US9023236B2 - Process for preparing concentrated alkali metal hypochlorite solutions - Google Patents
Process for preparing concentrated alkali metal hypochlorite solutions Download PDFInfo
- Publication number
- US9023236B2 US9023236B2 US13/299,599 US201113299599A US9023236B2 US 9023236 B2 US9023236 B2 US 9023236B2 US 201113299599 A US201113299599 A US 201113299599A US 9023236 B2 US9023236 B2 US 9023236B2
- Authority
- US
- United States
- Prior art keywords
- vessel
- bottom part
- recycling
- hypochlorite solution
- top part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B11/00—Oxides or oxyacids of halogens; Salts thereof
- C01B11/04—Hypochlorous acid
- C01B11/06—Hypochlorites
- C01B11/062—Hypochlorites of alkali metals
Definitions
- the present invention relates to a process for preparing concentrated alkali metal hypochlorite solutions.
- One subject of the invention is more particularly a process for preparing concentrated bleach which may have a chlorine content of greater than 100 chlorometric degrees, and that has a low content of chlorates.
- a process for synthesizing concentrated bleach is described in patent application EP 0 527 083.
- the synthesis is carried out by reacting one molecule of chlorine with sodium hydroxide. Due to its concentration, this “high titer” bleach is particularly economically advantageous since it makes it possible to limit transport costs. Indeed, since the amount of water in a high-titer bleach is lower than in a standard bleach, less water is transported for the same amount of bleach. Moreover, the high-titer bleach obtained by the above process contains little salt after dilution, which provides great stability over time.
- This reaction generally results in the formation of chlorate during the synthesis, in a greater amount in high-titer bleach compared to bleaches obtained by other processes.
- FIG. 1 is a schematic of an embodiment of the present invention.
- the invention is a process for preparing a concentrated solution of an alkali metal hypochlorite by reacting chlorine and a solution of the corresponding alkali metal hydroxide in the presence of alkali metal chloride crystals in which, in an essentially vertical vessel of volume “Vr”, the bottom part of which has a cross section smaller than the cross section of its top part:
- the hypochlorite solution is withdrawn at a flow rate “Qs”, (i) one portion forms the concentrated hypochlorite solution produced, (ii) the other portion is recycled to the bottom part of the vessel,
- step d) the recycling and the injection of the reactants from step a) are adjusted so that the alkali metal chloride crystals are fluidized essentially in the bottom part of the vessel, and characterized in that the chlorates are present in an amount between 0.01% by weight and 0.2% by weight by carrying out the process under the conditions below: 0.01% ⁇ r*X *(100* M / ⁇ ) ⁇ 0.2% where
- the concentration of chlorates is between 0.01% and 0.2% by weight relative to the total weight of bleach.
- the concentration of hypochlorite ions [ClO ⁇ ] is measured by oxidation of potassium iodide in an acetic medium and titration of the iodine formed with sodium thiosulfate.
- the process that is the subject of the invention may be carried out with pure, liquid or gaseous chlorine or a gas containing chlorine and that is inert with respect to the reaction; for example, air or nitrogen laden with chlorine.
- concentration of the hydroxide solution is chosen as a function of the concentration of the hypochlorite solution that it is desired to prepare. It is also possible to use a concentrated hydroxide solution and to add water.
- the reaction is complete and stoichiometric. It can be carried out at any pressure, but it is much simpler to operate at atmospheric pressure.
- the container may be opened, but it is preferred to seal it and to connect it to an absorption system in order to ensure that, in the event of an incident, no chlorine is allowed to escape into the atmosphere, although a slight excess of hydroxide is always used.
- the temperature of the solution inside the vessel and in the recycling circuit is preferably kept below 35° C. to prevent the formation of chlorate.
- the vessel may be a simple column surmounted by another column of larger diameter, the connection being made by a conical frustum.
- the ratio of the cross section of the top part to the cross section of the bottom part should be sufficient so that the fluidized crystals remain in the majority in the bottom part and so that, if the fluidization is too strong, they can settle in the top part and redescend into the bottom part.
- growth of the alkali metal chloride crystals is obtained, the precipitation of the chloride taking place on the existing crystals.
- New small crystals are obviously also formed, which are in the entire vessel and which circulate with the recycle.
- the ratio of the cross section of the top part of the vessel to the cross section of the bottom part is greater than 1.2 and preferably between 2 and 12.
- the volume of the bottom part may represent at least 30% of the total volume of the vessel and preferably 40 to 60%.
- the volume of the bottom part is determined, as in the prior art, by the reaction of chlorine with the alkali metal hydroxide.
- the portion of the hypochlorite withdrawn in step b) and which constitutes the output may then be filtered or diluted slightly in order to make the small alkali metal chloride crystals disappear.
- a concentrated hypochlorite solution is produced that is practically free of chloride crystals and free of chlorates.
- a slight dilution then makes the last NaCl crystals disappear, but above all makes it possible to have a concentrated solution which is not saturated with alkali metal chloride. This solubility margin limits the reappearance of salt crystals before the use of the product.
- Another advantage of this process from an industrial viewpoint is that it does not require the introduction of alkali metal chloride crystals in order to initiate the crystallization in the start-up phases.
- the fine particles trapped in the reactor gradually grow and form the fluid bed.
- step b) is carried out by drawing off the concentrated hypochlorite solution produced at the upper end of the top part and the hypochlorite solution for recycling ds withdrawn at a point located in the top part but below the draw-off point. It is also possible to adjust the recycling and the injection of the reactants so that the small chloride crystals normally present iii the top part rise to the point where the recycle is withdrawn but do not rise up to the upper end of the top part. A person skilled in the art may easily determine this height that separates the upper end of the top part and the withdrawal point of the recycle. Preferably, the withdrawal for recycling takes place at the mid-height of the top section.
- FIG. 1 describes one possible embodiment of the present invention.
- 1 and 2 represent, respectively, the bottom part and the top part of the vessel.
- the concentrated hypochlorite produced is drawn off at 15 and withdrawn at 10 is the hypochlorite solution for recycling to the pump 4 and which returns at 11 into the bottom part 1 after passing through the exchanger 3 .
- the alkali metal hydroxide solution is injected via the pipe 13 and the chlorine via the pipe 12 .
- the alkali metal chloride is extracted via the pipe 14 .
- a device according to FIG. 1 having the following characteristics, is used:
- the reactor used is made up of three parts:
- a cylindroconical upper part ( ⁇ 3500, h 1900) referred to as the settling zone.
- the reactants are injected at the bottom of the intermediate part.
- the starting point of the cooling loop is at the bottom of the cylindrical part whereas the outlet of the finished product is in the upper part.
- the volume of the vessel is 15 m 3 .
- the bottom part represents 37% of the volume of the vessel.
- the ratio of the cross sections is 7.
- the recycle flow rate is 60 m 3 per hour.
- a heat exchanger cools from 30° C. to 20° C.
- the average daily loss over 7 days is of the order of 0.35% of active chlorine at 17° C.
- the chlorate content before dilution is 0.26% by weight relative to the total weight of the bleach solution.
- Example 1 is reproduced, changing the following parameters:
- Example 1 is reproduced, changing the following parameters:
- Example 1 is reproduced, changing the following parameters:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
3NaClO→□NaClO3+2NaCl
0.01%<r*X*(100*M/ρ)<0.2%
where
-
- r is the rate of reaction expressed in mol/l·s, where r=k [ClO−]2;
K0=7.91×10 l/mol·s; Ea=1.05×105 J/mol, R=8.314472 J/mol.K, and T is the temperature of the reactor expressed in Kelvin;
-
- X is the residence time expressed in seconds, where X=Vr/Qs;
- M is the molar mass of sodium chlorate, i.e. 106.5 g/mol;
- ρ is the density of the solution expressed in g/l.
% active Cl2=(chlorometric degree×3.17 g/l×100)/(density (g/l))
Chlorometric | % active | |
degree | Density | chlorine |
115 | 1335 | 27.3 |
100 | 1315 | 24.1 |
Claims (19)
0.01%<r*X*(100*M/ρ)<0.2%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/299,599 US9023236B2 (en) | 2010-11-18 | 2011-11-18 | Process for preparing concentrated alkali metal hypochlorite solutions |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41509310P | 2010-11-18 | 2010-11-18 | |
FR1059461A FR2967668B1 (en) | 2010-11-18 | 2010-11-18 | PROCESS FOR THE PREPARATION OF CONCENTRATED ALKALINE METAL HYPOCHLORITE SOLUTIONS |
FR1059461 | 2010-11-18 | ||
FRFR10.59461 | 2010-11-18 | ||
US13/299,599 US9023236B2 (en) | 2010-11-18 | 2011-11-18 | Process for preparing concentrated alkali metal hypochlorite solutions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120126169A1 US20120126169A1 (en) | 2012-05-24 |
US9023236B2 true US9023236B2 (en) | 2015-05-05 |
Family
ID=44201813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/299,599 Active 2033-12-31 US9023236B2 (en) | 2010-11-18 | 2011-11-18 | Process for preparing concentrated alkali metal hypochlorite solutions |
Country Status (8)
Country | Link |
---|---|
US (1) | US9023236B2 (en) |
EP (1) | EP2640662B1 (en) |
AR (1) | AR083883A1 (en) |
BR (1) | BR112013008247B1 (en) |
CA (1) | CA2813155C (en) |
FR (1) | FR2967668B1 (en) |
RU (1) | RU2547008C2 (en) |
WO (1) | WO2012066243A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527083A1 (en) | 1991-08-06 | 1993-02-10 | Elf Atochem S.A. | Process for preparing concentrated solutions of alkali metal hypochlorites |
US20050072687A1 (en) * | 2003-08-08 | 2005-04-07 | Hubbard Frank G. | Means and method of chemical production |
US20100044242A1 (en) * | 2008-08-25 | 2010-02-25 | Sai Bhavaraju | Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte |
US20100084605A1 (en) * | 2006-12-04 | 2010-04-08 | Akzo Nobel N.V. | Process to prepare concentrated alkali metal hypo-chlorite |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1567471A1 (en) * | 1966-12-30 | 1970-08-06 | Dynamit Nobel Ag | Process for the continuous production of concentrated sodium hypochlorite solutions |
RU2167809C1 (en) * | 2000-07-04 | 2001-05-27 | Закрытое акционерное общество "ИНГЕРЛАБ СПб" | Method of preparing concentrated aqueous solution of alkali metal hypochlorite |
RU2293705C2 (en) * | 2005-02-24 | 2007-02-20 | Общество с ограниченной ответственностью "Сода-хлорат" | Method of production of potassium hypochlorite |
-
2010
- 2010-11-18 FR FR1059461A patent/FR2967668B1/en not_active Expired - Fee Related
-
2011
- 2011-11-15 AR ARP110104263A patent/AR083883A1/en unknown
- 2011-11-17 WO PCT/FR2011/052676 patent/WO2012066243A1/en active Application Filing
- 2011-11-17 BR BR112013008247A patent/BR112013008247B1/en active IP Right Grant
- 2011-11-17 CA CA2813155A patent/CA2813155C/en active Active
- 2011-11-17 RU RU2013127527/05A patent/RU2547008C2/en active
- 2011-11-17 EP EP11794826.5A patent/EP2640662B1/en active Active
- 2011-11-18 US US13/299,599 patent/US9023236B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527083A1 (en) | 1991-08-06 | 1993-02-10 | Elf Atochem S.A. | Process for preparing concentrated solutions of alkali metal hypochlorites |
US20050072687A1 (en) * | 2003-08-08 | 2005-04-07 | Hubbard Frank G. | Means and method of chemical production |
US20100084605A1 (en) * | 2006-12-04 | 2010-04-08 | Akzo Nobel N.V. | Process to prepare concentrated alkali metal hypo-chlorite |
US20100044242A1 (en) * | 2008-08-25 | 2010-02-25 | Sai Bhavaraju | Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte |
Also Published As
Publication number | Publication date |
---|---|
CA2813155A1 (en) | 2012-05-24 |
BR112013008247B1 (en) | 2020-02-04 |
BR112013008247A2 (en) | 2017-12-12 |
EP2640662B1 (en) | 2015-02-25 |
CA2813155C (en) | 2015-05-05 |
RU2547008C2 (en) | 2015-04-10 |
FR2967668B1 (en) | 2012-11-02 |
US20120126169A1 (en) | 2012-05-24 |
FR2967668A1 (en) | 2012-05-25 |
WO2012066243A1 (en) | 2012-05-24 |
EP2640662A1 (en) | 2013-09-25 |
RU2013127527A (en) | 2015-01-10 |
AR083883A1 (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4465658A (en) | Chlorine dioxide process | |
US7682592B2 (en) | Chemical process and production unit | |
EP2526047B1 (en) | Process for the production of chlorine dioxide | |
US20050186131A1 (en) | Process for production of chlorine dioxide | |
US20070237708A1 (en) | Process for the production of chlorine dioxide | |
US5324497A (en) | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor | |
US3933988A (en) | Method of simultaneously producing chlorine dioxide and a sulfate salt | |
US5458858A (en) | Integrated procedure for high yield production of chlorine dioxide | |
US4216195A (en) | Production of chlorine dioxide having low chlorine content | |
CN102958828A (en) | Process for the production of chlorine dioxide | |
US9023236B2 (en) | Process for preparing concentrated alkali metal hypochlorite solutions | |
US4543243A (en) | Process and a device for the production of chlorine dioxide | |
EP1720797B1 (en) | Process for production of chlorine dioxide | |
CN104743513A (en) | Production process of aqueous sodium hypochlorite solution | |
EP2488449B1 (en) | Process for production of chlorine dioxide | |
WO2019012859A1 (en) | Sodium hypochlorite aqueous solution, sodium hypochlorite pentahydrate crystal for obtaining same, and sodium hypochlorite aqueous solution production method | |
EP0131378B2 (en) | Process for the production of chlorine dioxide | |
US20200071165A1 (en) | Preparation of high-purity chlorine dioxide | |
FI111707B (en) | Process for preparing concentrated alkali metal hypochlorite solutions | |
JPH0621004B2 (en) | Chlorine dioxide manufacturing method | |
US20210024354A1 (en) | Solid bleach and processes for making solid bleach | |
JPS6137747A (en) | Production of glycerol dichlorohydrin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARKEMA FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSSOUTROT, JEAN-MICHEL;REEL/FRAME:027621/0231 Effective date: 20111126 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |