotes the substrate, which can be, for example, a metal body, such as a pressure roller.
  • the plastic layer 2 made of high-temperature-resistant plastic, for example plastic based on polyphenyl sulfide or polyether ketone, is applied to the substrate by means of a plasma jet 3.
  • the plasma torch 4 consists of a base body 5 and, in the exemplary embodiment, of three injectors 6, 7, 8 fastened to the base body via holders 10, 11 and an injector 9 integrated directly into the expansion part of the nozzle 17.
  • Channels 12 for the gas supply are in the base body , for example, the supply of argon provided, which open into the nozzle channel 13 of the nozzle 17.
  • the nozzle duct 13 consists of a converging part 14, a constriction 15, in which the speed of sound prevails when set correctly, and a diverging part 16, in which the flow speed is then further increased.
  • a cathode 18 projects into the nozzle channel 13, while the nozzle 17 is connected as an anode, so that an arc is formed in the nozzle channel 13, which heats the gas coming from the channel 12 and thus allows the plasma jet 3 to be generated.
  • water channels 18 are arranged in the base body in the region of the cathode and the anode.
  • the injector 6 which is furthest away from the nozzle outlet and thus in the colder area, the high-temperature-resistant plastic in powder form is injected together with a carrier gas into the plasma jet 3, accelerated in it, so that the plastic particles hit the substrate 1 at high speed and form layer 2 there.
  • additional particles can be introduced into the plasma jet.
  • the injector 7 is used, through which, for example, Al2O3 is injected in powder form together with a carrier gas, specifically directly at the outlet of the nozzle 17 in the hot jet region.
  • other particles for example metallic particles, can also be introduced through the injector 7.
  • Another injector 8 which is also directed into the hot jet region, serves for the supply of, for example, NiCr together with carrier gas in order to apply a metallic adhesive layer to improve the adhesion of the plastic layer 2.
  • the powder injector 9 can also be used to supply the additional particles in the constriction or expansion area of the nozzle.
  • the dosages of the particles injected by the four injectors 6, 7, 8, 9 are selected in accordance with the desired intended use of the substrate 1 with the coating 2.
  • the time sequence of the supply of the particles is also determined in accordance with the desired structure. For example, only the injector 8 can inject particles into the plasma jet at the start of the coating, and the other injectors are then actuated with different dosages to achieve a graded build-up.
  • the injector 6 is approximately 20-30 mm from the torch during atmospheric plasma spraying, while the distance of the workpiece from the torch is 100-150 mm. With vacuum plasma spraying, the distance between the torch / injector is approx. 50 mm and the distance between the torch / workpiece is approx. 200 mm.
  • FIG. 2 shows the flame spray gun, which has a reaction space arranged in a base body 20 21, in which channels 22, 23 open for fuel gas and oxygen and, moreover, an inflow channel 24 is also provided for additional particles, for example ceramic powder.
  • water channels 25 are arranged for cooling in the base body 20.
  • the reaction chamber 21 merges into a nozzle 26 which is designed in such a way that the flame jet is strongly accelerated.
  • An injector 28 for the high-temperature-resistant plastic material in powder form and the carrier gas is fastened to the base body 20 via a holder 27 and arranged in such a way that the plastic particles are introduced into the free jet outside the flame spray gun.
  • the distance between the torch and the plastic injection is approx. 30 mm, while the distance between the torch and the workpiece is 200 - 250 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Es wird ein Verfahren zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen vorgeschlagen, die mittels thermischer Spritzverfahren mit hoher Strahlgeschwindigkeit aufgebracht werden. Dabei wird der Kunststoff in den kälteren Strahlbereich eingeleitet. Als thermische Spritzverfahren können das Hochgeschwindigkeitsflammspritzen oder das atmosphärische, das Vakuum- oder das Inertgas-Plasmaspritzverfahren, jeweils für hohe Strahlgeschwindigkeit modifiziert, verwendet werden. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Beschichten eines Substrats mit hochtemperturbeständigen Kunststoffen.
  • In der chemischen Verfahrenstechnik, der Druck- und Plasmaätztechnik und anderen technischen Gebieten besteht die Notwendigkeit, metallische Grundkörper mit elektrisch isolierenden und gleichzeitig gegen Naßkorrosion schützenden Schichten zu überziehen, wobei die Schichten festhaftend und frei von durchgängigen Poren und Rissen sein müssen. Für Einsatztemperaturen bis etwa 100° C gibt es eine Reihe geeigneter Thermoplaste, die beispielsweise durch Wirbelsintern oder elektrostatische Verfahren auf die metallischen Körper aufgebracht werden. Kunststoffbeschichtungen für höhere Temperaturen beispielsweise 200 bis 250° C, konnten nicht hergestellt werden.
  • Seit jüngster Zeit sind Kunststoffe auf Polyphenylensulfid (PPS)- oder Polyetherketonbasis (PEK) verfügbar, die eine hohe chemische Beständigkeit, relativ hohe Einsatztemperaturen (maximale Dauer - Gebrauchstemperatur von PPS etwa 220° C, von PEK von etwa 260° C) und gute elektrisch isolierende Eigenschaften aufweisen. Diese Kunststoffe werden zur Zeit für die Herstellung von Körpern mittels Spritzgießens verwendet. Es hat sich gezeigt, daß die feste und dichte Aufbringung auf metallische Grundkörper als Beschichtung bisher nicht möglich war. Mit elektrostatischen Methoden lassen sich aufgrund der inhärenten Verfahrenseigenschaften nur jeweils dünne Schichten aufbringen, die nicht für tribologische oder Walkbelastung oder für hohe angelegte Spannungen geeignet sind. Auf vielen technischen Anwendungsgebieten besteht aber ein großes Interesse an dichten auf metallischen Grundkörpern gut haftenden Schichten aus Kunststoff mit den oben angegebenen Eigenschaften. Im chemischen Apparatebau und in der Elektrochemie sind Kunststoffbeschichtungen beispielsweise zum Schutz metallischer Wandungen gegen Naßkorrosion und als chemisch beständige elektrische Isolation von Bauteilen erforderlich; in der Papierindustrie werden walkbelastbare Walzenbeschichtungen mit glatter Oberfläche benötigt, die geeignet sind für den Einsatz in aggressiven Medien; in der Druckindustrie werden Isolierbeschichtungen von Elektrodenwalzen verlangt, um die Kunststoffoberflächen mittels Koronaentladung zu aktivieren und bedruckbar zu machen, wobei neben der Beständigkeit der Beschichtung in Ozon und UV-Strahlung hohe Spannungs- und Durchschlagfestigkeit und niedrige Verlustwinkel bei HF-Entladungen gefordert sind.
  • Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren und eine Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen zu schaffen, mit denen dichte und gut haftende Schichten ohne durchgängige Poren oder Risse herstellbar sind.
  • Im Stand der Technik sind zum Auftragen von Materialien, beispielsweise von hochschmelzenden metallischen oder keramischen Werkstoffen das Plasmaspritzen sowie das Hochgeschmwindigkeitsflammspritzen als thermische Spritzverfahren bekannt. Beim Plasmaverfahren gibt es das atmosphärische Plasmaspritzen, das Vakuumplasmaspritzen und das Inertgasplasmaspritzen, bei denen eine aus einer Hochstromentladung stammende Plasmaströmung (Plasmastrahl) zur Aufschmelzung, Beschleunigung und Deposition des in Pulverform zugeführten Spritzgutes dient. Das Spritzgut wird nahe des Plasmaerzeugungsbereichs über Injektoren, die im oder am Plasmabrenner angeordnet bzw. befestigt sind, eingespritzt. In diesem Bereich kann das Plasma Temperaturen von 10000° C und mehr annehmen, wodurch im Falle einer Zuführung des hochbeständigen Kunststoffmaterials über die Injektoren eine thermische Zersetzung des Spritzgutes auftreten würde. Darüber hinaus ist bei üblichen Brennern die Geschwindigkeit der Spritzguttropfen zu niedrig, um ihre hohe Oberflächenspannung zu überwinden, so daß keine dichten gleichmäßigen Schichten hergestellt werden können.
  • Bei dem Hochgeschwindigkeitsflammspritzen reagieren im Inneren des Brenners Brenngase wie Propan, Propylen usw. oder auch Acetylen mit Sauerstoff, wodurch sich ein unter erhöhtem Druck stehendes Reaktionsgemisch bildet, daß sich durch eine Düse in Form einer Flamme entspannt. Das aufzubringende Spritzgut wird in Pulverform axial in diesem Reaktionsraum bzw. in den Anfangsbereich der Flammenströmung zugeführt, wodurch sich eine lange gewünschte Aufheiz- und Beschleunigungszeit für das Spritzgut ergibt. Für die Verarbeitung des hochtemperaturbeständigen Kunststoffs ist die Brennraumtemperatur, die etwa bei 3000° C liegt, zu hoch. Dadurch können wiederum Vercrackungen des Kunststoffs auftreten und darüber hinaus setzen sich die Partikel des Kunststoffs an den Düsenwandungen fest, was zu schnellem Ausfall des Brenners führt.
  • Erfindungsgemäß wird die Beschichtung mit hochtemperaturbeständigen Kunststoffen mittels thermischer Spritzverfahren mit hoher Strahlgeschwindigkeit d.h. Geschwindigkeiten größer als 500 m/sec. aufgebracht, wobei der pulverförmige Kunststoff im den kälteren Bereich des Strahls bzw. der Flamme zugeführt wird.
  • Ein wesentlicher Gedanke der Erfindung liegt darin, das pulverförmige Kunststoffmaterial sowohl beim Plasmaverfahren als auch beim Hochgeschwindigkeitsflammspritzen stromabwärts im kälteren Strahlbereich, d.h. im Bereich von Temperaturen kleiner als 3000°C außerhalb der Düse oder des Brenners eingegeben wird. Dabei ist die Entfernung des jeweiligen Injektors zu der Düse bzw. dem Brenner abhängig von der Temperatur der austretenden Flamme bzw. des austretenden Strahls.
  • Es werden Brenner mit einer solchen Düsengeometrie verwendet, daß sich ein verbreiterter Hochgeschwindigkeitsstrahl ergibt, wodurch ein breiteres Strahl- und Temperaturprofil mit abgesenktem Temperaturniveau erzeugt wird und die thermische Belastung des eingegebenen Kunststoffmaterial verringert wird. Durch die Zuführung des Spritzgutes außerhalb der Strahlquelle im stromabwärtigen, kälteren Bereich des Freistrahls wird eine Überhitzung des Beschichtungsmaterials sowie eine Verstopfung der Strahlquelle im Falle des Hochgeschwindigkeitsflammspritzens vermieden. Die Düsengeometrie für hohe Strahlgeschwindigkeit ist durch einen - von der Quelle ausgesehen - sich zunächst verengenden und dann wieder erweiternden Querschnitt gekennzeichnet. Bei richtiger Auslegung und Wahl der Druckbedingungen nimmt die Strömung in der Engstelle Schallgeschwindigkeit an, um dann im expandierenden Teil überschallschnell zu werden. Das Spritzgut wird vorzugsweise in Pulverform zugeführt, kann aber auch in anderer Form, beispielsweise in Form von endlosen Fäden oder von mit Pulver gefüllten Schläuchen eingegeben werden.
  • Wie schon weiter oben erwähnt, besitzen die hochtemperaturbeständigen Kunststoffe (PPS,PEK) eine hohe Viskosität und Oberflächenspannung, so daß die Kunststoffpartikel mit hoher Geschwindigkeit z.B. größer 200m/sec und damit hoher kinetischer Energie auf die zu beschichtende Oberfläche auftreffen müssen, damit eine möglichst dichte, stabile und festhaftende Schicht entsteht. Durch Zumischen von Zusätzen aus Keramik oder Metall, die ebenfalls pulverförmig ausgebildet sein können, kann die Viskosität und Oberflächenspannung verringert werden, wodurch die Schichtqualität verbessert wird. Diese Zusätze können zusammen mit dem Kunststoffmaterial zugegeben werden, aber vorzugsweise werden sie getrennt im heißeren Strahlbereich oder in die Strahlquelle, d.h. dem Brenner selbst zugeführt, wodurch aufgrund der thermischen Energie die Aufschmelzung des Kunststoffmaterials verbessert wird. Die Verringerung der Oberflächenspannung der Kunststoffpartikel fördert eine dichtere Schicht und gleichzeitig wirken die keramischen oder metallischen Zusatzpartikel wegen ihrer höheren Dichte und Energie durch Impulsübertragung verdichtend. Durch die Zusatzpartikel wird die Härte der Schicht erhöht, so daß eine größere mechanische Belastbarkeit möglich wird. Darüber hinaus wird die Wärmedehnung der Schicht abgesenkt und damit die Gefahr von Spannungsrissen verringert. Durch die Eingabe der metallischen Zusatzpartikel mit vorgegebenen Dosierungen lassen sich die elektrische und thermische Leitfähigkeit gezielt variieren sowie die Härte, die mechanische Bearbeitbarkeit, optische Eigenschaften und dgl. beeinflussen.
  • Zur Verbesserung der Haftfestigkeit der Beschichtung auf dem zu beschichtenden Substrat, das beispielsweise aus Metall besteht, kann die Oberfläche aufgerauht werden, bei Metall beispielsweise durch Strahlen. Es kann auch zur Verbesserung der Haftung der Kunststoffschicht auf dem Substrat eine metallische Haftschicht aus NiAl, NiCr, Zn oder dergleichen aufgebracht werden, wobei derselbe Spritzbrenner wie für die Kunststoffbeschichtung verwendet werden kann oder ein zusätzlicher Spritzbrenner vorgesehen werden kann. Für eine festere Verzahnung und einen zusätzlichen Wärmedehnungsausgleich ist es vorteilhaft, einen gradierten Übergang zwischen metallischer Haftschicht und Kunststoffbeschichtung herzustellen, wobei sich eine getrennte Partikelinjektion anbietet, da gesonderte Dosierungen entsprechend dem gewünschten Aufbau möglich sind.
  • Die betrachteten Kunststoffe können nach der Deposition teilkristallin vorliegen. Sie neigen dann zur Rekristallisation unter Volumenabnahme, d.h. es treten Schrumpfspannungen und damit Risse auf. Diesen Eigenschaften kann durch Vorheizen des Substrats bzw. Werkstücks um oder über etwa 130° C im Falle des PPS entgegengewirkt werden. Eine andere Möglichkeit ist das Aufbringen einer porösen Zwischenschicht, die die Schrumpfspannungen aufnimmt, wobei für diese poröse Zwischenschicht gröberes Kunststoffpulver verwendet werden kann, das nur oberflächlich aufschmilzt, aber daher auch nicht schrumpft. Die gewünschte Porosität der Zwischenschicht läßt sich auch durch Verminderung der Strahl- und Partikelgeschwindigkeit, durch Absenken der Brennerleistung und damit der Strahlenthalpie sowie eine Verlagerung der Partikelzugabe weiter stromabwärts erreichen. Auch ist die Einlagerung von Hohlkugeln aus demselben Kunststoffmaterial, die Einlagerung von nachgebendem Material, wie zum Beispiel Polyethylen und die schon oben angesprochene Einlagerung von Material mit niedriger Wärmedehnung, wie zum Beispiel Al₂O₃ denkbar.
  • Ein Plasmabrenner und eine Hochgeschwindigkeitsflammspritzpistole, wie sie bei dem thermischen Spritzverfahren gemäß der Erfindung verwendet werden sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
  • Fig. 1
    einen schematischen Schnitt durch den Plasmabrenner und
    Fig. 2
    einen schematischen Schnitt durch die Flammspritzpistole.
  • In der Figur 1 ist mit dem Bezugszeichen 1 das Substrat bezeichnet, das beispielsweise ein Metallkörper, wie eine Druckwalze sein kann. Die Kunststoffschicht 2 aus hochtemperaturbeständigem Kunststoff, beispielsweise Kunststoff auf Polyphenylsulfid- oder Polyetherketonbasis wird mittels eines Plasmastrahls 3 auf das Substrat aufgebracht. Der Plasmabrenner 4 besteht aus einem Grundkörper 5 und im Ausführungsbeispiel aus drei an dem Grundkörper über Halter 10,11 befestigten Injektoren 6,7,8 sowie einem direkt in den Expansionsteil der Düse 17 integrierten Injektor 9.In dem Grundkörper sind Kanäle 12 für die Gaszufuhr, beispielsweise die Zufuhr von Argon vorgesehen, die in dem Düsenkanal 13 der Düse 17 münden. Der Düsenkanal 13 besteht aus einem konvergierenden Teil 14, einer Engstelle 15, in der bei richtiger Einstellung Schallgeschwindigkeit herrscht, und einem divergierenden Teil 16, in dem dann die Strömungsgeschwindigkeit weiter erhöht wird. In den Düsenkanal 13 ragt eine Kathode 18 hinein, während die Düse 17 als Anode geschaltet ist, so daß sich im Düsenkanal 13 ein Lichtbogen bildet, der das aus dem Kanal 12 kommende Gas aufheizt und so den Plasmastrahl 3 entstehen läßt. Zur Kühlung des Plasmabrenners 4 sind im Grundkörper im Bereich der Kathode und der Anode Wasserkanäle 18 angeordnet.
  • Durch den Injektor 6, der am weitesten entfernt vom Düsenausgang und somit im kälteren Bereich liegt, wird der hochtemperaturbeständige Kunststoff in Pulverform zusammen mit einem Trägergas in den Plasmastrahl 3 injiziert, in diesem beschleunigt, so daß die Kunststoffpartikel mit großer Geschwindigkeit auf das Substrat 1 treffen und dort die Schicht 2 bilden. Wie schon weiter oben zu dem Verfahren erläutert wurde, können Zusatzpartikel in den Plasmastrahl eingeleitet werden. Dazu dient beispielsweise der Injektor 7, durch den beispielsweise Al₂O₃ in Pulverform zusammen mit einem Trägergas injiziert wird und zwar direkt am Austritt der Düse 17 im heißen Strahlbereich. Selbstverständlich können auch andere Partikel zum Beispiel metallische Partikel durch den Injektor 7 eingeleitet werden. Ein weiterer Injektor 8, der ebenfalls in den heißen Strahlbereich gerichtet ist, dient zur Zufuhr von beispielsweise NiCr zusammen mit Trägergas, um eine metallische Haftschicht zur Verbesserung der Haftung der Kunststoffschicht 2 aufzubringen. Zur Zufuhr der Zusatzpartikel kann auch der Pulverinjektor 9 im Engstellen- bzw. Erweiterungsbereich der Düse dienen. Die Dosierungen der durch die vier Injektoren 6, 7, 8, 9 injizierten Partikel werden entsprechend dem gewünschten Verwendungszweck des Substrats 1 mit der Beschichtung 2 gewählt. Auch die zeitliche Abfolge der Zuführung der Partikel wird entsprechend dem gewünschten Aufbau festgelegt. So kann beispielsweise zu Beginn der Beschichtung nur der Injektor 8 Partikel in den Plasmastrahl injizieren und zur Erzielung eines gradierten Aufbaus werden dann die anderen Injektoren mit unterschiedlichen Dosierungen betätigt.
  • Der Injektor 6 ist beim atmosphärischen Plasmaspritzen ca. 20 - 30 mm vom Brenner entfernt, während der Abstand des Werkstückes vom Brenner bei 100 - 150 mm liegt. Beim Vakuumplasmaspritzen ist der Abstand Brenner / Injektor ca. 50 mm und der Abstand Brenner / Werkstück ca. 200 mm.
  • In Figur 2 ist die Flammspritzpistole dargestellt, die einen in einem Grundkörper 20 angeordneten Reaktionsraum 21 aufweist, in den Kanäle 22, 23 für Brenngas und Sauerstoff münden und darüber hinaus ist ebenfalls ein Zuströmkanal 24 für Zusatzpartikel, beispielsweise Keramikpulver vorgesehen. Außerdem sind Wasserkanäle 25 für die Kühlung im Grundkörper 20 angeordnet. Der Reaktionsraum 21 geht in eine Düse 26 über, die derart ausgebildet ist, daß der Flammstrahl stark beschleunigt wird. An den Grundkörper 20 ist über einen Halter 27 ein Injektor 28 für das hochtemperaturbeständige Kunststoffmaterial in Pulverform und das Trägergas befestigt und derart angeordnet, daß die Kunststoffpartikel außerhalb der Flammspritzpistole in den Freistrahl eingeleitet werden.
  • Der Abstand Brenner / Kunststoffinjektion liegt bei ca. 30 mm, während der Abstand Brenner / Werkstück 200 - 250 mm beträgt.

Claims (19)

  1. Verfahren zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen,

    dadurch gekennzeichnet,
    daß der hochtemperaturbeständige Kunststoff mittels thermischer Spritzverfahren mit hoher Strahlgeschwindigkeit aufgebracht wird, wobei der Kunststoff in den kälteren Strahlbereich eingeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als thermisches Spritzverfahren das Hochgeschwindigkeitsflammspritzen oder das atmosphärische, das Vakuum- oder das Inertgas-Plasmaspritzverfahren, jeweils für hohe Strahlgeschwindigkeit modifiziert, verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß neben Kunststoff keramische und/oder metallische Materialien fein verteilt dem Strahl zugegeben werden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die keramischen und/ oder metallischen Materialien pulverförmig im heißeren Strahlbereich oder in die Strahlquelle selbst eingegeben werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine poröse Zwischenschicht aus demselben Kunststoffmaterial gebildet wird, bei der nur die Oberflächenbereiche der Kunststoffpartikel aufgeschmolzen werden. aufgeschmolzen werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß für die Ausbildung der porösen Zwischenschicht die Kunststoffpartikel dadurch nur oberflächlich aufgeschmolzen werden, daß gröberes Kunststoffpulver verwendet und/oder die Strahl-bzw. Partikelgeschwindigkeit verringert und/oder die Leistung des Brenners abgesenkt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als Kunststoffpartikel für die poröse Zwischenschicht zumindestens teilweise Hohlkugeln des selben Kunststoffmaterials zugeführt werden.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zusätzlich zu den Kunststoffpartikeln für die poröse Zwischenschicht Partikel aus einem anderen weicheren Kunststoff, wie Polyethylen zugeführt werden.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß zur Verbesserung der Haftfestigkeit die Oberfläche des Substrats aufgerauht und/oder eine zusätzliche rauhe, festhaftende metallische Spritzschicht, z.B. aus NiAl, NiCr, Zn oder dgl. aufgebracht wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß bei Zuführung von metallischen und/oder keramischen Materialien diese zur Erzielung eines gradierten Übergangs zwischen Beschichtungsbereichen mit unterschiedlichen Dosierungen eingegeben werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß vor dem Beschichtungsvorgang das Substrat aufgeheizt und/oder nach dem Beschichtungsvorgang das beschichtete Substrat getempert wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß zusätzlich in besonderen Anwendungsfällen fasriges Kunststoffmaterial zugeführt wird.
  13. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine Plasmaspritzvorrichtung mit mindestens einem Plasmabrenner oder eine Flammspritzvorrichtung mit mindestens einer Flammspritzpistole vorgesehen ist, die zur Erhöhung der Strahlgeschwindigkeit Düsen mit sich zunächst verengendem und dann sich aufweitendem Querschnitt aufweisen und daß mindestens jeweils ein Injektor für das Kunststoffmaterial vorgesehen ist, der im Bereich des Auslasses der Flammspritzpistole bzw. außerhalb des Plasmabrenners oder der Flammspritzpistole angeordnet ist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß dem Plasmabrenner (4) mindestens ein weiterer Injektor (7,8,9) zugeordnet ist, der zur Zuführung von metallischem oder keramischem Material dient und der innerhalb der Düse (17) im Bereich der Engstelle (15) oder im divergierenden Teil (16) oder direkt am Auslaß des Plasmabrenners (4) angeordnet ist, wobei der Injektor (6) für das Kunststoffmaterial weiter vom Auslaß entfernt ist.
  15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Flammspritzpistole (28) eine Zuführung für das metallische oder keramische Material direkt in den Reaktionsraum (21) aufweist.
  16. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 12 zur Herstellung von Beschichtungen von chemischen Apparaten und Komponenten als Korrosions- und Verschleißschutz.
  17. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 12 zur Herstellung von Beschichtungen von elektrochemischen Apparaten und Komponenten als Korrosions- und Verschleißschutz.
  18. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 12 zur Herstellung von Beschichtungen von Corona-Walzen als elektrische Isolierschicht.
  19. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 12 zur Herstellung von Beschichtungen von Walzen, Rollen und Stäben als Maschinenkomponenten zum Drucken, Farbübertragen und Beschichten.
EP92250231A 1991-09-02 1992-08-27 Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen Expired - Lifetime EP0532134B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4129120A DE4129120C2 (de) 1991-09-02 1991-09-02 Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen und Verwendung des Verfahrens
DE4129120 1991-09-02

Publications (2)

Publication Number Publication Date
EP0532134A1 true EP0532134A1 (de) 1993-03-17
EP0532134B1 EP0532134B1 (de) 1996-01-10

Family

ID=6439670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92250231A Expired - Lifetime EP0532134B1 (de) 1991-09-02 1992-08-27 Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen

Country Status (4)

Country Link
EP (1) EP0532134B1 (de)
JP (1) JPH06510054A (de)
AT (1) ATE132775T1 (de)
DE (2) DE4129120C2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897019A1 (de) * 1997-07-18 1999-02-17 FINMECCANICA S.p.A. AZIENDA ANSALDO Verfahren und Vorrichtung zur Herstellung von porösen keramischen Beschichtungen, insbesondere wärmedämmende Beschichtungen, auf metallische Substrate
EP0939142A1 (de) * 1998-02-27 1999-09-01 Ticona GmbH Thermisches Sprühpulver enthaltend ein oxidiertes Polyarylensulfid
EP0939143A1 (de) * 1998-02-27 1999-09-01 Ticona GmbH Thermisches Sprühpulver enthaltend ein oxidiertes Polyarylensulfid
EP1063315A1 (de) * 1999-06-24 2000-12-27 Ford Global Technologies, Inc. Thermisch gespritzte Gegenstände und Verfahren zur Herstellung
EP1075877A2 (de) * 1999-08-09 2001-02-14 Ford Global Technologies, Inc. Verfahren zur Herstellung von Polymer-Metallverbundkörpern
WO2001042525A2 (de) * 1999-12-09 2001-06-14 Dacs Verfahren zur kunststoffbeschichtung mittels eines spritzvorganges, eine vorrichtung dazu sowie die verwendung der schicht
WO2003051528A2 (en) * 2001-12-14 2003-06-26 E.I. Du Pont De Nemours And Company High velocity oxygen fuel (hvof) method and apparatus for spray coating non-melting polymers
WO2003051521A3 (en) * 2001-12-14 2004-01-29 Du Pont Articles spray coated with non-melting polymer
FR2854086A1 (fr) * 2003-04-23 2004-10-29 Saint Gobain Pont A Mousson Procede de revetement par flamme et dispositif correspondant
EP1506816A1 (de) * 2003-04-30 2005-02-16 Linde Aktiengesellschaft Lavaldüse für thermisches oder kinetisches Spritzen
US20100323118A1 (en) * 2009-05-01 2010-12-23 Mohanty Pravansu S Direct thermal spray synthesis of li ion battery components
EP2545998A1 (de) * 2011-07-13 2013-01-16 United Technologies Corporation Plasmaspritzpistole und Verfahren zur Beschichtung einer Oberfläche eines Stücks
US8651394B2 (en) 2003-04-30 2014-02-18 Sulzer Metco Ag Laval nozzle for thermal spraying and kinetic spraying
CN106733283A (zh) * 2016-12-03 2017-05-31 天长市金陵电子有限责任公司 一种节能型喷塑枪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow
DE19705671A1 (de) * 1997-02-14 1998-08-20 Heidelberger Druckmasch Ag Druckmaschine mit einem korrosionsgeschützten Druckwerkszylinder
CN104008947B (zh) * 2014-06-11 2016-01-13 北京大学 一种基于二次电子倍增的自稳流微脉冲电子枪
US11952317B2 (en) 2018-10-18 2024-04-09 Rolls-Royce Corporation CMAS-resistant barrier coatings
DE102021118093A1 (de) 2021-04-14 2022-10-20 MTU Aero Engines AG Pulverinjektorhalter und Plasmabrenner zum Erzeugen einer thermischen Spritzschicht

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1119863A (fr) * 1954-01-26 1956-06-26 Montedison Spa Procédé pour assurer l'adhérence des revêtements protecteurs en polyéthylène
FR1423539A (fr) * 1964-02-06 1966-01-03 Basf Ag Enduction de supports avec des matières plastiques
BE804524A (fr) * 1973-09-06 1974-01-02 Soudure Autogene Elect Procede et torche de revetement de surfaces par des poudres en matiere plastique au moyen de torche de plasma a arc interne
US4386112A (en) * 1981-11-02 1983-05-31 United Technologies Corporation Co-spray abrasive coating
EP0134168A1 (de) * 1983-08-08 1985-03-13 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung um ausgehend von einem Plasmastrahl und einem Strahl eines fein verteilten Stoffes einen homogenen Strahl zu erhalten, und Vorrichtung, die dieses Verfahren benutzt
US4604306A (en) * 1985-08-15 1986-08-05 Browning James A Abrasive blast and flame spray system with particle entry into accelerating stream at quiescent zone thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958097A (en) * 1974-05-30 1976-05-18 Metco, Inc. Plasma flame-spraying process employing supersonic gaseous streams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1119863A (fr) * 1954-01-26 1956-06-26 Montedison Spa Procédé pour assurer l'adhérence des revêtements protecteurs en polyéthylène
FR1423539A (fr) * 1964-02-06 1966-01-03 Basf Ag Enduction de supports avec des matières plastiques
BE804524A (fr) * 1973-09-06 1974-01-02 Soudure Autogene Elect Procede et torche de revetement de surfaces par des poudres en matiere plastique au moyen de torche de plasma a arc interne
US4386112A (en) * 1981-11-02 1983-05-31 United Technologies Corporation Co-spray abrasive coating
EP0134168A1 (de) * 1983-08-08 1985-03-13 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung um ausgehend von einem Plasmastrahl und einem Strahl eines fein verteilten Stoffes einen homogenen Strahl zu erhalten, und Vorrichtung, die dieses Verfahren benutzt
US4604306A (en) * 1985-08-15 1986-08-05 Browning James A Abrasive blast and flame spray system with particle entry into accelerating stream at quiescent zone thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897019A1 (de) * 1997-07-18 1999-02-17 FINMECCANICA S.p.A. AZIENDA ANSALDO Verfahren und Vorrichtung zur Herstellung von porösen keramischen Beschichtungen, insbesondere wärmedämmende Beschichtungen, auf metallische Substrate
US6051279A (en) * 1997-07-18 2000-04-18 Finmeccanica S.P.A. Azienda Ansaldo Method and device for forming porous ceramic coatings, in particular thermal barrier coating, on metal substrates
EP0939142A1 (de) * 1998-02-27 1999-09-01 Ticona GmbH Thermisches Sprühpulver enthaltend ein oxidiertes Polyarylensulfid
EP0939143A1 (de) * 1998-02-27 1999-09-01 Ticona GmbH Thermisches Sprühpulver enthaltend ein oxidiertes Polyarylensulfid
US6365274B1 (en) 1998-02-27 2002-04-02 Ticona Gmbh Thermal spray powder incorporating a particular high temperature polymer
US6682812B2 (en) 1998-02-27 2004-01-27 Ticona Gmbh Thermal spray powder of oxidized polyarylene incorporating a particular high temperature polymer
EP1063315A1 (de) * 1999-06-24 2000-12-27 Ford Global Technologies, Inc. Thermisch gespritzte Gegenstände und Verfahren zur Herstellung
US6406756B1 (en) 1999-06-24 2002-06-18 Ford Global Technologies, Inc. Thermally sprayed articles and method of making same
EP1075877A2 (de) * 1999-08-09 2001-02-14 Ford Global Technologies, Inc. Verfahren zur Herstellung von Polymer-Metallverbundkörpern
EP1075877A3 (de) * 1999-08-09 2003-06-04 Ford Global Technologies, Inc. Verfahren zur Herstellung von Polymer-Metallverbundkörpern
WO2001042525A2 (de) * 1999-12-09 2001-06-14 Dacs Verfahren zur kunststoffbeschichtung mittels eines spritzvorganges, eine vorrichtung dazu sowie die verwendung der schicht
WO2001042525A3 (de) * 1999-12-09 2002-02-14 Dacs Verfahren zur kunststoffbeschichtung mittels eines spritzvorganges, eine vorrichtung dazu sowie die verwendung der schicht
WO2003051528A3 (en) * 2001-12-14 2003-10-23 Du Pont High velocity oxygen fuel (hvof) method and apparatus for spray coating non-melting polymers
CN1327973C (zh) * 2001-12-14 2007-07-25 纳幕尔杜邦公司 用非熔融聚合物喷涂的制品
WO2003051521A3 (en) * 2001-12-14 2004-01-29 Du Pont Articles spray coated with non-melting polymer
CN100384543C (zh) * 2001-12-14 2008-04-30 纳幕尔杜邦公司 用于喷涂非熔融聚合物的高速氧气燃料方法和装置
WO2003051528A2 (en) * 2001-12-14 2003-06-26 E.I. Du Pont De Nemours And Company High velocity oxygen fuel (hvof) method and apparatus for spray coating non-melting polymers
WO2004097060A1 (fr) * 2003-04-23 2004-11-11 Saint-Gobain Pam Procede de revetement par flamme et dispositif correspondant
FR2854086A1 (fr) * 2003-04-23 2004-10-29 Saint Gobain Pont A Mousson Procede de revetement par flamme et dispositif correspondant
CN1798859B (zh) * 2003-04-23 2010-11-03 圣-戈班Pam集团公司 火焰涂覆方法以及对应的设备
EP1506816A1 (de) * 2003-04-30 2005-02-16 Linde Aktiengesellschaft Lavaldüse für thermisches oder kinetisches Spritzen
US8651394B2 (en) 2003-04-30 2014-02-18 Sulzer Metco Ag Laval nozzle for thermal spraying and kinetic spraying
US20100323118A1 (en) * 2009-05-01 2010-12-23 Mohanty Pravansu S Direct thermal spray synthesis of li ion battery components
EP2545998A1 (de) * 2011-07-13 2013-01-16 United Technologies Corporation Plasmaspritzpistole und Verfahren zur Beschichtung einer Oberfläche eines Stücks
US8692150B2 (en) 2011-07-13 2014-04-08 United Technologies Corporation Process for forming a ceramic abrasive air seal with increased strain tolerance
CN106733283A (zh) * 2016-12-03 2017-05-31 天长市金陵电子有限责任公司 一种节能型喷塑枪

Also Published As

Publication number Publication date
ATE132775T1 (de) 1996-01-15
DE4129120A1 (de) 1993-03-04
DE59204991D1 (de) 1996-02-22
DE4129120C2 (de) 1995-01-05
EP0532134B1 (de) 1996-01-10
JPH06510054A (ja) 1994-11-10

Similar Documents

Publication Publication Date Title
EP0532134B1 (de) Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen
EP2009648B1 (de) Heiz- und/oder Kühlvorrichtung mit mehreren Schichten
DE69800158T2 (de) Vorrichtung und Verfahren zum Wärmebehandeln
DE60015725T2 (de) Erzeugung von Werkstoffen
DE102005018062B4 (de) Verfahren zur Produktion von Heizeinrichtungen für Komponenten für Spritzgussgeräte
DD259586A5 (de) Verfahren zur herstellung von gespruehten abreibbaren beschichtungen und nach dem verfahren hergestellte beschichtung
EP2107131A1 (de) Verfahren und Anlage zum Beschichten und zur Oberflächenbehandlung von Substraten mittels eines Plasmastrahls
EP1789600B1 (de) Verfahren zur herstellung dünner, dichter keramikschichten
DE69321977T2 (de) Verfahren zur Beschichtung einer Papiermaschinenwalze und Walzebeschichtung
DE69522098T2 (de) Thermische sprühdüse zur herstellung von thermischen rauhen sprühbeschichtungen; verfahren zur herstellung von thermischen rauhen sprühbeschichtungen
DE102006038780A1 (de) Verfahren und Vorrichtung zum Herstellen einer Beschichtung
DE202021104848U1 (de) Laserspritzpistole, mit der eine Beschichtung mit ultrahoher Bindungsfestigkeit hergestellt werden kann
DE60023656T2 (de) Flüssigkeitskristallpolymerbeschichtungsprozess
DE10223865B4 (de) Verfahren zur Plasmabeschichtung von Werkstücken
DE102014103025A1 (de) Verfahren zur Beschichtung eines Substrates, Verwendung des Substrats und Vorrichtung zur Beschichtung
EP2711441A1 (de) Vorrichtung und Verfahren zur Erzeugung eines Schichtsystems
EP0263469A1 (de) Verfahren zum thermischen Beschichten von Oberflächen
DE102005025054A1 (de) Verfahren zur Herstellung gasdichter Schichten und Schichtsysteme mittels thermischem Spritzen
EP0127041A1 (de) Verfahren zur Herstellung von Lichtwellenleitern
AT517694B1 (de) Vorrichtung und Verfahren zum Aufbringen einer Beschichtung
DE19747383A1 (de) Verbinden von Werkstücken
DE102012107076A1 (de) Verfahren und Vorrichtung zum thermischen Spritzen von Beschichtungswerkstoffen
DE69017973T2 (de) Verfahren zur Herstellung von feinteiligen Teilchen oder Pulver, Dampf oder Feintröpfchen und Vorrichtung dafür.
DE202017105119U1 (de) Abstreifer für flexible Materialbahnen von einer Walze
EP0401259A1 (de) Verfahren und vorrichtung zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930415

17Q First examination report despatched

Effective date: 19940722

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960110

Ref country code: DK

Effective date: 19960110

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960110

Ref country code: BE

Effective date: 19960110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960110

REF Corresponds to:

Ref document number: 132775

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59204991

Country of ref document: DE

Date of ref document: 19960222

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960410

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990830

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991029

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010925

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301