EP0531182A1 - Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie - Google Patents

Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie Download PDF

Info

Publication number
EP0531182A1
EP0531182A1 EP92402246A EP92402246A EP0531182A1 EP 0531182 A1 EP0531182 A1 EP 0531182A1 EP 92402246 A EP92402246 A EP 92402246A EP 92402246 A EP92402246 A EP 92402246A EP 0531182 A1 EP0531182 A1 EP 0531182A1
Authority
EP
European Patent Office
Prior art keywords
column
oxygen
liquid
low pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92402246A
Other languages
German (de)
English (en)
Other versions
EP0531182B1 (fr
EP0531182B2 (fr
Inventor
François Camberlein
Jean-Louis Girault
Philippe Mazieres
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9415988&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0531182(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0531182A1 publication Critical patent/EP0531182A1/fr
Publication of EP0531182B1 publication Critical patent/EP0531182B1/fr
Application granted granted Critical
Publication of EP0531182B2 publication Critical patent/EP0531182B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/915Combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to the air distillation technique.
  • coal gasification gasification of petroleum residues, direct reduction-smelting of iron ore, injection of coal into blast furnaces, metallurgy of non-ferrous metals, etc.
  • the object of the invention is to satisfy such needs economically, that is to say to allow, with a relatively low investment and energy consumption, the production of impure oxygen at a selected purity and pressure. at will and, if necessary, the production of practically pure oxygen.
  • the subject of the invention is a process for the distillation of air by means of a double distillation column coupled to a mixing column, in which the mixing column is supplied to the tank with an auxiliary gas consisting of a mixture of air gases, and at the top with a liquid richer in oxygen than the auxiliary gas, taken from the lower part of the low pressure column, and impure oxygen is drawn off at the top of the mixing column constituting a production gas, where the auxiliary gas and the liquid supplying the mixing column are compressed at the same pressure different from that of the medium pressure column, typically higher than the latter, advantageously at least 2 ⁇ 105 Pa.
  • Said liquid can be the bottom liquid of the low pressure column, in particular oxygen practically without nitrogen, or else it can be drawn off a few trays above the bottom of the low pressure column.
  • the invention also relates to an air distillation installation intended for the implementation of the process defined above, of the type comprising a double distillation column, a mixing column, a heat exchange line, a source an auxiliary gas consisting of a mixture of air gases, means for introducing the auxiliary gas at the base of the mixing column, means for withdrawing a liquid richer in oxygen than the auxiliary gas in the part bottom of the low pressure column, means for pumping this liquid and for introducing it at the top of the mixing column, and means for withdrawing impure oxygen at the head of the mixing column as gas for producing the installation, characterized in that it comprises means for compressing the auxiliary gas to a determined pressure different from that of the medium pressure column, passages for this compressed auxiliary gas provided in the line heat exchange and in that the pumping means bring the liquid to said determined pressure.
  • the invention also relates to the application of the process defined above to the supply of gas to a steelworks, said impure oxygen being produced under the pressure of the blast furnace and being sent to the latter.
  • said liquid is oxygen practically without nitrogen
  • said oxygen is sent practically without nitrogen to the converters of the steelworks.
  • FIGS. 1 to 3 schematically represent three embodiments of the air distillation installation according to the invention.
  • the air distillation installation shown in FIG. 1 is intended to produce impure oxygen, for example having a purity of 80 to 97% and preferably 85 to 95%, under a determined pressure P clearly different from 6 x 105 Pa abs., Per example under 2 to 5 x 105 Pa or advantageously under a pressure higher by at least 2 x 105 Pa and possibly up to around 30 x 105 Pa, preferably between 8 x 105 Pa and 15 x 105 Pa.
  • the installation essentially comprises a heat exchange line 1, a double distillation column 2 itself comprising a medium pressure column 3, a low pressure column 4 and a main condenser-vaporizer 5, and a mixing column 6. Columns 3 and 4 typically operate at approximately 6 x 105 Pa and approximately 1 x 105 Pa, respectively.
  • a mixing column is a column which has the same structure as a distillation column but which is used to mix in a manner close to reversibility a relatively volatile gas, introduced at its base, and a less volatile liquid, introduced at its top.
  • Such a mixture produces refrigerating energy and therefore makes it possible to reduce the energy consumption linked to the distillation.
  • this mixture is used, moreover, to directly produce impure oxygen under the pressure P, as will be described below.
  • the air to be separated by distillation, compressed to 6 x 105 Pa and suitably purified, is conveyed to the base of the medium pressure column 3 by a pipe 7. Most of this air is cooled in the exchange line 1 and introduced at the base of the medium pressure column 3, and the rest, boosted at 8 then cooled, is expanded at low pressure in a turbine 9 coupled to the booster 8, then blown at an intermediate point of the low pressure column 4. From “rich liquid” (oxygen-enriched air), taken from the tank of column 3 is, after expansion in an expansion valve 10, introduced into column 4, approximately at the point of air blowing.
  • Liquid oxygen is withdrawn from the tank of column 4, carried by a pump 13 at a pressure P1, slightly higher than the above-mentioned pressure P to take account of the losses load (P1-P less than 1 x 105 Pa), and introduced at the top of column 6.
  • P1 is therefore advantageously between 8 x 105 Pa and 30 x 105 Pa, preferably between 8 x 105 Pa and 16 x 105 Pa.
  • Auxiliary air, compressed at the same pressure P1 by an auxiliary compressor 14 and cooled in the exchange line 1, is introduced at the base of the mixing column 6.
  • FIG. 1 also shows auxiliary heat exchangers 19, 20, 21 ensuring the recovery of the cold available in the fluids circulating in the installation.
  • the pressure P of the impure oxygen produced can be chosen as desired.
  • the adjustment of the double column makes it possible to obtain various degrees of purity for this gas.
  • Another way of determining this degree of purity consists, as shown in FIG. 2, of choosing the level of sampling, in the low pressure column 4, of the liquid feeding the column 6, for example by leaving a few trays of distillation between the point and the column 4 tank.
  • the installation can produce, simultaneously with the impure oxygen of column 6, oxygen at a different purity and at a pressure, in particular oxygen roughly pure, by drawing off at the bottom of column 4.
  • This oxygen can be supplied in gaseous form, via a line 22 crossing the exchange line 1, under the low pressure of the low pressure column 4 or under pressure, in particular by pumping the liquid at 23 before it warms up in the exchange line; it can also be liquefied and sent to storage 24.
  • FIG. 3 differs from that of FIG. 2 in that it further comprises a column 25 for producing impure argon coupled, in a conventional manner, to the low pressure column 4.
  • the fact that the impure oxygen is produced not by the low pressure column 4 but by the mixing column 6 makes it possible to produce impure oxygen containing very little argon, which leaves the possibility of producing, in addition to argon, provided of course that the liquid oxygen withdrawn and pumped at 13 has sufficient purity, in particular at least equal to 98%.
  • the air auxiliary to the pressure P1 may be suitably purified atmospheric air, but also come from an annex process comprising an air compressor. It may for example be air taken from the inlet of a gas turbine and the pressure of which may be adjusted by means of a booster or an expansion turbine. More generally, it is possible to use, to feed the base of the mixing column 6, a mixture of air gases less rich in oxygen than the liquid taken from the lower part of the low pressure column, in particular impure nitrogen originating possibly from the installation itself.
  • the invention makes it possible to simultaneously produce, under particularly economical conditions of investment and energy consumption, pure or nearly pure oxygen, impure oxygen and argon.
  • the oxygen produced by column 4 is practically devoid of nitrogen and can therefore be used in the converters of a steelworks.
  • the installation in the form of FIG. 2, thus makes it possible to supply both these converters with pure oxygen and the blast furnace of the steelworks with impure oxygen at the pressure of the blast furnace; in its form in FIG. 3, the installation can also supply the steelworks with argon.

Abstract

L'installation est du type à double colonne (2) et à colonne de mélange (6). Cette dernière est alimentée en cuve par de l'air auxiliaire comprimé à une pression différente de celle de la colonne moyenne pression (3), et en tête par du liquide soutiré au bas de la colonne basse pression (4) et pompé à la même pression que l'air auxiliaire. De l'oxygène impur est soutiré en tête de la colonne de mélange en tant que gaz de production, et de l'oxygène à peu près pur est produit en cuve de la colonne basse pression. <IMAGE>

Description

  • La présente invention est relative à la technique de distillation de l'air.
  • Certaines applications industrielles nécessitent des quantités importantes d'oxygène impur sous diverses pressions :
  • gazéification du charbon, gazéification de résidus pétroliers, réduction-fusion directe du minerai de fer, injection de charbon dans les hauts fourneaux, métallurgie des métaux non ferreux, etc.
  • Par ailleurs, certains contextes industriels nécessitent la fourniture simultanée, en grandes quantités, d'oxygène pratiquement pur et d'oxygène impur sous des pressions différentes. C'est notamment le cas des aciéries comportant des convertisseurs à l'oxygène et dans lesquelles le haut fourneau est alimenté en oxygène ou en air enrichi en oxygène.
  • L'invention a pour but de satisfaire de tels besoins de façon économique, c'est-à-dire de permettre, avec un investissement et une consommation d'énergie relativement faibles, la production d'oxygène impur à une pureté et une pression choisies à volonté et, si nécessaire, la production d'oxygène pratiquement pur.
  • A cet effet, l'invention a pour objet un procédé de distillation d'air au moyen d'une double colonne de distillation couplée à une colonne de mélange, dans lequel on alimente la colonne de mélange en cuve par un gaz auxiliaire constitué d'un mélange de gaz de l'air, et en tête par un liquide plus riche en oxygène que le gaz auxiliaire, prélevé dans la partie inférieure de la colonne basse pression, et on soutire en tête de la colonne de mélange de l'oxygène impur constituant un gaz de production, où le gaz auxiliaire et le liquide alimentant la colonne de mélange sont comprimés à une même pression différente de celle de la colonne moyenne pression, typiquement supérieure à cette dernière, avantageusement d'au moins 2 x 10⁵ Pa.
  • Ledit liquide peut être le liquide de cuve de la colonne basse pression, notamment de l'oxygène pratiquement sans azote, ou bien être soutiré quelques plateaux au-dessus de la cuve de la colonne basse pression.
  • Dans le cadre d'un tel procédé, on peut en outre produire de l'argon au moyen d'une colonne de distillation additionnelle de production d'argon impur couplée à la colonne basse pression.
  • L'invention a également pour objet une installation de distillation d'air destinée à la mise en oeuvre du procédé défini ci-dessus, du type comprenant une double colonne de distillation, une colonne de mélange, une ligne d'échange thermique, une source d'un gaz auxiliaire constitué d'un mélange de gaz de l'air, des moyens pour introduire le gaz auxiliaire à la base de la colonne de mélange, des moyens pour soutirer un liquide plus riche en oxygène que le gaz auxiliaire dans la partie inférieure de la colonne basse pression, des moyens pour pomper ce liquide et pour l'introduire au sommet de la colonne de mélange, et des moyens pour soutirer de l'oxygène impur en tête de la colonne de mélange en tant que gaz de production de l'installation, caractérisée en ce qu'elle comprend des moyens pour comprimer le gaz auxiliaire à une pression déterminée différente de celle de la colonne moyenne pression, des passages pour ce gaz auxiliaire comprimé prévus dans la ligne d'échange thermique et en ce que les moyens de pompage portent le liquide à ladite pression déterminée.
  • L'invention a encore pour objet l'application du procédé défini plus haut à l'alimentation en gaz d'une aciérie, ledit oxygène impur étant produit sous la pression du haut fourneau et étant envoyé à ce dernier.
  • Lorsque ledit liquide est de l'oxygène pratiquement sans azote, de façon avantageuse, on envoie ledit oxygène pratiquement sans azote aux convertisseurs de l'aciérie.
  • Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les figures 1 à 3 représentent schématiquement trois modes de réalisation de l'installation de distillation d'air conforme à l'invention.
  • L'installation de distillation d'air représentée à la figure 1 est destinée à produire de l'oxygène impur, par exemple ayant une pureté de 80 à 97 % et de préférence de 85 à 95 %, sous une pression déterminée P nettement différente de 6 x 10⁵ Pa abs., par exemple sous 2 à 5 x 10⁵ Pa ou avantageusement sous une pression supérieure d'au moins 2 x 10⁵ Pa et pouvant aller jusqu'à 30 x 10⁵ Pa environ, de préférence entre 8 x 10⁵ Pa et 15 x 10⁵ Pa. L'installation comprend essentiellement une ligne d'échange thermique 1, une double colonne de distillation 2 comprenant elle-même une colonne moyenne pression 3, une colonne basse pression 4 et un condenseur-vaporiseur principal 5, et une colonne de mélange 6. Les colonnes 3 et 4 fonctionnent typiquement sous environ 6 x 10⁵ Pa et environ 1 x 10⁵ Pa, respectivement.
  • Comme expliqué en détail dans le document US-A-4.022.030, une colonne de mélange est une colonne qui a la même structure qu'une colonne de distillation mais qui est utilisée pour mélanger de façon proche de la réversibilité un gaz relativement volatil, introduit à sa base, et un liquide moins volatil, introduit à son sommet.
  • Un tel mélange produit de l'énergie frigorifique et permet donc de réduire la consommation d'énergie liée à la distillation. Dans le cas présent, ce mélange est mis à profit, en outre, pour produire directement de l'oxygène impur sous la pression P, comme cela sera décrit ci-dessous.
  • L'air à séparer par distillation, comprimé à 6 x 10⁵ Pa et convenablement épuré, est acheminé vers la base de la colonne moyenne pression 3 par une conduite 7. La majeure partie de cet air est refroidie dans la ligne d'échange 1 et introduite à la base de la colonne moyenne pression 3, et le reste, surpressé en 8 puis refroidi, est détendu à la basse pression dans une turbine 9 couplée au surpresseur 8, puis insufflé en un point intermédiaire de la colonne basse pression 4. Du "liquide riche" (air enrichi en oxygène), prélevé en cuve de la colonne 3 est, après détente dans une vanne de détente 10, introduit dans la colonne 4, à peu près au point d'insufflation de l'air. Du "liquide pauvre" (azote impur) prélevé en un point intermédiaire 11 de la colonne 3 est, après détente dans une vanne de détente 12, introduit au sommet de la colonne 4, constituant le gaz résiduaire de l'installation, et l'azote gazeux pur sous la moyenne pression produit en tête de la colonne 3, sont réchauffés dans la ligne d'échange 1 et évacués de l'installation. Ces gaz sont indiqués respectivement par NI et NG sur la figure 1.
  • De l'oxygène liquide, plus ou moins pur suivant le réglage de la double colonne 2, est soutiré en cuve de la colonne 4, porté par une pompe 13 à une pression P1, légèrement supérieure à la pression P précitée pour tenir compte des pertes de charge (P1-P inférieur à 1 x 10⁵ Pa), et introduit au sommet de la colonne 6. P1 est donc avantageusement comprise entre 8 x 10⁵ Pa et 30 x 10⁵ Pa, de préférence entre 8 x 10⁵ Pa et 16 x 10⁵ Pa. De l'air auxiliaire, comprimé à la même pression P1 par un compresseur auxiliaire 14 et refroidi dans la ligne d'échange 1, est introduit à la base de la colonne de mélange 6. De cette dernière sont soutirés trois courants de fluide : à sa base, du liquide voisin du liquide riche et réuni à ce dernier via une conduite 15 munie d'une vanne de détente 15A ; en un point intermédiaire, un mélange essentiellement constitué d'oxygène et d'azote, qui est renvoyé en un point intermédiaire de la colonne basse pression 4 via une conduite 16 munie d'une vanne de détente 17 ; et à son sommet de l'oxygène impur qui, après réchauffement dans la ligne d'échange thermique, est évacué, sensiblement à la pression P, de l'installation via une conduite 18 en tant que gaz de production 0I.
  • On a également représenté sur la figure 1 des échangeurs de chaleur auxiliaires 19, 20, 21 assurant la récupération du froid disponible dans les fluides en circulation dans l'installation.
  • Comme on le comprend, grâce à la présence d'un circuit séparé pour l'air auxiliaire alimentant la colonne 6, on peut choisir à volonté la pression P de l'oxygène impur produit. De plus, comme indiqué plus haut, le réglage de la double colonne permet d'obtenir divers degrés de pureté pour ce gaz.
  • Une autre manière de déterminer ce degré de pureté consiste, comme représenté à la figure 2, à choisir le niveau de prélèvement, dans la colonne basse pression 4, du liquide alimentant la colonne 6, par exemple en laissant quelques plateaux de distillation entre le point de prélèvement et la cuve de la colonne 4.
  • Comme on l'a également représenté sur la figure 2, l'installation peut produire, simultanément à l'oxygène impur de la colonne 6, de l'oxygène à une pureté et à une pression différentes, notamment de l'oxygène à peu près pur, par soutirage au bas de la colonne 4. Cet oxygène peut être fourni sous forme gazeuse, via une conduite 22 traversant la ligne d'échange 1, sous la basse pression de la colonne basse pression 4 ou sous pression, notamment par pompage du liquide en 23 avant son réchauffement dans la ligne d'échange ; il peut aussi être liquéfié et envoyé dans un stockage 24.
  • L'installation de la figure 3 diffère de celle de la figure 2 par le fait qu'elle comprend en outre une colonne 25 de production d'argon impur couplée, de façon classique, à la colonne basse pression 4.
  • En effet, le fait que l'oxygène impur soit produit non pas par la colonne basse pression 4 mais par la colonne de mélange 6 permet de produire de l'oxygène impur contenant très peu d'argon, ce qui laisse la possibilité de produire, en plus de l'argon, à condition bien entendu que l'oxygène liquide soutiré et pompé en 13 ait une pureté suffisante, notamment au moins égale à 98 %.
  • L'air auxiliaire à la pression P1 peut être de l'air atmosphérique convenablement épuré, mais également provenir d'un procédé annexe comprenant un compresseur d'air. Il peut par exemple s'agir d'air prélevé à l'entrée d'une turbine à gaz et dont la pression est éventuellement ajustée au moyen d'un surpresseur ou d'une turbine de détente. Plus généralement, on peut utiliser pour alimenter la base de la colonne de mélange 6, un mélange de gaz de l'air moins riche en oxygène que le liquide prélevé dans la partie inférieure de la colonne basse pression, notamment de l'azote impur provenant éventuellement de l'installation elle-même.
  • Ainsi, l'invention permet de produire simultanément, dans des conditions particulièrement économiques d'investissement et de consommation d'énergie, de l'oxygène pur ou à peu près pur, de l'oxygène impur et de l'argon.
  • Il est à noter que l'oxygène produit par la colonne 4 est pratiquement dépourvu d'azote et peut donc être utilisé dans les convertisseurs d'une aciérie. L'installation, sous la forme de la figure 2, permet ainsi d'alimenter à la fois ces convertisseurs en oxygène pur et le haut fourneau de l'aciérie en oxygène impur à la pression du haut fourneau ; sous sa forme de la figure 3, l'installation peut alimenter en outre l'aciérie en argon.

Claims (15)

  1. Procédé de distillation d'air au moyen d'une double colonne de distillation (2) couplée à une colonne de mélange (6), dans lequel on alimente la colonne de mélange en cuve par un gaz auxiliaire constitué d'un mélange de gaz de l'air, et en tête par un liquide plus riche en oxygène que le gaz auxiliaire, prélevé dans la partie inférieure de la colonne basse pression (4), et on soutire en tête de la colonne de mélange (6) de l'oxygène impur constituant un gaz de production, caractérisé en ce que le gaz auxiliaire et le liquide alimentant la colonne de mélange (6) sont comprimés sensiblement à une même première pression (P₁) différente de celle de la colonne moyenne pression (3).
  2. Procédé suivant la revendication 1, caractérisé en ce que le liquide est le liquide de cuve de la colonne basse pression (4).
  3. Procédé suivant la revendication 2, caractérisé en ce que le liquide est de l'oxygène pratiquement sans azote.
  4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit liquide est soutiré quelques plateaux au-dessus de la cuve de la colonne basse pression (4).
  5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on soutire de l'oxygène en cuve de la colonne basse pression (4) pour constituer un second gaz de production.
  6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on produit en outre de l'argon au moyen d'une colonne de distillation additionnelle de production d'argon impur (25) couplée à la colonne basse pression (4).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la première pression (P1) est supérieure d'au moins 2 x 10⁵ Pa à la pression dans la colonne moyenne pression.
  8. Procédé selon la revendication 7, caractérisé en ce que la première pression est comprise entre 8 x 10⁵ Pa et 16 x 10⁵ Pa.
  9. Installation de distillation d'air, du type comprenant une double colonne de distillation (2), une colonne de mélange (6), une ligne d'échange thermique (1), une source d'un gaz auxiliaire constitué d'un mélange de gaz de l'air, des moyens pour introduire le gaz auxiliaire à la base de la colonne de mélange (6), des moyens pour soutirer un liquide plus riche en oxygène que le gaz auxiliaire dans la partie inférieure de la colonne basse pression (4), des moyens (13) pour pomper ce liquide et pour l'introduire au sommet de la colonne de mélange, et des moyens pour soutirer de l'oxygène impur en tête de la colonne de mélange en tant que gaz de production de l'installation, caractérisée en ce qu'elle comprend des moyens (14) pour comprimer le gaz auxiliaire à une pression déterminée (P1) différente de celle de la colonne moyenne pression (3), et des passages pour ce gaz auxiliaire comprimé prévus dans la ligne d'échange thermique (1), et en ce que les moyens (13) de pompage portent le liquide à ladite pression déterminée (P₁).
  10. Installation suivant la revendication 9, caractérisée en ce que ledit liquide est soutiré en cuve de la colonne basse pression (4).
  11. Installation suivant la revendication 9, caractérisée en ce que ledit liquide est soutiré quelques plateaux au-dessus de la cuve de la colonne basse pression (4).
  12. Installation suivant l'une quelconque des revendications 9 à 11, caractérisée en ce qu'elle comprend des moyens pour soutirer de l'oxygène en cuve de la colonne basse pression (4) en tant que second gaz de producton de l'installation.
  13. Installation suivant l'une quelconque des revendications 9 à 12, caractérisée en ce qu'elle comprend une colonne de production d'argon impur (25) couplée à la colonne basse pression (4).
  14. Application d'un procédé suivant l'une quelconque des revendications 1 à 8 à l'alimentation en gaz d'une aciérie comprenant un haut fourneau, l'oxygène impur étant produit sous la pression du haut fourneau et étant envoyé à ce dernier.
  15. Application suivant la revendication 14, caractérisée en ce que, le procédé étant conforme à la revendication 3, on envoie l'oxygène pratiquement sans azote aux convertisseurs de l'aciérie.
EP92402246A 1991-08-07 1992-08-06 Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie Expired - Lifetime EP0531182B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9110035A FR2680114B1 (fr) 1991-08-07 1991-08-07 Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
FR9110035 1991-08-07

Publications (3)

Publication Number Publication Date
EP0531182A1 true EP0531182A1 (fr) 1993-03-10
EP0531182B1 EP0531182B1 (fr) 1996-02-21
EP0531182B2 EP0531182B2 (fr) 2000-12-27

Family

ID=9415988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402246A Expired - Lifetime EP0531182B2 (fr) 1991-08-07 1992-08-06 Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie

Country Status (9)

Country Link
US (1) US5291737A (fr)
EP (1) EP0531182B2 (fr)
CN (1) CN1062656C (fr)
AU (1) AU655485B2 (fr)
BR (1) BR9203049A (fr)
CA (1) CA2075420C (fr)
DE (1) DE69208412T3 (fr)
ES (1) ES2083709T5 (fr)
FR (1) FR2680114B1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air
EP0697576A1 (fr) * 1994-08-17 1996-02-21 The Boc Group, Inc. Procédé et dispositif de séparation d'air
EP0698772A1 (fr) * 1994-08-25 1996-02-28 The Boc Group, Inc. Procédé et dispositif pour la production d'oxygène
EP0932006A1 (fr) * 1998-01-23 1999-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation combinée d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
EP0932005A1 (fr) * 1998-01-23 1999-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
EP0982554A1 (fr) * 1998-08-28 2000-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur par distillation d'air
FR2789162A1 (fr) * 1999-02-01 2000-08-04 Air Liquide Procede de separation d'air par distillation cryogenique
EP1387136A1 (fr) * 2002-08-02 2004-02-04 Linde AG Procédé et appareil de production d'oxygène impur par distillation cryogénique de l'air
US6871513B2 (en) 2000-10-30 2005-03-29 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and installation for separation of air by cryogenic distillation integrated with an associated process
EP1666824A1 (fr) * 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
WO2007099246A2 (fr) * 2006-03-03 2007-09-07 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procede d'integration d'un haut-fourneau et d'une unite de separation de gaz de l'air
US7645319B2 (en) 2004-02-27 2010-01-12 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system
EP2703757A1 (fr) 2012-09-04 2014-03-05 Linde Aktiengesellschaft Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
DE102013009950A1 (de) 2013-06-13 2014-12-18 Linde Aktiengesellschaft Verfahren und Anlage zur Aufbereitung und thermischen Vergasung von wasserhaltigem organischem Einsatzmaterial
WO2014067662A3 (fr) * 2012-11-02 2015-04-16 Linde Aktiengesellschaft Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440884A (en) * 1994-07-14 1995-08-15 Praxair Technology, Inc. Cryogenic air separation system with liquid air stripping
FR2731781B1 (fr) * 1995-03-15 1997-05-23 Air Liquide Procede et appareil de vaporisation d'un debit liquide
US5582036A (en) * 1995-08-30 1996-12-10 Praxair Technology, Inc. Cryogenic air separation blast furnace system
US5666823A (en) 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US5628207A (en) * 1996-04-05 1997-05-13 Praxair Technology, Inc. Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen
US5596886A (en) * 1996-04-05 1997-01-28 Praxair Technology, Inc. Cryogenic rectification system for producing gaseous oxygen and high purity nitrogen
FR2753638B1 (fr) * 1996-09-25 1998-10-30 Procede pour l'alimentation d'une unite consommatrice d'un gaz
FR2776057B1 (fr) * 1998-03-11 2000-06-23 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US5865041A (en) * 1998-05-01 1999-02-02 Air Products And Chemicals, Inc. Distillation process using a mixing column to produce at least two oxygen-rich gaseous streams having different oxygen purities
FR2801963B1 (fr) 1999-12-02 2002-03-29 Air Liquide Procede et installation de separation d'air par distillation cryogenique
FR2795496B1 (fr) * 1999-06-22 2001-08-03 Air Liquide Appareil et procede de separation d'air par distillation cryogenique
FR2814178B1 (fr) 2000-09-18 2002-10-18 Air Liquide Alimentation en air enrichi en oxygene d'une unite de production de metal non-ferreux
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2861841B1 (fr) * 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2862004B3 (fr) * 2003-11-10 2005-12-23 Air Liquide Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
FR2862128B1 (fr) * 2003-11-10 2006-01-06 Air Liquide Procede et installation de fourniture d'oxygene a haute purete par distillation cryogenique d'air
FR2895068B1 (fr) 2005-12-15 2014-01-31 Air Liquide Procede de separation d'air par distillation cryogenique
EP1845323A1 (fr) * 2006-04-13 2007-10-17 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
CN111271940A (zh) * 2020-01-19 2020-06-12 浙江智海化工设备工程有限公司 一种新型富氧生产方法
WO2022016416A1 (fr) * 2020-07-22 2022-01-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif d'amélioration d'argon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1314605A (fr) * 1961-01-26 1963-01-11 Lindes Eismaschinen Ag Procédé et installation pour la rectification pour la décomposition de gaz à basse température
FR2169561A6 (fr) * 1971-02-01 1973-09-07 Air Liquide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
DE3722746A1 (de) * 1987-07-09 1989-01-19 Linde Ag Verfahren und vorrichtung zur luftzerlegung durch rektifikation
FR2655137B1 (fr) * 1989-11-28 1992-10-16 Air Liquide Procede et installation de distillation d'air avec production d'argon.
US5144808A (en) * 1991-02-12 1992-09-08 Liquid Air Engineering Corporation Cryogenic air separation process and apparatus
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1314605A (fr) * 1961-01-26 1963-01-11 Lindes Eismaschinen Ag Procédé et installation pour la rectification pour la décomposition de gaz à basse température
FR2169561A6 (fr) * 1971-02-01 1973-09-07 Air Liquide

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air
US5582035A (en) * 1993-04-30 1996-12-10 The Boc Group Plc Air separation
EP0697576A1 (fr) * 1994-08-17 1996-02-21 The Boc Group, Inc. Procédé et dispositif de séparation d'air
EP0698772A1 (fr) * 1994-08-25 1996-02-28 The Boc Group, Inc. Procédé et dispositif pour la production d'oxygène
FR2774159A1 (fr) * 1998-01-23 1999-07-30 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
EP0932005A1 (fr) * 1998-01-23 1999-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
FR2774157A1 (fr) * 1998-01-23 1999-07-30 Air Liquide Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
US6089040A (en) * 1998-01-23 2000-07-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combined plant of a furnace and an air distillation device and implementation process
EP0932006A1 (fr) * 1998-01-23 1999-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation combinée d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
EP0982554A1 (fr) * 1998-08-28 2000-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de production d'oxygène impur par distillation d'air
US6247333B1 (en) 1998-08-28 2001-06-19 L'air Liquide, Societe Anonyme Pour L'etrude Et L'exploitation Des Procedes Georges Claude Process for supplying impure oxygen to a synthesis-gas production unit
FR2789162A1 (fr) * 1999-02-01 2000-08-04 Air Liquide Procede de separation d'air par distillation cryogenique
EP1026464A1 (fr) * 1999-02-01 2000-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de séparation d'air par distillation cryogénique
US6295835B1 (en) 1999-02-01 2001-10-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for air separation by cryogenic distillation
US6871513B2 (en) 2000-10-30 2005-03-29 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and installation for separation of air by cryogenic distillation integrated with an associated process
EP1387136A1 (fr) * 2002-08-02 2004-02-04 Linde AG Procédé et appareil de production d'oxygène impur par distillation cryogénique de l'air
US7645319B2 (en) 2004-02-27 2010-01-12 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system
EP1666824A1 (fr) * 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
AU2007220388B2 (en) * 2006-03-03 2010-09-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of integrating a blast furnace with an air gas separation unit
WO2007099246A3 (fr) * 2006-03-03 2009-01-29 Air Liquide Procede d'integration d'un haut-fourneau et d'une unite de separation de gaz de l'air
FR2898134A1 (fr) * 2006-03-03 2007-09-07 Air Liquide Procede d'integration d'un haut-fourneau et d'une unite de separation de gaz de l'air
EA013661B1 (ru) * 2006-03-03 2010-06-30 Л`Эр Ликид, Сосьете Аноним Пур Л`Этюд Э Л`Эксплуатасьон Де Проседе Жорж Клод Способ интеграции доменной печи и устройства разделения газов воздуха
WO2007099246A2 (fr) * 2006-03-03 2007-09-07 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procede d'integration d'un haut-fourneau et d'une unite de separation de gaz de l'air
AU2007220388B8 (en) * 2006-03-03 2011-01-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of integrating a blast furnace with an air gas separation unit
EP2703757A1 (fr) 2012-09-04 2014-03-05 Linde Aktiengesellschaft Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air
DE102012017484A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014037091A2 (fr) 2012-09-04 2014-03-13 Linde Aktiengesellschaft Procédé et installation de production de produits d'oxygène liquides et gazeux par fractionnement cryogénique de l'air
WO2014067662A3 (fr) * 2012-11-02 2015-04-16 Linde Aktiengesellschaft Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
DE102013009950A1 (de) 2013-06-13 2014-12-18 Linde Aktiengesellschaft Verfahren und Anlage zur Aufbereitung und thermischen Vergasung von wasserhaltigem organischem Einsatzmaterial

Also Published As

Publication number Publication date
FR2680114B1 (fr) 1994-08-05
EP0531182B1 (fr) 1996-02-21
CA2075420A1 (fr) 1993-02-08
AU655485B2 (en) 1994-12-22
DE69208412T2 (de) 1996-07-04
CN1071000A (zh) 1993-04-14
DE69208412T3 (de) 2001-08-23
EP0531182B2 (fr) 2000-12-27
ES2083709T5 (es) 2001-03-16
CA2075420C (fr) 2003-05-13
DE69208412D1 (de) 1996-03-28
AU2079892A (en) 1993-02-11
CN1062656C (zh) 2001-02-28
US5291737A (en) 1994-03-08
FR2680114A1 (fr) 1993-02-12
ES2083709T3 (es) 1996-04-16
BR9203049A (pt) 1993-05-04

Similar Documents

Publication Publication Date Title
EP0531182B1 (fr) Procédé et installation de distillation d&#39;air, et application a l&#39;alimentation en gaz d&#39;une aciérie
EP0628778B2 (fr) Procédé et unité de fourniture d&#39;un gaz sous pression à une installation consommatrice d&#39;un constituant de l&#39;air
EP0547946B2 (fr) Procédé de production d&#39;oxygène impur
BE1006334A3 (fr) Procede d&#39;alimentation d&#39;un haut-fourneau en air enrichi en oxygene, et installation de reduction de minerai de fer correspondante.
EP0937679B1 (fr) Procédé et installation de production de monoxyde de carbone et d&#39;hydrogène
EP0676373B1 (fr) Procédé et installation de production de monoxyde de carbone
EP0689019A1 (fr) Procédé et installation de production d&#39;oxygène gazeux sous pression
EP1223395A1 (fr) Procédé intégré de séparation d&#39;air et de génération d&#39;énergie et installation pour la mise en oeuvre d&#39;un tel procédé
EP0789208A1 (fr) Procédé et installation de production d&#39;oxygène gazeux sous haute pression
EP0605262A1 (fr) Procédé et installation de production d&#39;oxygène gazeux sous pression
EP2504646B1 (fr) Procédé et appareil de séparation cryogénique d&#39;un mélange d&#39;azote et de monoxyde de carbone
EP0430803A1 (fr) Procédé et installation de distillation d&#39;air avec production d&#39;argon
EP1189003B1 (fr) Procédé et installation de séparation d&#39;air par distillation cryogénique
FR2686405A1 (fr) Procede et application de separation d&#39;air, et application d&#39;une telle installation.
WO2005045340A1 (fr) Procede et installation de fourniture d&#39;oxygene a haute purete par distillation cryogenique d&#39;air
EP0595673A1 (fr) Procédé et installation de production d&#39;azote et d&#39;oxygène
WO2018020091A1 (fr) Procédé et appareil de lavage à température cryogénique pour la production d&#39;un mélange d&#39;hydrogène et d&#39;azote
FR2862004A1 (fr) Procede et installation d&#39;enrichissement d&#39;un flux gazeux en l&#39;un de ses constituants
FR2860286A1 (fr) Procede de separation d&#39;air par distillation cryogenique
FR2831250A1 (fr) Procede et appareil de separation d&#39;air par distillation cryogenique
EP1690053A1 (fr) Procede et appareil de separation d&#39;air par distillation cryogenique
FR2782787A1 (fr) Procede et installation de production d&#39;oxygene impur par distillation d&#39;air
EP3913310A1 (fr) Procédé et appareil de séparation d&#39;air par distillation cryogénique
FR2825453A1 (fr) Procede et installation de separation par distillation
FR2787562A1 (fr) Procede et installation de distillation d&#39;air avec production d&#39;argon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT NL SE

17Q First examination report despatched

Effective date: 19940509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT NL SE

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69208412

Country of ref document: DE

Date of ref document: 19960328

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2083709

Country of ref document: ES

Kind code of ref document: T3

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19961121

Opponent name: THE BOC GROUP PLC

Effective date: 19961119

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

Opponent name: THE BOC GROUP PLC

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20001227

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE ES FR IT NL SE

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20010220

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050719

Year of fee payment: 14

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060807

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080718

Year of fee payment: 17

Ref country code: ES

Payment date: 20080811

Year of fee payment: 17

Ref country code: DE

Payment date: 20080725

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080726

Year of fee payment: 17

Ref country code: FR

Payment date: 20080714

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080801

Year of fee payment: 17

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20090831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090806

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090807

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831