JPH0621004B2 - Chlorine dioxide manufacturing method - Google Patents

Chlorine dioxide manufacturing method

Info

Publication number
JPH0621004B2
JPH0621004B2 JP1222639A JP22263989A JPH0621004B2 JP H0621004 B2 JPH0621004 B2 JP H0621004B2 JP 1222639 A JP1222639 A JP 1222639A JP 22263989 A JP22263989 A JP 22263989A JP H0621004 B2 JPH0621004 B2 JP H0621004B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
reaction zone
chlorine
waste liquid
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1222639A
Other languages
Japanese (ja)
Other versions
JPH0383802A (en
Inventor
二郎 久代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1222639A priority Critical patent/JPH0621004B2/en
Publication of JPH0383802A publication Critical patent/JPH0383802A/en
Publication of JPH0621004B2 publication Critical patent/JPH0621004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素酸ソーダに還元剤を反応させて二酸化塩素
を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing chlorine dioxide by reacting sodium chlorate with a reducing agent.

(従来の技術) 現在工業的に実施されている二酸化塩素製造法を大別す
ると i) 硫酸酸性溶液で塩素酸ソーダを亜硫酸ガスで還元す
る方法 ii) 硫酸酸性溶液で塩素酸ソーダを塩化水素で還元す
る方法 iii) 塩素酸ソーダもしくは塩素酸カルシウムを塩酸で
還元する方法 これらのいずれの方法も二酸化塩素(および塩素)とと
もに反応廃液が生成する。上記i)、ii)の各方法の場合
いずれも硫酸と芒硝を主成分とし若干の塩素酸ソーダを
含有しているが多くの場合、製紙パルプ用蒸解黒液に混
入して芒硝分を有効利用している。又、硫酸ばん土製造
に利用している場合もある。
(Prior art) The chlorine dioxide production methods that are currently used industrially are roughly divided into i) a method of reducing sodium chlorate with sulfurous acid gas with a sulfuric acid acidic solution ii) sodium chlorate with hydrogen chloride with an acidic sulfuric acid solution Method of reduction iii) Method of reducing sodium chlorate or calcium chlorate with hydrochloric acid In any of these methods, a reaction waste liquid is produced together with chlorine dioxide (and chlorine). In the cases of i) and ii) above, both contain sulfuric acid and Glauber's salt as main components and a small amount of sodium chlorate, but in many cases, they are mixed with cooking black liquor for papermaking pulp to effectively utilize Glauber's salt. is doing. It may also be used for the production of sulphate soil.

しかし、利用出来る廃液の絶対量には限度がありそれを
超える廃液が生成する場合は廃棄せざるを得なくなりそ
の際は中和薬剤等を必要とするのでそのために多額の経
費を要することになる。特にii)の方法はi)に比し運転
方法が簡単であるために最近多数の工場で採用されてい
るが反応廃液生成量が極めて多量なので(発生二酸化塩
素1トンあたり芒硝約1.1トン、硫酸約2トンを含む
約7トンを副生)その処理方法が問題となることが多
い。i)の方法の廃液量はこれより少いが亜硫酸ガスの発
生装置を必要としその面で、運転操作が複雑化し、また
亜硫酸ガスによる公害問題の発生するおそれがある。ま
たi)、ii)の方法の改良法として反応廃液より中性芒硝
または酸性芒硝を回収し硫酸を再使用する方法があり、
上記の廃液問題を解消するのに便利であるが、反面冷凍
機あるいは蒸発装置等を必要とし設備費が甚だしく割高
となり運転操作も複雑となる欠点がある。また、iii)の
方法は廃液として少量の塩素酸塩と食塩もしくは塩化カ
ルシウムの希薄塩酸溶液が生成するが、これらは製紙用
薬剤として利用価値がなく少量のアルカリで中和した後
放棄されており、廃液を有効利用する方法に比し経済的
に不利となる。さらにこの廃液(食塩溶液の場合)を電
解して再び塩素酸ソーダに戻す方法もあるが、食塩濃度
がうすいので濃縮を必要とし設備費が大となり経済的に
不利である。また濃縮せずに食塩を添加すれば廃液量が
大であるため不必要に多量の濃食塩溶液が生成されるこ
とになり、電解工程を含めた全体のプラントスケール上
極めて不合理を来すことになる。
However, there is a limit to the absolute amount of waste liquid that can be used, and if a waste liquid that exceeds that amount is generated, it must be discarded, and in that case, a neutralizing agent or the like is required, which requires a large amount of expense. . In particular, the method ii) has been adopted by many factories recently because it is easier to operate than i), but the amount of reaction waste liquid generated is extremely large (about 1.1 tons of Glauber's salt per ton of chlorine dioxide generated). , About 7 tons including about 2 tons of sulfuric acid are by-produced) The treatment method is often problematic. Although the amount of waste liquid of the method i) is smaller than this, a sulfurous acid gas generator is required, which may complicate the operation and cause pollution problems due to sulfurous acid gas. Further, as a method for improving the methods i) and ii), there is a method of recovering neutral Glauber's salt or acidic Glauber's salt from the reaction waste liquid and reusing sulfuric acid,
Although it is convenient for solving the above-mentioned waste liquid problem, it has a drawback that a refrigerator or an evaporator is required, but the facility cost is extremely high and the operation is complicated. In addition, the method iii) produces a small amount of chlorate and dilute hydrochloric acid solution of salt or calcium chloride as waste liquid, but these are not useful as paper-making agents and are abandoned after neutralization with a small amount of alkali. However, it is economically disadvantageous as compared with the method of effectively utilizing the waste liquid. Further, there is a method of electrolyzing this waste liquid (in the case of a salt solution) and returning it to sodium chlorate again, but since the salt concentration is thin, concentration is required and the equipment cost is large, which is economically disadvantageous. If salt is added without concentration, an unnecessarily large amount of concentrated salt solution will be generated because the amount of waste liquid will be large, which will be extremely irrational on the whole plant scale including the electrolysis process. become.

またi)の方法は二酸化塩素のみの発生であるのに対し
て、ii)iii)の方法は同時に塩素の発生するのが特徴で
ある。通常この副生塩素は吸収段階で二酸化塩素と分離
された後、苛性アルカリで吸収され次亜塩素酸ソーダと
してパルプ漂白工程で消費される。しかし、漂白工程に
おいて次亜塩素酸ソーダの使用量が少い場合はその過剰
が問題となる。現在工業的に利用されている方法は殆ん
どi)及びii)であるが、そのうち最も数多く用いられて
いるのはii)の方法である。この方法の利点はすでに述
べたように亜硫酸ガス発生装置、芒硝回収装置等の複雑
な付帯設備を要せず、したがつて設備費が安価で運転操
作が簡単であり、また原料塩素酸ソーダの原単位も最も
優れていることである。反面欠点としては発生廃液量が
i)に比較して多く、また塩素ガスが副生することでこれ
らは発生装置の規模が大きくなってくると問題となるこ
とが多い。
In addition, the method i) produces only chlorine dioxide, while the method ii) iii) is characterized by the simultaneous production of chlorine. Usually, this by-product chlorine is separated from chlorine dioxide in the absorption stage, then absorbed by caustic alkali and consumed as sodium hypochlorite in the pulp bleaching process. However, when the amount of sodium hypochlorite used is small in the bleaching step, its excess becomes a problem. Most of the methods currently used industrially are i) and ii), but the method most often used is the method of ii). As described above, the advantage of this method is that it does not require complicated auxiliary equipment such as a sulfurous acid gas generator and a sodium sulfate recovery device. Therefore, the equipment cost is low and the operation is simple. The basic unit is also the best. On the other hand, the drawback is that the amount of waste liquid generated is
Compared to i), there are more, and chlorine gas as a by-product often causes problems as the scale of the generator increases.

発生廃液に関して述べれば、硫酸酸性で塩素酸ソーダを
塩化水素で還元する方法では塩化水素源として塩酸を用
いる場合と食塩及び硫酸を用いる場合がある。かつては
食塩及び硫酸がよく用いられたが、これは系内のナトリ
ウムイオン量を多くし溶解度の関係で結果的に廃液量の
増加を来すため、最近は塩酸を用いる場合が多くなっ
た。これにより廃液量は確かに減少したが塩酸に伴って
系内に入るためi)の方法に比し、1.3倍程度の廃液を
生じている。また副生塩素が問題となることのあるのも
前述のとおりである。
As for the generated waste liquid, in the method of reducing sodium chlorate with hydrogen chloride under sulfuric acid acidity, there are cases where hydrochloric acid is used as a hydrogen chloride source and where salt and sulfuric acid are used. In the past, common salt and sulfuric acid were often used, but since this increases the amount of sodium ions in the system, resulting in an increase in the amount of waste liquid due to the solubility, hydrochloric acid has recently been often used. This certainly reduced the amount of waste liquid, but since it enters the system with hydrochloric acid, about 1.3 times as much waste liquid is produced as compared with the method of i). As described above, by-product chlorine may be a problem.

(発明が解決しようとする課題) 本発明は以上の問題点、すなわち還元剤として塩酸を使
用する二酸化塩素の発生法における副生塩素量の削減及
び廃液量を減少させることが可能で、さらに需要家の必
要度によりこれらの量を調節しうる工業的に有利な方法
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention is capable of reducing the amount of by-product chlorine and the amount of waste liquid in the chlorine dioxide generation method using hydrochloric acid as a reducing agent. It is an object to provide an industrially advantageous method in which these amounts can be adjusted according to the needs of the house.

(課題を解決するための手段) 本発明はすなわち、塩素酸ソーダに還元剤を反応させて
二酸化塩素を製造するにあたり反応帯域を二分し、(I)
反応帯域Aには塩素酸ソーダ,メタノール及び硫酸を添
加反応させ、(II)反応帯域BにおいてはAよりの廃液に
塩酸を添加反応させて残存塩素酸ソーダを分解し、各反
応帯域より発生する二酸化塩素と塩素の混合ガスより二
酸化塩素を分離取得することを特徴とする二酸化塩素の
製造法である。
(Means for Solving the Problems) The present invention is to divide a reaction zone into two in the production of chlorine dioxide by reacting sodium chlorate with a reducing agent, and (I)
Sodium chlorate, methanol and sulfuric acid are added and reacted in the reaction zone A, and (II) In the reaction zone B, hydrochloric acid is added and reacted with the waste liquid from A to decompose the residual sodium chlorate, which is generated from each reaction zone. This is a chlorine dioxide production method characterized in that chlorine dioxide is obtained separately from a mixed gas of chlorine dioxide and chlorine.

次に本発明方法を図面により説明する。Next, the method of the present invention will be described with reference to the drawings.

二酸化塩素発生槽(1)(反応帯域A)には貯槽(2)より塩
素酸ソーダ(3)とともに硫酸(4)を添加し、またメタノー
ル(5)は後記の不活性ガス(10)と共に導入する。また
二酸化塩素発生槽(7)(反応帯域B)には塩素酸ソーダ
が残存するように反応させた二酸化塩素発生槽(1)より
の廃液(8)を導き塩酸(9)を添加する。各槽(1)(7)の下部
よりは空気等の不活性ガス(10)を吸込んで発生する二
酸化塩素と塩素の混合ガス(11)を取り出し、二酸化塩
素吸収塔(12)に導き冷水(13)により二酸化塩素ガス
を吸収させ二酸化塩素水(14)を製造する。水に吸収さ
れない塩素ガスは塩素吸収塔(15)に導かれ苛性アルカ
リ又は石灰乳(16)に吸収させ次亜塩素酸塩溶液(17)
とする。二酸化塩素発生槽(7)よりの廃液(18)は硫
酸,芒硝分を主成分とし、パルプ蒸解用黒液に使用され
る。各二酸化塩素発生槽で発生する二酸化塩素と塩素の
比率は異るがガス吸収部は共通にして差支えない。また
二酸化塩素と塩素の分離方法はここに例示した方法に限
らず公知の化学的物理的各種の分離法が適用しうる。
To the chlorine dioxide generation tank (1) (reaction zone A), add sodium chlorate (3) and sulfuric acid (4) from the storage tank (2), and introduce methanol (5) together with the inert gas (10) described below. To do. Further, to the chlorine dioxide generation tank (7) (reaction zone B), the waste liquid (8) from the chlorine dioxide generation tank (1) reacted so that the sodium chlorate remains, is introduced and hydrochloric acid (9) is added. A mixed gas (11) of chlorine dioxide and chlorine generated by sucking an inert gas (10) such as air is taken out from the bottom of each tank (1) (7), and introduced into a chlorine dioxide absorption tower (12) to cool water ( Chlorine dioxide gas is absorbed by 13) to produce chlorine dioxide water (14). Chlorine gas that is not absorbed by water is guided to the chlorine absorption tower (15) and absorbed by caustic alkali or lime milk (16), hypochlorite solution (17)
And The waste liquid (18) from the chlorine dioxide generation tank (7) contains sulfuric acid and Glauber's salt as main components, and is used for black liquor for pulp cooking. Although the ratio of chlorine dioxide and chlorine generated in each chlorine dioxide generation tank is different, the gas absorption part can be common. The separation method of chlorine dioxide and chlorine is not limited to the method exemplified here, and various known chemical and physical separation methods can be applied.

反応帯域Aにおいては二酸化塩素ガスのみ発生する。ま
た反応帯域A,Bにおけるそれぞれの塩素酸ソーダの分
解率はメタノール,塩酸,硫酸の添加量により任意に調
節することができる。なお硫酸は必要量の全量を反応帯
域Aに添加してもよくその一部を反応帯域Bに添加して
もよい。
In the reaction zone A, only chlorine dioxide gas is generated. The decomposition rate of each sodium chlorate in the reaction zones A and B can be arbitrarily adjusted by the addition amounts of methanol, hydrochloric acid and sulfuric acid. The required amount of sulfuric acid may be added to the reaction zone A or a part thereof may be added to the reaction zone B.

反応帯域A(二酸化塩素発生槽1)における主反応式は
次式(1)(2)で示される。
The main reaction equations in the reaction zone A (chlorine dioxide generation tank 1) are shown by the following equations (1) and (2).

NaClO3+1/2H2SO4+1/2CH3OH→ ClO2+1/2Na2SO4+1/2HCHO+H2O…(1) また反応帯域B(二酸化塩素発生槽7)における主反応
式は次式(2)で示される。
NaClO 3 + 1 / 2H 2 SO 4 + 1 / 2CH 3 OH → ClO 2 + 1 / 2Na 2 SO 4 + 1 / 2HCHO + H 2 O… (1) Also in reaction zone B (chlorine dioxide generation tank 7) The reaction formula is shown by the following formula (2).

2NaClO3+4HCl→2ClO2+Cl2+2NaCl+2H2O…(2) (作用及び発明の効果) 本発明法は以上のように反応帯域をABに分け、それぞ
れ別異の還元剤を使用し、さらに上記2つの帯域による
反応率を調節することにより下記のごとき効果を生ず
る。
2NaClO 3 + 4HCl → 2ClO 2 + Cl 2 + 2NaCl + 2H 2 O (2) (Action and effect of the invention) In the method of the present invention, the reaction zone is divided into AB as described above, and different reducing agents are used respectively. In addition, the following effects are produced by adjusting the reaction rates of the above two zones.

1) 反応帯域Aにおいて還元剤として使用される塩酸を
メタノールで置換することにより系内に入る水が減少す
る結果、上記i)の方法よりさらに廃液量を減少させるこ
とが可能になり、過剰な廃液量処理の問題が回避され
る。
1) As a result of replacing hydrochloric acid used as a reducing agent in the reaction zone A with methanol, the amount of water entering the system is reduced. Problems of waste liquid treatment are avoided.

2) 同じく反応帯域Aにおけるメタノールの使用により
副生塩素の量を減少させることができ、副生塩素過剰に
よる問題を解消することができる。
2) Similarly, by using methanol in the reaction zone A, the amount of by-product chlorine can be reduced, and the problem due to excess by-product chlorine can be solved.

すなわち需要先において塩素(例えば漂白剤としての次
亜塩素酸ソーダ)を必要としない場合は反応帯域Aにお
ける反応率を大にすればよい。逆に塩素が需要先の必要
量を満さない場合は、反応帯域Bにおける反応率を大に
すればよい。このように需要先の必要により副生物の生
産量を任意に調節し得ることも本発明法の大きな特徴で
ある。
That is, when chlorine (for example, sodium hypochlorite as a bleaching agent) is not required at the demand destination, the reaction rate in the reaction zone A may be increased. On the contrary, when chlorine does not meet the required amount of the demand destination, the reaction rate in the reaction zone B may be increased. As described above, it is a great feature of the method of the present invention that the production amount of the by-product can be arbitrarily adjusted depending on the demand of the customer.

3) 還元剤としてメタノールを使用すること自体は“ソ
ルベイ法”として公知である。しかしこの反応は元来反
応収率は良好であるが非常に緩慢であり、多数の大容量
の反応器を用いても、未反応塩素酸ソーダを含む多量の
廃液を排出し、反応率の低いことにより原料塩素酸ソー
ダの原単位が劣っていることが欠点とされていた。
3) The use of methanol as a reducing agent is known per se as the “Solvay method”. However, this reaction has a good reaction yield from the beginning, but is very slow. Even if a large number of large-capacity reactors are used, a large amount of waste liquid containing unreacted sodium chlorate is discharged and the reaction rate is low. As a result, the raw material soda chlorate is inferior in the basic unit, which has been regarded as a drawback.

本発明法においては、メタノールによる反応は反応帯域
Aにおいてのみ実施するので、Aよりの廃液に未反応塩
素酸ソーダが残存するようにすれば、これが反応帯域B
において塩酸により効率よく分解され二酸化塩素となる
ため、メタノール法の欠点がカバーされ、全体として塩
素酸ソーダの原単位が良好となる。
In the method of the present invention, the reaction with methanol is carried out only in the reaction zone A. Therefore, if the unreacted sodium chlorate is left in the waste liquid from A, the reaction is carried out in the reaction zone B.
In the above, since it is efficiently decomposed into hydrochloric acid by hydrochloric acid and becomes chlorine dioxide, the drawbacks of the methanol method are covered, and the basic unit of sodium chlorate is improved as a whole.

4) 上記i)の方法のように亜硫酸ガス発生装置や廃液の
濃縮設備あるいは晶出設備のような複雑な付帯設備を要
せず、運転操作が簡単で容易に自動運転を実施すること
ができる。したがって既存設備の塩素副生量や廃液発生
量減少のための転換が容易である。またメタノールは安
価で使用量も少くてよく、硫酸の使用量も相対的に減少
するため、二酸化塩素のコストを引上げることはない。
4) It does not require complicated auxiliary equipment such as a sulfurous acid gas generator, waste liquid concentration equipment or crystallization equipment like the method of i) above, and the operation is simple and automatic operation can be performed easily. . Therefore, it is easy to convert existing equipment to reduce the amount of chlorine by-product and the amount of waste liquid generated. Further, methanol is inexpensive and can be used in a small amount, and the amount of sulfuric acid used is relatively reduced, so that the cost of chlorine dioxide is not increased.

(実施例) 以下実施例、比較例により本発明を説明する。(Example) Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.

実施例1 反応帯域AにNaClO3639g/の水溶液を31/hr
の割合で注加し、同時に濃硫酸14.9/hrの割合で注加
する。これを40〜50℃に加温し下部よりメタノール
2.5/hr,空気を28Nm/hrの割合で吹込む。
反応帯域Aより排出される廃液流量は40/hr,その
組成はNaClO390g/,Na2SO4267g/,H2SO4
482g/,メタノール1g/,HCHO traceであ
り、これを反応帯域Bに導入しながら35%塩酸を2.
9/hrの割合で注加し液を50〜60℃に加温して、
下部より空気を5.7Nm/hrの割合で吹込んだ。反
応帯域Aよりの発生ガス(ClO210.1kg/hr)と、反
応帯域Bよりの発生ガス(ClO2 2kg/hr,Cl21.2k
g/hr)を同一の二酸化塩素吸収塔で5℃の冷水に吸収
させて、二酸化塩素水(ClO27g/,Cl20.3g/
)を1720/hrの割合で得た。さらに吸収塔より
の排ガスをNaOH40g/水溶液に吸収させて次亜塩素
酸ソーダ溶液(有効塩素31.6g/)を22/hr
の割合で得た。一方反応帯域Bよりの廃液の流量は4
0.7/hr,組成はNaClO310g/,HCl2g/
,Na2SO4318g/,H2SO4441g/であり、
発生二酸化塩素トン当りの各物質原単位は次のとおりで
あった。
Example 1 In reaction zone A, an aqueous solution of 639 g / g NaClO 3 was added at 31 / hr.
And at the same time with concentrated sulfuric acid at a ratio of 14.9 / hr. This is heated to 40 to 50 ° C. and blown with methanol at a rate of 2.5 / hr and air at a rate of 28 Nm 3 / hr from the lower part.
The flow rate of the waste liquid discharged from the reaction zone A is 40 / hr, and the composition is NaClO 3 90 g /, Na 2 SO 4 267 g /, H 2 SO 4
482 g /, methanol 1 g /, HCHO trace, and while introducing this into the reaction zone B, 35% hydrochloric acid was added to 2.
It is poured at a rate of 9 / hr and the liquid is heated to 50-60 ° C,
Air was blown from the bottom at a rate of 5.7 Nm 3 / hr. Gas evolved from reaction zone A (ClO 2 10.1 kg / hr) and gas evolved from reaction zone B (ClO 2 2 kg / hr, Cl 2 1.2 k
(g / hr) is absorbed in cold water at 5 ° C. in the same chlorine dioxide absorption tower, and chlorine dioxide water (ClO 2 7 g /, Cl 2 0.3 g /
) Was obtained at a rate of 1720 / hr. Further, the exhaust gas from the absorption tower is absorbed in 40 g of NaOH / water solution to give a sodium hypochlorite solution (effective chlorine of 31.6 g /) at 22 / hr.
Obtained in proportion. On the other hand, the flow rate of the waste liquid from the reaction zone B is 4
0.7 / hr, composition: NaClO 3 10 g /, HCl 2 g /
, Na 2 SO 4 318 g /, H 2 SO 4 441 g /,
The basic unit of each substance per ton of chlorine dioxide generated was as follows.

NaClO3 1,650kg,35%塩酸 285kg, H2SO4 2,290kg,メタノール 167kg, 廃硫酸 1,500kg,副生Cl2 100kg 比較例1 反応帯域AにNaClO3639g/の水溶液を25.8
/hr,濃硫酸14.9/hr,35%塩酸14.5/
hrの各割合で注加し、40〜50℃に加温する。また下
部より空気を28Nm3/h8の割合で吹込む。発生ガス
(ClO210.1kg/hr,Cl25.8kg/hrを5℃の冷水
に吸収させて二酸化塩素水(ClO2 7g/,Cl21g
/)を1430/hrの割合で得た。さらに吸収塔よ
りの排ガスをNaOH 40g/水溶液に吸収させて次亜
塩素酸ソーダ溶液(有効塩素31.6g/)を139
/hrの割合で得た。一方反応帯域Bより流出する廃液
の流量は43.0/hr,組成はNClO3 8g/,HCl
3g/,Na2SO4251g/,H2SO4 453g/
であり、発生二酸化塩素トン当りの各物質原単位は次
のとおりであった。
1,650 kg of NaClO 3 , 285 kg of 35% hydrochloric acid, 2,290 kg of H 2 SO 4 , 167 kg of methanol, 1,500 kg of waste sulfuric acid, 100 kg of by-product Cl 2 Comparative Example 1 In reaction zone A, an aqueous solution of 639 g of NaClO 3 of 25.8 was used.
/ Hr, concentrated sulfuric acid 14.9 / hr, 35% hydrochloric acid 14.5 /
Pour at each rate of hr and heat to 40-50 ° C. Air is blown from the bottom at a rate of 28 Nm 3 / h8. Generated gas (ClO 2 10.1 kg / hr, Cl 2 5.8 kg / hr is absorbed in cold water at 5 ° C to give chlorine dioxide water (ClO 2 7 g /, Cl 2 1 g
/) Was obtained at a rate of 1430 / hr. Further, the exhaust gas from the absorption tower is absorbed in 40 g of NaOH / water solution to give 139 of sodium hypochlorite solution (effective chlorine: 31.6 g /).
/ Hr. On the other hand, the flow rate of the waste liquid flowing out from the reaction zone B is 43.0 / hr, and the composition is NClO 3 8 g /, HCl.
3g /, Na 2 SO 4 251g /, H 2 SO 4 453g /
The basic unit of each substance per ton of chlorine dioxide generated was as follows.

NaClO3 1,650kg,35%塩酸 1710kg, H2SO4 2,745kg,廃硫酸 1,950kg, 副生Cl2 580kg この例は硫酸酸性溶液で塩素酸ソーダを塩酸で還元する
方法であるが、実施例に比べ廃硫酸と副生塩素の多いこ
とが判る。
NaClO 3 1,650 kg, 35% hydrochloric acid 1710 kg, H 2 SO 4 2,745 kg, waste sulfuric acid 1,950 kg, by-product Cl 2 580 kg This example is a method of reducing sodium chlorate with hydrochloric acid in a sulfuric acid acidic solution. In comparison, it can be seen that the amount of waste sulfuric acid and chlorine by-product is large.

比較例2 反応帯域AにNaClO3 639g/の水溶液を31/
hr,濃硫酸14.9/hr,メタノール25.2/hr
の割合で注加し40〜50℃に加温する。また下部より
空気を28Nm3/hrの割合で吹込む。発生ガス(ClO2
10.1kg/hr)を5℃の冷水で吸収せしめて二酸化塩
素水(ClO2 7g/)を1430/hrの割合で得
た。一方反応帯域より流出する廃液の流量は40.3
/hr,NaClO390g/,Na2SO4267g/,メタノ
ール1g/,HCHO traceであり、発生二酸化塩素ト
ン当りの各物質原単位は次のとおりである。
Comparative Example 2 In reaction zone A, an aqueous solution of NaClO 3 639 g / 31 /
hr, concentrated sulfuric acid 14.9 / hr, methanol 25.2 / hr
And the mixture is heated to 40 to 50 ° C. Air is blown from the bottom at a rate of 28 Nm 3 / hr. Generated gas (ClO 2
10.1 kg / hr) was absorbed with cold water at 5 ° C. to obtain chlorine dioxide water (ClO 2 7 g /) at a rate of 1430 / hr. On the other hand, the flow rate of the waste liquid flowing out of the reaction zone is 40.3.
/ Hr, NaClO 3 90 g /, Na 2 SO 4 267 g /, methanol 1 g /, HCHO trace, and each substance basic unit per ton of chlorine dioxide generated is as follows.

NaClO3 1980kg,メタノール 200kg, H2SO4 2,745kg,廃硫酸 1,950kg, 副生Cl2 なし この例は硫酸酸性溶液で塩素酸ソーダをメタノールで還
元する方法であり実施例に比し副生塩素はほぼゼロで少
いが、廃硫酸は多く、塩素酸ソーダの原単位も悪く経済
性に劣ることが判る。
NaClO 3 1980kg, Methanol 200kg, H 2 SO 4 2,745kg, Waste sulfuric acid 1,950kg, No by-product Cl 2 This example is a method of reducing sodium chlorate with methanol in an acidic sulfuric acid solution. Is almost zero and small, but the amount of waste sulfuric acid is large, the basic unit of sodium chlorate is also bad, and the economy is poor.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明法を実施するための装置を示す概略図であ
る。 1……二酸化塩素発生槽(反応帯域A)、 7……同(反応帯域B)、 6……塩酸の注入経路、 8……反応帯域AよりBへの廃液経路、 11……発生ガス経路 12……二酸化塩素吸収塔、 15……塩素吸収塔
The drawing is a schematic diagram showing an apparatus for carrying out the method of the present invention. 1 ... Chlorine dioxide generating tank (reaction zone A), 7 ... Same (reaction zone B), 6 ... Hydrochloric acid injection route, 8 ... Waste liquid route from reaction zone A to B, 11 ... Evolved gas route 12 ... Chlorine dioxide absorption tower, 15 ... Chlorine absorption tower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩素酸ソーダに還元剤を反応させて二酸化
塩素を製造するにあたり、反応帯域を二分し、(I)反
応帯域Aには、塩素酸ソーダ,メタノール及び硫酸を添
加反応させ、(II)反応帯域BにおいてはAよりの廃液
に塩酸を添加反応させて残存塩素酸ソーダを分解し、各
反応帯域より発生する二酸化塩素と塩素の混合ガスより
二酸化塩素を分離取得することを特徴とする二酸化塩素
の製造法。
1. To produce chlorine dioxide by reacting sodium chlorate with a reducing agent, the reaction zone is divided into two parts, and (I) reaction zone A is reacted with sodium chlorate, methanol and sulfuric acid, II) In the reaction zone B, hydrochloric acid is added to the waste liquid from A to react to decompose residual sodium chlorate, and chlorine dioxide is separated and obtained from a mixed gas of chlorine dioxide and chlorine generated in each reaction zone. Chlorine dioxide production method.
JP1222639A 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method Expired - Lifetime JPH0621004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222639A JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222639A JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Publications (2)

Publication Number Publication Date
JPH0383802A JPH0383802A (en) 1991-04-09
JPH0621004B2 true JPH0621004B2 (en) 1994-03-23

Family

ID=16785610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222639A Expired - Lifetime JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621004B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2581318C (en) * 2004-09-24 2011-03-15 Akzo Nobel N.V. A process for the production of chlorine dioxide
US20120294794A1 (en) * 2010-01-18 2012-11-22 Akzo Nobel Chemicals International B.V. Process for the Production of Chlorine Dioxide
US11535541B2 (en) 2017-02-27 2022-12-27 Ecolab Usa Inc. Method for onsite production of chlorine dioxide
US11130677B2 (en) 2017-03-24 2021-09-28 Ecolab Usa Inc. Low risk chlorine dioxide onsite generation system
TWI750356B (en) 2017-08-17 2021-12-21 美商藝康美國公司 Low risk chlorine dioxide onsite generation system
US11970393B2 (en) 2018-07-05 2024-04-30 Ecolab Usa Inc. Decomposition mediation in chlorine dioxide generation systems through sound detection and control

Also Published As

Publication number Publication date
JPH0383802A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
US3864456A (en) Manufacture of chlorine dioxide, chlorine and anhydrous sodium sulphate
JP2584718B2 (en) Continuous production method of chlorine dioxide
US4465658A (en) Chlorine dioxide process
US5324497A (en) Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor
US2484402A (en) Process for producing chlorine dioxide
US3933988A (en) Method of simultaneously producing chlorine dioxide and a sulfate salt
JPH0621005B2 (en) Chlorine dioxide manufacturing method
CN101519189A (en) Method and device for preparing basic magnesium hypochlorite by using waste chlorine
US3341288A (en) Production of chlorine dioxide
US6676917B2 (en) Process for the production of hydrochloric acid and neutralized sulfates
US4216195A (en) Production of chlorine dioxide having low chlorine content
US3760065A (en) Production of chlorine dioxide
JPH0210082B2 (en)
US3347628A (en) Production of chlorine dioxide
JPH0621004B2 (en) Chlorine dioxide manufacturing method
US4145401A (en) High efficiency chlorine dioxide production at low acidity with methanol addition
JPS638203A (en) Production of high-purity chlorine dioxide
US3933987A (en) Simultaneous production of chlorine dioxide and a salt of a strong acid
CA1105877A (en) Process for producing chlorine dioxide
US4486399A (en) Method to reduce the potential salt cake content of chlorine dioxide generator spent acids
CA2079633C (en) Method for the preparation of chlorates from waste gas streams obtained from the production of chlorine dioxide
US5433938A (en) Chlorine-destruct method
US4206193A (en) Versatile process for generating chlorine dioxide
US3594580A (en) Chlorine dioxide process ii
RU2091509C1 (en) Method of producing alkali metal hydroxide