EP0932005A1 - Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre - Google Patents

Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre Download PDF

Info

Publication number
EP0932005A1
EP0932005A1 EP99400149A EP99400149A EP0932005A1 EP 0932005 A1 EP0932005 A1 EP 0932005A1 EP 99400149 A EP99400149 A EP 99400149A EP 99400149 A EP99400149 A EP 99400149A EP 0932005 A1 EP0932005 A1 EP 0932005A1
Authority
EP
European Patent Office
Prior art keywords
air
compressor
column
line
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99400149A
Other languages
German (de)
English (en)
Inventor
Alain Guillard
Oswaldo c/o L'Air Liquide Bianchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0932005A1 publication Critical patent/EP0932005A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the present invention relates to combined installations of at least an oven, typically a metal processing oven, supplied with compressed air and at least one air distillation apparatus producing oxygen for enrich the air supplied to the oven.
  • the document EP-A-0 531 182 provides for complete separation of the air supplies from the blast furnace, on the one hand, but also of the medium pressure column and the mixing column, on the other hand, to preselect the pressure in the mixing column in a wide pressure range, but at cost price high investment and operating costs for rotating machines feeding the sub-assemblies of the distillation apparatus.
  • the object of the present invention is to provide an installation combined of the type mentioned above, with further integration into the site and allowing significantly reduced operating costs.
  • the installation combined includes: at least one oven, at least one blower delivering a main compressed air line connected to the oven, at least one air distillation comprising at least one medium pressure column and one mixing column having an oxygen outlet line opening into a downstream part of the main compressed air line, and an air bypass circuit, connected to the main compressed air line via a purification device and supplying air to the medium pressure column and the mixing column and including at least one compressor-turbine group comprising at least one compressor to compress the derived air supplied at least to the column mixture, and at least one turbine arranged in a fluid circuit under pressure available at the installation site.
  • the distillation apparatus exploits not only a part of the air flow of the differentiable blower due to reinjection subsequent oxygen in this air flow, but also the extractable energy of a pressurized fluid generally available on site, outside the device distillation, such as steam or process waste gases, possibly valued.
  • the present invention also relates to a method of implementing work of a combined installation comprising at least one furnace supplied with air compressed by at least one blower supplying air to a first pressure, and oxygen by an air separation device, comprising at least minus a medium pressure column and a mixing column, supplied with air through the blower, in which we overpress, at a second pressure greater than the first pressure, the air supplied to at least the mixing by at least one compressor driven by at least one turbine relieving at least one compressed fluid generated on site.
  • a diagrammatic representation of a metal treatment furnace in this case an FM blast furnace, and an associated air distillation apparatus, essentially comprising, in the examples shown, a main exchange line LE , a double column DC with a medium pressure column MP and a low pressure column BP, and a mixing column CM, the oven and the distillation apparatus being supplied with air by the same blower S delivering in a compressed air line main A supplying the FM oven, a large volume of air (typically greater than 100,000 Nm 3 / h) at a medium pressure P 1 less than 6 x 10 5 Pa, typically between 3 x 10 5 Pa and 5.5 x 10 5 Pa.
  • Line A can also supply, simultaneously or alternately, another metal treatment furnace, for example an electric furnace with the AOD process.
  • a circuit air bypass D supplying the distillation apparatus with purified air in a purification device E, typically of the adsorption type, after precooling in a cooling device R.
  • the cooling circuit bypass D is divided, downstream of the purification device E, into a first line J crossing the exchange line LE to reach the lower part of the medium pressure column MP, and in a second line L crossing also the LE exchange line and opening at the bottom of the column of CM mixture.
  • the distillation apparatus is of the conventional double column type DC, with a turbine t for expansion at low pressure of the low pressure column BP of part of the incoming air supplied by the first line M and serving to keep the distillation apparatus cold, and with a pump W compressing the liquid oxygen taken from the tank of the low pressure column BP and sent to the head of the mixing column CM substantially at the pressure P 2 of the air, cooled in the vicinity of its dew point, admitted by the line L.
  • this pressure P 2 is chosen to be slightly higher than that P 1 in the main line A for take into account the pressure drops in the hot air / oxygen mixing devices downstream of line A and to optimize the regulation of this injection.
  • P 2 - P 1 is between 0.3 x 10 5 Pa and 4 x 10 5 Pa, advantageously between 0.5 x 10 5 Pa and 1.5 x 10 5 Pa.
  • the air at this pressure P 2 is obtained by means of at least one compressor / turbine group C i T i compressing the air at least in the line L, the turbine T i expanding a fluid under pressure F available on the installation site, outside the distillation apparatus, typically a process waste gas or an excess process gas.
  • the fluid F i will be water vapor, generally generated in abundance on the site to cool its constituents and available at pressures typically varying between 3 ⁇ 10 5 Pa and 15 ⁇ 10 5 Pa and of which only a small part is generally valued, especially for the production of cold or electrical energy.
  • the fluid F i can also be a hot residual gas at the outlet of the furnace FM, which can be expanded directly or partially transformed into combustible gas serving as fuel f for a compressor-turbine group with combustion chamber GT, represented in FIG. 3, advantageously exploiting at least one of the gases of the air supplied by the lines N and O and serving for the production of energy, part of the flow compressed by the compressor of this group being transmitted to the turbine T i .
  • the compressor-turbine group C 2 -T 2 is arranged in line L and only serves to boost the air flow supplied to the mixing column CM.
  • the compressor-turbine group C 1 -T 1 is arranged in line D, upstream of the purification device E, and therefore overpresses all of the air supplied to the distillation apparatus.
  • the overpressure, at an intermediate pressure between P 1 and P 2 , of the supply air supplied to the medium pressure column MP is used in the cold maintenance turbine t to cause a booster c disposed in line L and creating the overpressure required to reach the pressure P 2 in the mixing column CM.
  • FIG. 3 is a combination of the embodiments of FIGS. 1 and 2: in this variant, a first compressor-turbine group C 1 -T 1 , driven by a first pressurized fluid F 1 , is arranged in line D, upstream of the purification device E, and a second compressor-turbine group C 2 -T 2 , driven by a second pressurized fluid F 2 is disposed in line L dedicated to the mixing column CM .
  • the fluid F 2 can be supplied from a gas turbine group GT as mentioned above and the fluid F 1 can be steam.
  • the two compressors C 1 , C 2 can be driven by the same turbine or the same group of turbines T 1 / T 2 expanding the same fluid under pressure F i .
  • the pressure in line J supplying the double column is exploited by coupling the cold keeping turbine t to a booster c serving to boost one of the fluids entering or leaving the device distillation, for example, as shown in Figure 3, the impure nitrogen in line N to help the recovery of this impure nitrogen, for example introduced as ballast in the combustion chamber of the gas turbine group GT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'installation combinée comprend au moins un four (FM) alimenté par une soufflante (S), au moins un appareil de distillation d'air comportant au moins une colonne moyenne pression (MP) et une colonne de mélange (CM) ayant une ligne de sortie d'oxygène (O) pour alimenter le four (FM), l'appareil de distillation étant alimenté par la soufflante (S), au moins l'air comprimé adressé à la colonne de mélange (CM) étant surpressé dans au moins un groupe compresseur-turbine (C2-T2) dont la turbine (T2) est disposée dans un circuit (Fi) d'un fluide sous pression disponible sur le site de l'installation, par exemple de la vapeur ou un gaz provenant du four. <IMAGE>

Description

La présente invention concerne les installations combinées d'au moins un four, typiquement un four de traitement de métal, alimenté en air comprimé et d'au moins un appareil de distillation d'air produisant de l'oxygène pour enrichir l'air fourni au four.
Pour enrichir un flux d'air, la production d'oxygène de haute pureté n'est pas requise et l'utilisation d'un appareil de distillation comportant une colonne de mélange telle que décrit dans le document US-A-4 022 030 (Brugerolle) convient. Des installations combinées d'un haut fourneau et d'un appareil de distillation d'air comprenant une telle colonne de mélange sont décrites dans les documents US-A-5 244 489 (Grenier) et EP-A-0 531 182, au nom de la demanderesse. Les approches suivies dans ces deux documents sont toutefois opposées : dans le document US-A-5 244 489, l'appareil de distillation est alimenté en air par une dérivation du vent d'une soufflante de haut-fourneau et la part du flux d'air fourni à la colonne de mélange est légèrement surpressée par un surpresseur entraíné par une turbine de maintien en froid détendant la part du flux d'air adressée à la colonne moyenne pression, dans un agencement imposant, pour effectuer la surpression, de turbiner une part importante de l'air d'alimentation de la colonne moyenne pression occasionnant des pertes de rendement d'extraction et d'énergie ainsi que des surdimensionnements des postes de réfrigération et d'épuration de l'air d'alimentation de l'appareil de distillation. A l'opposé, le document EP-A-0 531 182 prévoit une séparation complète des alimentations en air du haut fourneau, d'une part, mais aussi de la colonne moyenne pression et de la colonne de mélange, d'autre part, pour préselectionner la pression dans la colonne de mélange dans une plage de pressions large, mais au prix de coûts d'investissement et d'exploitation élevés au niveau des machines tournantes alimentant les sous-ensembles de l'appareil de distillation.
La présente invention a pour objet de proposer une installation combinée du type mentionné plus haut, à intégration plus poussée dans le site d'exploitation et permettant des coûts d'exploitation notablement réduits.
Pour ce faire, selon une caractéristique de l'invention, l'installation combinée comprend : au moins un four, au moins une soufflante débitant dans une ligne d'air comprimé principale reliée au four, au moins un appareil de distillation d'air comportant au moins une colonne moyenne pression et une colonne de mélange ayant une ligne de sortie d'oxygène débouchant dans une partie aval de la ligne d'air comprimé principale, et un circuit de dérivation d'air, relié à la ligne d'air comprimé principale via un appareil d'épuration et fournissant de l'air à la colonne moyenne pression et à la colonne de mélange et incluant au moins un groupe compresseur-turbine comprenant au moins un compresseur pour comprimer l'air dérivé fourni au moins à la colonne de mélange, et au moins une turbine disposée dans un circuit de fluide sous pression disponible sur le site de l'installation.
Selon l'invention, l'appareil de distillation exploite non seulement une partie du débit d'air de la soufflante dérivable en raison de la réinjection ultérieure d'oxygène dans ce débit d'air, mais aussi l'énergie extractible d'un fluide sous pression généralement disponible sur le site, extérieur à l'appareil de distillation, tel que la vapeur ou des gaz résiduaires de process, éventuellement valorisés.
La présente invention a également pour objet un procédé de mise en oeuvre d'une installation combinée comprenant au moins un four alimenté en air comprimé par au moins une soufflante fournissant de l'air à une première pression, et en oxygène par un appareil de séparation de l'air, comprenant au moins une colonne moyenne pression et une colonne de mélange, alimenté en air par la soufflante, dans lequel on surpresse, à une seconde pression supérieure à la première pression, l'air fourni à au moins la colonne de mélange par au moins un compresseur entraíné par au moins une turbine détendant au moins un fluide comprimé généré sur le site.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation, donnés à titre illustratif mais nullement limitatif, faite en relation avec les dessins annexés, sur lesquels :
   les figures 1 à 3 représentent schématiquement trois modes de réalisation de l'invention.
Dans la description qui va suivre et sur les dessins, les éléments identiques ou analogues portent les mêmes chiffres de référence éventuellement indicés.
Sur les figures, on a représenté schématiquement un four de traitement de métal, en l'occurence un haut-fourneau FM, et un appareil de distillation d'air associé, comprenant essentiellement, dans les exemples représentés, une ligne d'échange principal LE, une double colonne DC avec une colonne moyenne pression MP et une colonne basse pression BP, et une colonne de mélange CM, le four et l'appareil de distillation étant alimentés en air par une même soufflante S débitant dans une ligne d'air comprimée principale A alimentant le four FM, un fort volume d'air (supérieur typiquement à 100 000 Nm3/h) sous une moyenne pression P1 inférieure à 6 x 105 Pa, typiquement entre 3 x 105 Pa et 5,5 x 105 Pa. La ligne A peut également alimenter, en simultané ou en alterné, un autre four de traitement de métal, par exemple un four électrique avec le procédé AOD.
Selon un aspect de l'invention, de la ligne principale A part un circuit de dérivation d'air D alimentant l'appareil de distillation en air épuré dans un appareil d'épuration E, typiquement du type à adsorption, après prérefroidissement dans un appareil de refroidissement R. Le circuit de dérivation D se divise, en aval de l'appareil d'épuration E, en une première ligne J traversant la ligne d'échange LE pour déboucher en partie basse de la colonne moyenne pression MP, et en une deuxième ligne L traversant également la ligne d'échange LE et débouchant en partie basse de la colonne de mélange CM. De façon classique, du sommet de la colonne basse pression BP part une ligne N d'azote gazeux de moyenne pureté et de la tête de la colonne de mélange CM part une ligne O d'oxygène moyenne pureté qui, selon l'invention, après traversée de la ligne d'échange LE, débouche dans la ligne d'air comprimée principale A en amont du four FM pour enrichir en oxygène l'air fourni à ce dernier.
Dans les modes de réalisation représentés, simplement à titre d'exemple, l'appareil de distillation est du type à double colonne classique DC, avec une turbine t de détente à la basse pression de la colonne basse pression BP d'une partie de l'air entrant founi par la première ligne M et servant au maintien en froid de l'appareil de distillation, et avec une pompe W comprimant l'oxygène liquide prélevé en cuve de la colonne basse pression BP et envoyé en tête de la colonne de mélange CM sensiblement à la pression P2 de l'air, refroidi au voisinage de son point de rosée, admis par la ligne L. Selon l'invention, cette pression P2 est choisie légèrement supérieure à celle P1 dans la ligne principale A pour tenir compte des pertes de charge dans les dispositifs de mélange air chaud/oxygène en aval de la ligne A et pour optimiser la régulation de cette injection. Typiquement, P2 - P1 est compris entre 0,3 x 105 Pa et 4 x 105 Pa, avantageusement entre 0,5 x 105 Pa et 1,5 x 105 Pa.
Selon l'invention, l'air à cette pression P2 est obtenu au moyen d'au moins un groupe compresseur/turbine CiTi comprimant l'air au moins dans la ligne L, la turbine Ti détendant un fluide sous pression F disponible sur le site de l'installation, à l'extérieur de l'appareil de distillation, typiquement un gaz résiduaire de process ou un gaz de process en excès. Classiquement, le fluide Fi sera de la vapeur d'eau, généralement générée en abondance sur le site pour en refroidir des constituants et disponible à des pressions variant typiquement entre 3 x 105 Pa et 15 x 105 Pa et dont seule une faible partie est généralement valorisée, notamment pour la production de froid ou d'énergie électrique. Le fluide Fi peut également être un gaz chaud résiduaire en sortie du four FM, qui peut être détendu directement ou transformé partiellement en gaz combustible servant de carburant f à un groupe compresseur-turbine à chambre de combustion GT, représenté sur la figure 3, exploitant avantageusement au moins un des gaz de l'air fourni par les lignes N et O et servant à la production d'énergie, une partie du flux comprimé par le compresseur de ce groupe étant transmis à la turbine Ti.
Dans le mode de réalisation de la figure 1, le groupe compresseur-turbine C2-T2 est disposé dans la ligne L et ne sert qu'à surpresser le flux d'air fourni à la colonne de mélange CM.
Dans le mode de réalisation de la figure 2, le groupe compresseur-turbine C1-T1 est disposé dans la ligne D, en amont de l'appareil d'épuration E, et surpresse donc la totalité de l'air acheminé vers l'appareil de distillation. Dans ce mode de réalisation, la surpression, à une pression intermédiaire entre P1 et P2, de l'air d'alimentation fourni à la colonne moyenne pression MP est exploitée dans la turbine de maintien en froid t pour entraíner un surpresseur c disposé dans la ligne L et créant la surpression requise pour atteindre la pression P2 dans la colonne de mélange CM.
Le mode de réalisation de la figure 3 est une combinaison des modes de réalisation des figures 1 et 2 : dans cette variante, un premier groupe compresseur-turbine C1-T1, mû par un premier fluide sous pression F1, est disposé dans la ligne D, en amont de l'appareil d'épuration E, et un deuxième groupe compresseur-turbine C2-T2, mû par un second fluide sous pression F2 est disposé dans la ligne L dédiée à la colonne de mélange CM. Le fluide F2 peut être fourni à partir d'un groupe turbine à gaz GT comme sus-mentionné et le fluide F1 être de la vapeur. En variante, comme figuré par la ligne d'arbre en pointillés s, les deux compresseurs C1, C2 peuvent être entraínés par une même turbine ou un même groupe de turbines T1/T2 détendant un même fluide sous pression Fi.
Dans ce mode de réalisation de la figure 3, la pression dans la ligne J alimentant la double colonne est exploitée en couplant la turbine de maintien en froid t à un surpresseur c servant à surpresser l'un des fluides entrant ou sortant de l'appareil de distillation, par exemple, comme représenté sur la figure 3, l'azote impur dans la ligne N pour aider à la valorisation de cet azote impur, par exemple introduit comme ballast dans la chambre de combustion du groupe turbine à gaz GT.
Quoique la présente invention ait été décrite en relation avec des modes de réalisation particuliers, elle ne s'en trouve pas limitée mais susceptible de modifications et de variantes qui apparaítront à l'homme de l'art et demeurant dans le cadre des revendications ci-après.

Claims (15)

  1. Installation combinée comprenant : au moins un four (FM), au moins une soufflante (S) débitant dans une ligne d'air comprimé principale (A) reliée au four, au moins un appareil de distillation d'air comportant au moins une colonne moyenne pression (MP) et une colonne de mélange (CM) ayant une ligne de sortie d'oxygène (O) débouchant dans une partie aval de la ligne d'air comprimé principale (A), et un circuit de dérivation d'air, relié à la ligne d'air comprimé principale via un appareil d'épuration (E) et fournissant de l'air à la colonne moyenne pression (MP) et à la colonne de mélange (CM) et incluant au moins un groupe compresseur-turbine (C,T) comprenant au moins un compresseur (C1) pour comprimer l'air dérivé fourni au moins à la colonne de mélange (CM), et au moins une turbine (Ti) disposée dans un circuit (Fi) de fluide sous pression disponible sur le site de l'installation.
  2. Installation selon la revendication 1, caractérisée en ce qu'elle comprend au moins un compresseur (C1) de groupe compresseur-turbine (Ci-Ti) disposé dans une partie amont du circuit de dérivation (D), avant l'appareil d'épuration (E).
  3. Installation selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend au moins un compresseur (C2) de groupe compresseur-turbine (Ci-Ti) disposé dans la ligne d'alimentation en air (L) de la colonne de mélange (CM).
  4. Procédé de mise en oeuvre d'une installation combinée comprenant au moins un four (FM) alimenté en air comprimé par au moins une soufflante (S) fournissant de l'air à une première pression P1 et en oxygène par un appareil de séparation de l'air, comprenant une colonne moyenne pression (MP) et une colonne de mélange (CM), alimenté en air par la soufflante, dans lequel on surpresse, à une seconde pression P2, supérieure à la première pression P1, l'air fourni à au moins la colonne de mélange (CM) par au moins un compresseur (Ci) entraíné par au moins une turbine (Ti) détendant au moins un fluide comprimé (Fi) généré sur le site.
  5. Procédé selon la revendication 4, caractérisé en ce que P1 est inférieure à 6 x 105 Pa.
  6. Procédé selon la revendication 5, caractérisé en ce que P2 - P1 est supérieur à 0,3 x 105 Pa.
  7. Procédé selon la revendication 6, caractérisé en ce que P2 - P1 est inférieur à 4 x 105 Pa.
  8. Procédé selon l'une des revendications 4 à 7, caractérisé en ce que la totalité du flux d'air fourni à l'appareil de séparation est surpressé dans un dit compresseur (C1).
  9. Procédé selon la revendication 8, caractérisé en ce que le flux d'air transmis à la colonne de mélange (CM) est de nouveau surpressé (C, C2).
  10. Procédé selon la revendication 9, caractérisé en ce que le flux d'air transmis à la colonne de mélange (CM) est de nouveau surpressé dans un dit compresseur (C2).
  11. Procédé selon l'une des revendications 4 à 7, caractérisé en ce que seul le flux d'air transmis à la colonne de mélange (CM) est surpressé par un dit compresseur (C2).
  12. Procédé selon l'une des revendications 4 à 10, caractérisé en ce que le fluide comprimé (Fi) est de la vapeur.
  13. Procédé selon l'une des revendications 4 à 11, caractérisé en ce que le fluide comprimé (Fi) est un gaz provenant du four (FM).
  14. Procédé selon l'une des revendications 4 à 11, caractérisé en ce que le fluide comprimé (Fi) est comprimé par un groupe compresseur-turbine à gaz (GT) utilisant un carburant (f) disponible sur site.
  15. Procédé selon la revendication 14, caractérisé en ce que le groupe compresseur-turbine à gaz exploite au moins un des gaz séparés de l'air (O; N) fournis par l'appareil de séparation d'air.
EP99400149A 1998-01-23 1999-01-22 Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre Ceased EP0932005A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800724A FR2774159B1 (fr) 1998-01-23 1998-01-23 Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
FR9800724 1998-01-23

Publications (1)

Publication Number Publication Date
EP0932005A1 true EP0932005A1 (fr) 1999-07-28

Family

ID=9522094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400149A Ceased EP0932005A1 (fr) 1998-01-23 1999-01-22 Installations combinées d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre

Country Status (7)

Country Link
US (1) US6119482A (fr)
EP (1) EP0932005A1 (fr)
KR (1) KR100573530B1 (fr)
AR (1) AR014473A1 (fr)
BR (1) BR9917589A (fr)
CA (1) CA2259857A1 (fr)
FR (1) FR2774159B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803890B1 (en) * 1999-03-24 2004-10-12 Imaging Systems Technology Electroluminescent (EL) waveform
FR2801963B1 (fr) * 1999-12-02 2002-03-29 Air Liquide Procede et installation de separation d'air par distillation cryogenique
EP1197717A1 (fr) * 2000-10-12 2002-04-17 Linde Aktiengesellschaft Dispositif et procédé de séparation de l'air
EP1202012B1 (fr) * 2000-10-30 2005-12-07 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédé et installation de séparation cryogénique d'air intégré à un procédé associé
US6568207B1 (en) * 2002-01-18 2003-05-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated process and installation for the separation of air fed by compressed air from several compressors
US6536234B1 (en) * 2002-02-05 2003-03-25 Praxair Technology, Inc. Three column cryogenic air separation system with dual pressure air feeds
FR2862004B3 (fr) * 2003-11-10 2005-12-23 Air Liquide Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
FR2864214B1 (fr) 2003-12-22 2017-04-21 Air Liquide Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
US20050256335A1 (en) * 2004-05-12 2005-11-17 Ovidiu Marin Providing gases to aromatic carboxylic acid manufacturing processes
DE102016107468B9 (de) * 2016-04-22 2017-12-21 Fritz Winter Eisengiesserei Gmbh & Co. Kg Verfahren und Anlage zur Nutzung eines von einer Gaszerlegeeinrichtung bereitgestellten Zielgases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022030A (en) * 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
US5244489A (en) * 1991-06-12 1993-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382366A (en) * 1981-12-07 1983-05-10 Air Products And Chemicals, Inc. Air separation process with single distillation column for combined gas turbine system
US5251450A (en) * 1992-08-28 1993-10-12 Air Products And Chemicals, Inc. Efficient single column air separation cycle and its integration with gas turbines
GB9425484D0 (en) * 1994-12-16 1995-02-15 Boc Group Plc Air separation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022030A (en) * 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
US5244489A (en) * 1991-06-12 1993-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
EP0636845A1 (fr) * 1993-04-30 1995-02-01 The BOC Group plc Séparation d air

Also Published As

Publication number Publication date
AR014473A1 (es) 2001-02-28
KR100573530B1 (ko) 2006-04-26
FR2774159A1 (fr) 1999-07-30
CA2259857A1 (fr) 1999-07-23
BR9917589A (pt) 2002-07-30
FR2774159B1 (fr) 2000-03-17
US6119482A (en) 2000-09-19
KR19990068066A (ko) 1999-08-25

Similar Documents

Publication Publication Date Title
JP2516851B2 (ja) 一貫式ガス化組合せサイクル電力発生方法
CA1100863A (fr) Traduction non-disponible
BE1006334A3 (fr) Procede d&#39;alimentation d&#39;un haut-fourneau en air enrichi en oxygene, et installation de reduction de minerai de fer correspondante.
FR2819583A1 (fr) Procede integre de separation d&#39;air et de generation d&#39;energie et installation pour la mise en oeuvre d&#39;un tel procede
FR2819584A1 (fr) Procede integre de separation d&#39;air et de generation d&#39;energie et installation pour la mise en oeuvre d&#39;un tel procede
EP0676373A1 (fr) Procédé et installation de production de monoxyde de carbone
FR2690711A1 (fr) Procédé de mise en Óoeuvre d&#39;un groupe turbine à gaz et ensemble combiné de production d&#39;énergie et d&#39;au moins un gaz de l&#39;air.
EP0932005A1 (fr) Installations combinées d&#39;un four et d&#39;un appareil de distillation d&#39;air et procédé de mise en oeuvre
EP0661505B1 (fr) Procédé et installation de liquéfaction d&#39;un gaz
EP1102953B1 (fr) Installation de production d&#39;electricite basse tension integree a une unite de separation des gaz de l&#39;air
FR2711778A1 (fr) Procédé et installation de production d&#39;oxygène et/ou d&#39;azote sous pression.
CA2645202A1 (fr) Compresseur a plusieurs etages, appareil de separation d&#39;air comprenant un tel compresseur et installation
EP0932006A1 (fr) Installation combinée d&#39;un four et d&#39;un appareil de distillation d&#39;air et procédé de mise en oeuvre
EP0532429B1 (fr) Procédé de refroidissement d&#39;un gaz dans une installation d&#39;exploitation de gaz de l&#39;air, et installation
FR3090831A1 (fr) Appareil et procédé de séparation d’air par distillation cryogénique
FR2686405A1 (fr) Procede et application de separation d&#39;air, et application d&#39;une telle installation.
FR2803221A1 (fr) Procede et installation de separation d&#39;air
EP0970336B1 (fr) Installation combinee d&#39;un four et d&#39;un appareil de distillation d&#39;air et procede de mise en oeuvre
WO2005085727A2 (fr) Procede de renovation d’une installation combinee d’un haut-fourneau et d’une unite de separation de gaz de l’air
EP1409937B1 (fr) Procede de production de vapeur d&#39;eau et de distillation d&#39;air
EP1651915B1 (fr) Procédé et installation d&#39;alimentation d&#39;une unité de séparation d&#39;air au moyen d&#39;une turbine a gaz
EP1697690A2 (fr) Procede et installation d enrichissement d&#39;un flux gazeux en l&#39;un de ses constituants
FR2862128A1 (fr) Procede et installation de fourniture d&#39;oxygene a haute purete par distillation cryogenique d&#39;air
FR2827186A1 (fr) Procede et installation de distillation d&#39;air et de production de vapeur d&#39;eau
FR2825453A1 (fr) Procede et installation de separation par distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FI FR IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000128

AKX Designation fees paid

Free format text: DE ES FI FR IT

17Q First examination report despatched

Effective date: 20020214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

18R Application refused

Effective date: 20060223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

R18R Application refused (corrected)

Effective date: 20060123