EP0527083A1 - Procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin - Google Patents

Procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin Download PDF

Info

Publication number
EP0527083A1
EP0527083A1 EP92402221A EP92402221A EP0527083A1 EP 0527083 A1 EP0527083 A1 EP 0527083A1 EP 92402221 A EP92402221 A EP 92402221A EP 92402221 A EP92402221 A EP 92402221A EP 0527083 A1 EP0527083 A1 EP 0527083A1
Authority
EP
European Patent Office
Prior art keywords
alkali metal
solution
container
crystals
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92402221A
Other languages
German (de)
English (en)
Other versions
EP0527083B1 (fr
Inventor
Patrick Nesty
Jacques Dugua
Philippe Thery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of EP0527083A1 publication Critical patent/EP0527083A1/fr
Application granted granted Critical
Publication of EP0527083B1 publication Critical patent/EP0527083B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • C01B11/062Hypochlorites of alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites

Definitions

  • the present invention relates to a process for the preparation of concentrated solutions of alkali metal hypochlorite.
  • the invention is particularly used for preparing concentrated bleach which may have a content greater than 100 ° chlorometric and undersaturated with NaCl.
  • the preparation of bleach is done by the reaction of chlorine on a sodium hydroxide solution and produces as many moles of hypochlorite as sodium chloride. Above a certain concentration, part of the NaCI precipitates. When making concentrated bleach, the NaCI is always in saturation. As the solutions are not stable over time, NaCl crystals are constantly formed following the decomposition reactions. These salt crystals cloud the solution and decompose in the capacities. In addition, for certain applications, the presence of salt is harmful.
  • the speed of the fluid in the column is adjusted to maintain the suspension of NaCI crystals in the fluidized state and such that the precipitation of NaCl takes place essentially by magnification of the crystals.
  • the large grains descend to the base of the column in the conical part and it is therefore easy to withdraw them.
  • the fluid bed occupies the entire reaction volume. If the fluid bed is not sufficiently expanded, fines are difficult to separate, if the fluid bed is too expanded, NaCI crystals leave with the production of bleach. It is also necessary to start to introduce a suspension of sodium chloride crystals of a particle size suitably chosen at the start.
  • Liquid or gaseous pure chlorine or a chlorine-containing inert gas can be used for the reaction; for example air or nitrogen loaded with chlorine.
  • concentration of the hydroxide solution is chosen according to the concentration of the hypochlorite solution that one wants to prepare. Can also use a concentrated hydroxide solution and add water.
  • the reaction is total and stoichiometric. We can operate at any pressure but it is much simpler to operate at atmospheric pressure.
  • the container can be opened but it is preferable to close it and connect it to an absorption system to be sure in the event of an incident not to allow chlorine to escape into the atmosphere although we always operate with a slight excess of hydroxide.
  • the temperature of the solution inside the container and in the recycling circuit is kept below 35 C to avoid the formation of chlorate.
  • the container can be a simple column surmounted by another column of larger diameter, the connection being made by a truncated cone.
  • the ratio of the section of the upper part to the section of the lower part must be sufficient so that the fluidized crystals remain in the majority in the lower part and that if the fluidization was too strong they can decant in the upper part and descend into the lower part. An enlargement of the chloride crystals of the alkali metal is thus obtained, the precipitation of the chloride taking place on the existing crystals. Obviously, new small crystals are also formed, which are in the whole container and which circulate with recycling.
  • the ratio of the sections is greater than 1.2 and can be between 2 and 12.
  • the volume of the lower part can represent at least 30% of the total volume of the container and preferably 40 to 60%.
  • the volume of the lower part is determined as in the prior art by the reaction of chlorine on the alkali metal hydroxide.
  • step b) The part of hypochlorite taken in step b) which constitutes the production can then be filtered or slightly diluted to remove the small crystals of alkali metal chloride.
  • the advantage of the process of the invention to be able to easily produce a very concentrated solution of hypochlorite which can therefore be diluted slightly to completely rid it of the least chloride crystals.
  • the advantage of the process is that it produces a concentrated solution of hypochlorite practically free of crystals. A slight dilution then removes the last crystals of NaCI, but above all makes it possible to have a concentrated unsaturated solution of alkali chloride. This reserve of solubility prevents the reappearance of salt crystals before the use of the product. It is thus possible to produce a hypochlorite containing 27% of active chlorine which is diluted to 25% of active chlorine.
  • the conversion of chlorometric degrees to% CI 2 active is:
  • Another advantage of this process on the industrial level is that it does not require the addition of alkali chloride crystals to initiate crystallization in the start-up phases.
  • the fine particles trapped in the reactor gradually grow and form the fluid bed.
  • step b) is carried out by drawing off the production of the concentrated hypochlorite solution at the upper end of the upper part and the hypochlorite solution is withdrawn for recycling at a point. located in the upper part but below the racking.
  • Those skilled in the art can easily determine this height separating the upper end from the upper part and the recycling sampling point. It has been found that it suffices to be placed halfway up the upper part of the container.
  • Figure 1 depicts a possible embodiment of the present invention.
  • 1 and 2 respectively represent the lower part and the upper part of the container.
  • the production of concentrated hypochlorite is withdrawn at 15, the hypochlorite solution is taken at 10 for recycling to pump 4 and which returns to 11 at the bottom after passing through the exchanger 3.
  • the solution is injected.
  • alkali metal hydroxide through tubing 13 and chlorine through tubing 12.
  • Through tubing 14 the chloride of alkali metal.
  • the container has at the upper end of the upper part a tube for withdrawing the production of hypochlorite and in the upper part, preferably halfway up this upper part, a tube for the recycling.
  • the fine particles are reinjected into the reaction zone.
  • the crystals gradually grow and form the fluid bed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Paper (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Table Devices Or Equipment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

L'invention concerne un procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin dans lequel on injecte du chlore et de l'hydroxyde de métal alcalin dans un récipient vertical dont la partie basse à une section inférieure à la section de sa partie haute. Ce récipient est équipé d'une boucle de recyclage extérieure d'hypochlorite.

Description

  • La présente invention concerne un procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin. L'invention est particulièrement utilisée pour préparer la javel concentrée pouvant avoir une teneur supérieure à 100 ° chlorométriques et sous saturée en NaCI. La préparation de la javel se fait par la réaction du chlore sur une solution de soude et produit autant de môles d'hypochlorite que de chlorure de sodium. Au-delà d'une certaine concentration une partie du NaCI précipite. Lors de la fabrication de javel concentrée, le NaCI est toujours en saturation. Les solutions n'étant pas stables dans le temps, des cristaux de NaCI se forment en permanence suite aux réactions de décomposition. Ces cristaux de sel troublent la solution et se décomposent dans les capacités. De plus, pour certaines applications, la présence de sel est nuisible.
  • Dans le brevet FR 1352198 on a proposé de préparer des solutions de javel concentrées puis de les diluer pour obtenir des solutions plus stables. Dans ce brevet on a aussi décrit un appareillage pour produire cette javel concentrée constituée d'une colonne verticale cylindrique, la base étant conique, et d'un circuit de recyclage extérieur avec une pompe et un échangeur. On soutire la production de javel en haut de la colonne, on extrait la javel en partie haute de la colonne par le circuit de recyclage. Après passage dans la pompe et dans l'échangeur la solution de javel est recyclée à la base de la colonne à base conique. A la base de la colonne on introduit le chlore et la soude et on soutire une suspension de cristaux de NaCI dans la solution de javel. On ajuste la vitesse du fluide dans la colonne pour maintenir la suspension de cristaux de NaCI à l'état fluidisé et telle que la précipitation du NaCI se fait essentiellement par grossissement des cristaux. Les gros grains descendent à la base de la colonne dans la partie conique et il est donc facile de les soutirer. Pour éviter la formation de fines en quantité notable, il suffit que le lit fluide occupe l'ensemble du volume réactionnel. Si le lit fluide n'est pas suffisamment expansé on fait des fines difficiles à séparer, si le lit fluide est trop expansé des cristaux de NaCI partent avec la production d'eau de javel. Il est aussi nécessaire pour démarrer d'introduire une suspension de cristaux de chlorure de sodium d'une granulométrie convenablement choisie au départ.
  • L'art antérieur a aussi proposé dans le brevet US 4,428,918 une colonne verticale avec une recirculation extérieure par une pompe à travers un échangeur. On extrait la javel en partie haute de la colonne par le circuit de recyclage. Après passage dans la pompe et dans l'échangeur la javel est recyclée à la base de la colonne. A la base de cette colonne on injecte aussi la soude et le chlore mais à la différence de l'art antérieur précédent, il est disposé dans cette colonne une cheminée qui permet une circulation intérieure du type gazosiphon sous l'effet du débit de chlore en plus de la circulation provoquée par la pompe de recyclage extérieure. En partie haute de la colonne, on soutire la production d'eau de javel qu'il faut filtrer pour enlever les cristaux de NaCI et obtenir ainsi la javel concentrée. En effet, au contraire de l'art antérieur, FR 1352198, il y a complète agitation de toute la colonne qui contient donc une suspension de cristaux de NaCI dans la javel concentrée. La filtration est très difficile parce que les cristaux ne sont pas assez gros et en plus sont de taille très variable.
  • On a aussi proposé dans le brevet US 4,780,303 un procédé continu en deux étapes dans deux appareillages séparés. Dans la première étape on s'arrête à une concentration de NaCIO telle que le NaCI ne précipite pas, puis dans une deuxième étape, on rajoute du chlore et de la soude, les cristaux de NaCI précipitent et on récupère dans la partie haute de la colonne la javel concentrée. Les cristaux de NaCI sont purgés à la base de la colonne de cette deuxième étape. Ce procédé permet effectivement de produire en continu de la javel concentrée ne contenant plus de cristaux. Par contre ce procédé est couteux en investissement et aussi en entretien puisqu'il y a deux dispositifs de réaction chacun équipé d'une pompe et d'un échangeur.
  • On a maintenant trouvé un procédé beaucoup plus simple pour préparer des solution concentrées d'hypochlorite de métal alcalin. L'invention est un procédé de préparation d'une solution concentrée d'un hyopochlorite de métal alcalin par réaction du chlore et d'une solution d'hydroxyde du métal alcalin correspondant en présence de cristaux de chlorure de métal alcalin caractérisé en ce que dans un récipient essentiellement vertical dont la partie basse à une section inférieure à la section de sa partie haute :
    • a) on injecte dans la partie basse du chlore et une solution d'hydroxyde de métal alcalin,
    • b) dans la partie haute, on prélève la solution d'hypochlorite, (i) une partie constitue la production de la solution concentrée d'hypochlorite, (ii) l'autre partie est recyclée dans la partie basse du récipient,
    • c) on purge les cristaux de chlorure de métal alcalin près de l'extrémité inférieure de la partie basse du récipient,
    • d) on ajuste le recyclage et l'injection des réactifs de l'étape a) de telle sorte que les cristaux de chlorure de métal alcalin sont fluidisés essentiellement dans la partie basse du récipient.
  • On peut utiliser du chlore pur liquide ou gazeux ou un gaz contenant du chlore et inerte pour la réaction ; par exemple de l'air ou de l'azote chargés en chlore. La concentration de la solution d'hydroxyde est choisie en fonction de la concentration de la solution d'hypochlorite qu'on veut préparer. On peut aussi utiliser une solution concentrée d'hydroxyde et ajouter de l'eau. La réaction est totale et stoechiométrique. On peut opérer à toute pression mais il est beaucoup plus simple d'opérer à la pression atmosphérique. Le récipient peut être ouvert mais on préfère le fermer et le relier à un système d'absorption pour être sûr en cas d'incident de ne pas laisser échapper du chlore dans l'atmosphère bien qu'on opère toujours avec un léger excédent d'hydroxyde. La température de la solution à l'intérieur du récipient et dans le circuit de recyclage est maintenue en dessous de 35 C pour éviter la formation de chlorate. On peut disposer un échangeur de chaleur de préférence sur le circuit de recyclage ou disposer un échangeur dans le récipient, ou utiliser un récipient à double enveloppe avec circulation d'un fluide à basse température ou toute combinaison de ces moyens.
  • Le récipient peut être une simple colonne surmontée d'une autre colonne de diamètre plus grand, la liaison se faisant par un tronc de cône. Le rapport de la section de la partie haute à la section de la partie basse doit être suffisant pour que les cristaux fluidisés restent en majorité dans la partie basse et que si la fluidisation était trop forte ils puissent décanter dans la partie haute et redescendre dans la partie basse. On obtient ainsi un grossissement des cristaux de chlorure du métal alcalin, la précipitation du chlorure se faisant sur les cristaux existants. Il se forme évidemment aussi de nouveaux petits cristaux, qui sont dans tout le récipient et qui circulent avec le recyclage. Avantageusement le rapport des sections est supérieur à 1,2 et peut être compris entre 2 et 12. Le volume de la partie basse peut représenter au moins 30 % du volume total du récipient et de préférence 40 à 60 %. Le volume de la partie basse est déterminé comme dans l'art antérieur par la réaction du chlore sur l'hydroxyde de métal alcalin.
  • La partie de l'hypochlorite prélevée à l'étape b) et qui constitue la production peut ensuite être filtrée ou légèrement diluée pour faire disparaître les petits cristaux de chlorure de métal alcalin. C'est en effet l'avantage du procédéde l'invention de pouvoir produire facilement une solution très concentrée d'hypochlorite qu'on peut donc diluer légèrement pour la débarrasser complètement des moindres cristaux de chlorure. L'avantage du procédé est qu'il produit une solution concentrée d'hypochlorite pratiquement exempte de cristaux. Une légère dilution fait alors disparaître les derniers cristaux de NaCI, mais permet surtout d'avoir une solution concentrée non saturée en chlorure alcalin. Cette réserve de solubilité empêche la réapparition de cristaux de sel avant l'utilisation du produit. On peut ainsi produire un hypochlorite à 27 % de chlore actif qu'on dilue jusqu'à 25 % de chlore actif. Pour mémoire la conversion des degrés chlorométriques en % CI2 actif est :
    Figure imgb0001
    Figure imgb0002
  • Un autre avantage de ce procédé sur le plan industriel est qu'il ne nécessite pas d'apport de cristaux de chlorure alcalin pour amorcer la cristallisation dans les phases de démarrage. Les particules fines piégées dans le réacteur, grossissent progressivement et forment le lit fluide.
  • Selon une forme préférée de l'invention, on effectue l'étape b) en soutirant la production de la solution concentrée d'hypochlorite à l'extrémité supérieure de la partie haute et on prélève la solution d'hypochlorite pour le recyclage à un point situé dans la partie haute mais en dessous du soutirage. On peut aussi ajuster le recyclage et l'injection des réactifs de telle sorte que les petits cristaux de chlorure normalement présents dans la partie haute montent jusqu'au point où on prélève le recyclage mais ne montent pas jusqu'à l'extrémité supérieure de la partie haute. L'homme de l'art peut facilement déterminer cette hauteur séparant l'extrémité supérieure de la partie haute et le point de prélèvement du recyclage. On a trouvé qu'il suffit de se placer à mi-hauteur de la partie haute du récipient.
  • La figure 1 décrit un mode de réalisation possible de la présente invention. 1 et 2 représentent respectivement la partie basse et la partie haute du récipient. On soutire en 15 la production d'hypochlorite concentrée, on prélève en 10 la solution d'hypochlorite pour le recyclage vers la pompe 4 et qui retourne en 11 dans la partie basse après passage dans l'échangeur 3. On injecte la solution d'hydroxyde de métal alcalin par la tubulure 13 et le chlore par la tubulure 12. Par la tubulure 14 on extrait le chlorure de métal alcalin.
  • La présente invention concerne aussi un appareillage pour la mise en oeuvre du procédé de l'invention. Cet appareillage est constitué d'un récipient essentiellement vertical dont la partie basse a une section inférieure à la section de sa partie haute et ayant :
    • - en partie basse des tubulures pour le recyclage, l'injection des réactifs et le soutirage du chlorure de métal alcalin,
    • - en partie haute une tubulure pour prélever la solution d'hypochlorite,
    • - une boucle de recyclage comprenant des moyens de circulation et éventuellement un échangeur de chaleur.
  • Selon une forme préférée de l'invention le récipient possède à l'extrémité supérieure de la partie haute une tubulure pour soutirer la production d'hypochlorite et dans la partie haute, de préférence à mi-hauteur de cette partie haute, une tubulure pour le recyclage.
  • Exemple :
  • Dans un dispositif selon la figure 1 de caractéristiques suivantes :
    • - Le réacteur utilisé est constitué de trois parties :
      • une partie inférieure conique (4) 1300, h = 1900) qui reçoit le retour de la boucle de refroidissement
      • * une partie intermédiaire cylindrique (φ 1300, h = 3500) qui constitue la zone de réaction et de fluidisation. Les réactifs sont injectés au pied de cette zone.
      • * une partie supérieure cylindro-conique (φ 3500, h = 1900) dite zone de décantation.
    • - Le départ de la boucle de refroidissement est en bas de la partie cylindrique alors que la sortie du produit fini se fait dans la partie supérieure.
    • - Volume du récipient 15 m3
    • - La partie basse représente 37 % du volume du récipient
    • - Le rapport des sections est 7
    • - Le débit de recyclage : 60 m3/heure. L'échangeur refroidit de 30 à 20 C.
  • On injecte : 1270 kg/h de Na OH (soude 50 %)
    • 1100 kg/h de chlore 97 %
    • 1200 kg/h d'eau en amont de la pompe de recirculation
  • On produit : 3 m3/h de solution d'hypochlorite de sodium à 27 % de C12 actif. 600 kg/h de cristaux NaCI.
  • Après le soutirage la javel est diluée de 27 à 25 % de chlore actif.
  • Stabilité de la javel obtenue :
    • - La perte journalière moyenne sur 7 jours est de l'ordre de 0,35 % de chlore actif à 17° C. Les avantages de ce procédé sont :
    • - Production d'une javel concentrée (> 24 % de chlore actif) exempte de cristaux de sel et surtout non saturée en sel.
    • - Cette réserve de solubilité empêche la réapparition de cristaux avant l'utilisation du produit (la javel ne se trouble plus et il n'y a pas d'accumulations de cristaux de sel au fond des stockages ou dans les citernes des camions).
    • - Possibilité d'utiliser un chlore non purifié : il est, par exemple, possible d'utiliser du chlore sortant directement d'une électrolyse sans que les gaz inertes qu'il contient ne gênent la maîtrise de la cristallisation du sel.
    • - Il ne nécessite pas d'apport de cristaux de NaCI pour amorcer la cristallisation dans les phases de démarrage de l'installation.
  • Les particules fines, sont réinjectées dans la zone de réaction.
  • Les cristaux grossissent progressivement et forment le lit fluide.

Claims (5)

1. Procédé de préparation d'une solution concentrée d'un hypochlorite de métal alcalin par réaction du chlore et d'une solution d'hydroxyde du métal alcalin correspondant en présence de cristaux de chlorure de métal alcalin caractérisé en ce que dans un récipient essentiellement vertical dont la partie basse a une section inférieure à la section de sa partie haute :
a) on injecte dans la partie basse du chlore et une solution d'hydroxyde de métal alcalin,
b) dans la partie haute on prélève la solution d'hypochlorite, (i) une partie constitue la production de la solution concentrée d'hypochlorite, (ii) l'autre partie est recyclée dans la partie basse du récipient,
c) on purge les cristaux de chlorure de métal alcalin près de l'extrémité inférieure de la partie basse du récipient,
d) on ajuste le recyclage et l'injection des réactifs de l'étape a) de telle sorte que les cristaux de chlorure de métal alcalin sont fluidisés essentiellement dans la partie basse du récipient.
2. Procédé selon la revendication 1 caractérisé en ce que le rapport de la section de la partie haute du récipient à la section de la partie basse est supérieure à 1,2 et de préférence compris entre 2 et 12.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le volume de la partie basse représente au moins 30 % du volume total du récipient et de préférence 40 à 60 %.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que on effectue l'étape b) en soutirant la production de la solution concentrée d'hypochlorite à l'extrémité supérieure de la partie haute et qu'on prélève la solution d'hypochlorite pour le recyclage à un point situé dans la partie haute mais en-dessous du soutirage.
5. Procédé selon la revendication 4 caractérisé en ce que le prélèvement pour le recyclage s'effectue à mi-hauteur de la section haute.
EP92402221A 1991-08-06 1992-08-03 Procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin Expired - Lifetime EP0527083B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9109999 1991-08-06
FR9109999A FR2680165B1 (fr) 1991-08-06 1991-08-06 Procede de preparation de solutions concentrees d'hypochlorite de metal alcalin.

Publications (2)

Publication Number Publication Date
EP0527083A1 true EP0527083A1 (fr) 1993-02-10
EP0527083B1 EP0527083B1 (fr) 1996-10-23

Family

ID=9415972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402221A Expired - Lifetime EP0527083B1 (fr) 1991-08-06 1992-08-03 Procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin

Country Status (13)

Country Link
EP (1) EP0527083B1 (fr)
JP (1) JP2504731B2 (fr)
KR (1) KR100217957B1 (fr)
CN (1) CN1031635C (fr)
AT (1) ATE144484T1 (fr)
CA (1) CA2075361C (fr)
DE (1) DE69214748T2 (fr)
DK (1) DK0527083T3 (fr)
ES (1) ES2093805T3 (fr)
FI (1) FI111707B (fr)
FR (1) FR2680165B1 (fr)
GR (1) GR3021768T3 (fr)
NO (1) NO312130B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2114822A1 (fr) * 2006-12-29 2009-11-11 Powell Technologies LLC (A Michigan Limited Liability Company) Fabrication d'un agent de blanchiment à base d'hypochlorite de sodium, à faible teneur en sel, de force élevée
WO2012066243A1 (fr) 2010-11-18 2012-05-24 Arkema France Procede de preparation de solutions concentrees d'hypochlorite de metal alcalin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027249B (zh) * 2004-07-12 2011-08-17 鲍威尔技术有限责任公司 高浓度、低盐次氯酸盐漂白剂的制造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE640874A (fr) *
EP0054996A1 (fr) * 1980-12-22 1982-06-30 SOLVAY & Cie (Société Anonyme) Procédé et installation pour la préparation de solutions aqueuses concentrées d'hypochlorite de métal alcalin
FR2532291A1 (fr) * 1982-08-24 1984-03-02 Ugine Kuhlmann Obtention d'une solution d'hypochlorite de sodium a haute concentration par un procede continu

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE640874A (fr) *
EP0054996A1 (fr) * 1980-12-22 1982-06-30 SOLVAY & Cie (Société Anonyme) Procédé et installation pour la préparation de solutions aqueuses concentrées d'hypochlorite de métal alcalin
FR2532291A1 (fr) * 1982-08-24 1984-03-02 Ugine Kuhlmann Obtention d'une solution d'hypochlorite de sodium a haute concentration par un procede continu

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2114822A1 (fr) * 2006-12-29 2009-11-11 Powell Technologies LLC (A Michigan Limited Liability Company) Fabrication d'un agent de blanchiment à base d'hypochlorite de sodium, à faible teneur en sel, de force élevée
EP2114822A4 (fr) * 2006-12-29 2011-12-07 Powell Technologies Llc A Michigan Ltd Liability Company Fabrication d'un agent de blanchiment à base d'hypochlorite de sodium, à faible teneur en sel, de force élevée
WO2012066243A1 (fr) 2010-11-18 2012-05-24 Arkema France Procede de preparation de solutions concentrees d'hypochlorite de metal alcalin
FR2967668A1 (fr) * 2010-11-18 2012-05-25 Arkema France Procede de preparation de solutions concentrees d'hypochlorite de metal alcalin
RU2547008C2 (ru) * 2010-11-18 2015-04-10 Аркема Франс Способ получения концентрированных растворов гипохлорита щелочного металла
US9023236B2 (en) 2010-11-18 2015-05-05 Arkema France Process for preparing concentrated alkali metal hypochlorite solutions

Also Published As

Publication number Publication date
KR100217957B1 (ko) 1999-09-01
ES2093805T3 (es) 1997-01-01
KR930004189A (ko) 1993-03-22
DK0527083T3 (da) 1997-03-24
FI923530A (fi) 1993-02-07
FR2680165A1 (fr) 1993-02-12
DE69214748D1 (de) 1996-11-28
CA2075361A1 (fr) 1993-02-07
JPH07187607A (ja) 1995-07-25
JP2504731B2 (ja) 1996-06-05
FI111707B (fi) 2003-09-15
CA2075361C (fr) 1999-11-16
CN1031635C (zh) 1996-04-24
EP0527083B1 (fr) 1996-10-23
GR3021768T3 (en) 1997-02-28
NO923056D0 (no) 1992-08-03
CN1071393A (zh) 1993-04-28
NO923056L (no) 1993-02-08
FR2680165B1 (fr) 1993-10-15
FI923530A0 (fi) 1992-08-05
ATE144484T1 (de) 1996-11-15
NO312130B1 (no) 2002-03-25
DE69214748T2 (de) 1997-05-22

Similar Documents

Publication Publication Date Title
RU2268241C2 (ru) Способ получения диоксида хлора
CA2402803C (fr) Procede d'obtention directe du peroxyde d'hydrogene
FR2882998A1 (fr) Procede pour l'obtention de cristaux de carbonate de sodium
EP0054996B1 (fr) Procédé et installation pour la préparation de solutions aqueuses concentrées d'hypochlorite de métal alcalin
CA1213717A (fr) Obtention d'une solution d'hypochlorite de sodium a haute concentration par un procede continu
FR2818922A1 (fr) Procede et dispositif pour la mise en oeuvre d'une reaction en milieu liquide avec degagement gazeux
EP0527083B1 (fr) Procédé de préparation de solutions concentrées d'hypochlorite de métal alcalin
CN100453449C (zh) 一种连续生产高浓度次氯酸钠方法及其装置
FR2507911A1 (fr) Procede d'elimination selective du calcium de resines echangeuses de cations contenant des ions calcium et magnesium adsorbes
CA2222791A1 (fr) Procede de fabrication de bioxyde de chlore
JPH11255503A (ja) 低食塩次亜塩素酸ソーダ水溶液の製造方法
EP2640662B1 (fr) Procede de preparation de solutions concentrees d'hypochlorite de metal alcalin
FR2641001A1 (fr)
FR2490206A1 (fr) Procede pour la production de dioxyde de chlore avec un rendement eleve
EP0118352B1 (fr) Procédé de préparation d'iodure mercurique alpha de haute pureté destiné à être utilisé comme source de matière première pour la croissance de monocristaux pour la détection nucléaire
CA1304943C (fr) Procede pour la production de metaux par reduction de sels metalliques
CA2200223C (fr) Nouveau percarbonate de sodium et son procede d'obtention
FR2611195A1 (fr) Procede d'epuration et de mise en surpression du fluor electrolytique
FI76053B (fi) Foerfarande och anordning foer framstaellning av underklorsyrlighet.
FR2487809A1 (fr) Procede de purification de particules de chlorure de potassium
FR2630426A1 (fr) Procede continu de fabrication de chlorate de potassium par couplage sur une unite de fabrication de chlorate de sodium
BE845682A (fr) Procede et appareil pour reproduire un gaz combustible chaud exempt de soufre et autres contamiants
CH495316A (fr) Procédé de production de l'acide trichlorocyanurique
RU2008123516A (ru) Способ получения диоксида хлора
CH349960A (fr) Procédé pour la préparation de bioxyde de chlore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19950307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 144484

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961031

REF Corresponds to:

Ref document number: 69214748

Country of ref document: DE

Date of ref document: 19961128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 70335

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093805

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3021768

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19961028

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970627

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 70335

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20110825

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110812

Year of fee payment: 20

Ref country code: DK

Payment date: 20110810

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110915

Year of fee payment: 20

Ref country code: FR

Payment date: 20110818

Year of fee payment: 20

Ref country code: GB

Payment date: 20110803

Year of fee payment: 20

Ref country code: PT

Payment date: 20110719

Year of fee payment: 20

Ref country code: SE

Payment date: 20110811

Year of fee payment: 20

Ref country code: GR

Payment date: 20110718

Year of fee payment: 20

Ref country code: AT

Payment date: 20110726

Year of fee payment: 20

Ref country code: DE

Payment date: 20110727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110818

Year of fee payment: 20

Ref country code: IT

Payment date: 20110812

Year of fee payment: 20

Ref country code: BE

Payment date: 20110812

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214748

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69214748

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20120803

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120803

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120802

BE20 Be: patent expired

Owner name: S.A. *ELF ATOCHEM

Effective date: 20120803

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 144484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120803

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 960403159

Country of ref document: GR

Effective date: 20120804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120804

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120810

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120804