JPH0383802A - Production of chlorine dioxide - Google Patents

Production of chlorine dioxide

Info

Publication number
JPH0383802A
JPH0383802A JP22263989A JP22263989A JPH0383802A JP H0383802 A JPH0383802 A JP H0383802A JP 22263989 A JP22263989 A JP 22263989A JP 22263989 A JP22263989 A JP 22263989A JP H0383802 A JPH0383802 A JP H0383802A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
reaction zone
chlorine
waste liquid
sodium chlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22263989A
Other languages
Japanese (ja)
Other versions
JPH0621004B2 (en
Inventor
Jiro Kushiro
久代 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1222639A priority Critical patent/JPH0621004B2/en
Publication of JPH0383802A publication Critical patent/JPH0383802A/en
Publication of JPH0621004B2 publication Critical patent/JPH0621004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To decrease the amounts of by-produced chlorine and waste liquid in the conventional process for the production of chlorine dioxide by the reaction of sodium chlorate with hydrochloric acid as a reducing agent by dividing the reaction zone into two zones and using different reducing agents in each reaction zone. CONSTITUTION:In the production of chlorine dioxide by the reaction of sodium chlorate with a reducing agent, the reaction zone is divided into two zones A and B. Sodium chlorate 3, methanol 5, hydrochloric acid 6 and sulfuric acid 4 are supplied to the reaction zone A (ClO2 generation tank 1) and made to react with each other. Hydrochloric acid 9 is added to the waste liquid 8 of the zone A in the reaction zone B (ClO2 generation tank 7) and reacted to decompose the residual sodium chlorate. The objective chlorine dioxide is separated from the mixed gas 11 consisting of chlorine dioxide and chlorine generated from the reaction zones A and B. For example, the mixed gas 11 is introduced into an absorption column 12, chlorine dioxide is absorbed in cold water 13 and recovered as ClO2 water 14 and the residual chlorine is absorbed in an alkali 16 in the absorption column 15 and recovered as a hypochlorite solution 17. The waste liquid 18 is composed mainly of sulfuric acid and sodium sulfate and is used as a black liquor for pulp digestion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素酸ソーダに環元剤を反応させて(2) (1) 二酸化塩素を製造する方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention involves reacting sodium chlorate with a cyclic agent (2) (1) The present invention relates to a method for producing chlorine dioxide.

(従来の技術) 現在工業的に実施されている二酸化塩素製造法を大別す
ると 1)硫酸酸性溶液で塩素酸ソーダを亜硫酸ガスで還元す
る方法 ■)硫酸酸性溶液で塩素酸ソーダを塩化水素で還元する
方法 I)塩素酸ソーダもしくは塩素酸カルシウムを塩酸で還
元する方法 これらのいずれの方法も二酸化塩素(および塩素)とと
もに反応廃液が生成する。上記1)、l)の各方法の場
合いずれも硫酸と芒硝を主成分とし若干の塩素酸ソーダ
を含有しているが多くの場合、製紙パルプ用蒸解黒液に
混入して芒硝分を有効利用している。又、硫酸ばん土製
造に利用している場合もある。
(Prior technology) The methods of producing chlorine dioxide that are currently being industrially implemented can be roughly divided into 1) A method in which sodium chlorate is reduced with sulfur dioxide gas in a sulfuric acid solution ■) A method in which sodium chlorate is reduced with hydrogen chloride in a sulfuric acid solution Reduction Method I) Method of Reducing Sodium Chlorate or Calcium Chlorate with Hydrochloric Acid In either of these methods, a reaction waste liquid is produced together with chlorine dioxide (and chlorine). In the case of methods 1) and 1) above, the main ingredients are sulfuric acid and mirabilite, and some sodium chlorate is also included, but in many cases, the mirabilite content is mixed into the cooking black liquor for paper pulp to effectively utilize the mirabilite content. are doing. In some cases, it is also used in the production of sulfate clay.

しかし、利用出来る廃液の絶対量には限度がありそれを
超える廃液が生成する場合は放棄せざるを得なくなりそ
の際は中和薬剤等を特徴とする特許そのために多額の経
費を要することになる。特に0 の方法は1)に比し運
転方法が簡単であるために最近多数の工場で採用されて
いるが反応廃液生成量が極めて多量lので(発生二酸化
塩素1トンあたり芒硝的1.1トン、硫酸約2トンを含
む約7トンを副生)その処理方法が問題となることが多
い。l)の方法の廃液量はこれより少いが亜硫酸ガスの
発生装置を必要としその面で、運転操作が複雑化し、ま
た亜硫酸ガスによる公害問題の発生するおそれがある。
However, there is a limit to the absolute amount of waste liquid that can be used, and if waste liquid exceeds that limit, it will have to be abandoned, and in that case, patents featuring neutralizing agents, etc. will require a large amount of expense. . In particular, method 0 has been recently adopted by many factories because it has a simpler operation method than method 1), but it produces an extremely large amount of reaction waste liquid (1.1 tons of mirabilite per ton of chlorine dioxide generated). (about 7 tons, including about 2 tons of sulfuric acid, are produced as by-products).The treatment method is often a problem. Although the amount of waste liquid in method 1) is smaller than this, it requires a sulfur dioxide gas generator, which complicates operation and may cause pollution problems due to sulfur dioxide gas.

またI)、■)の方法の改良法として反応廃液より中性
芒硝または酸性芒硝を回収し硫酸を再使用する方法があ
り、上記の廃液問題を解消するのに便利であるが、反面
冷凍機あるいは蒸発装置等を必要とし設備費が甚だしく
割高となり運転操作も複雑となる欠点がある。また、■
)の方法は廃液として少量の塩素酸塩と食塩もしくは塩
化カルシウムの希薄塩酸溶液が生成するが、これらは製
紙用薬剤として利用価値がなく少量のアルカリで中和し
た後放棄されており、廃液を有効利用する方法に比し経
済的に不利となる。
In addition, as an improvement method of methods I) and (ii), there is a method of recovering neutral sodium sulfate or acidic sodium sulfate from the reaction waste liquid and reusing sulfuric acid. Another disadvantage is that it requires an evaporator or the like, resulting in extremely high equipment costs and complicated operation. Also,■
) method produces a small amount of chlorate and common salt or a dilute hydrochloric acid solution of calcium chloride as waste liquid, but these are of no use as papermaking chemicals and are discarded after being neutralized with a small amount of alkali. It is economically disadvantageous compared to methods that utilize it effectively.

さらにこの廃液(食塩溶液の場合)を電解して再び塩素
酸ソーダに戻す方法もあるが、食塩濃度かうすいので濃
縮を必要とし設備費が大となり経済的に不利である。ま
た濃縮せずに食塩を添加すれば廃液量が大であるだめ不
必要に多量の潰食塩溶液が生成されることになり、電解
工程を含めた全体のプラントスケール上極めて不合理を
来すことになる。
Furthermore, there is a method of electrolyzing this waste liquid (in the case of a salt solution) and returning it to sodium chlorate again, but since the salt concentration is low, concentration is required and equipment costs are high, which is economically disadvantageous. Furthermore, if salt is added without concentrating, the amount of waste liquid will be large and an unnecessarily large amount of crushed salt solution will be produced, which is extremely unreasonable on the scale of the entire plant including the electrolysis process. become.

また1)の方法は二酸化塩素のみの発生であるのに対し
て、I)l)の方法は同時に塩素の発生するのが特徴で
ある。通常この副生塩素は吸収段階で二酸化塩素と分離
された後、苛性アルカリで吸収され次亜塩素酸ソーダと
してパルプ漂白工程で消費される。しかし、漂白工程に
おいて次亜塩素酸ソーダの使用量が少い場合はその過剰
が問題己なる。現在工業的に利用されている方法は殆ん
ど1)及び−)であるが、そのうち最も数多く用いられ
ているのは■)の方法である。この方法の利点はすでに
述べたように亜硫酸ガス発生装置、芒硝回収装置等の複
雑な付帯設備を要せず、したがつて設備費が安価で運転
操作が簡単であり、また原料塩素酸ソーダの原単位も最
も優れていることである。反面欠点としては発生廃液量
がl)に比較して多く、また塩素ガスが副生することで
これらは発生装置の規模が大きくなってくると問題とな
ることが多い。
Further, method 1) generates only chlorine dioxide, whereas method I)l) is characterized in that chlorine is generated at the same time. Normally, this by-product chlorine is separated from chlorine dioxide in the absorption stage, then absorbed with caustic alkali and consumed as sodium hypochlorite in the pulp bleaching process. However, if the amount of sodium hypochlorite used in the bleaching process is small, its excess becomes a problem. Most of the methods currently used industrially are 1) and -), of which method 2) is the most widely used. As already mentioned, the advantages of this method are that it does not require complicated incidental equipment such as a sulfur dioxide gas generator or a mirabilite recovery device, so the equipment cost is low, operation is simple, and the raw material sodium chlorate is The basic unit is also the best. On the other hand, the drawbacks are that the amount of waste liquid generated is larger than in 1), and chlorine gas is produced as a by-product, which often becomes a problem as the scale of the generator increases.

発生廃液に関して述べれば、硫酸酸性で塩素酸ソーダを
塩化水素で還元する方法では塩化水素源として塩酸を用
いる場合と食塩及び硫酸を用いる場合がある。かつては
食塩及び硫酸がよく用いら7れたが、これは系内のナト
リウムイオン量を多(し溶解度の関係で結果的に廃液量
の増加を来すため、最近は塩酸を用いる場合が多くなっ
た。これにより廃液量は確かに減少したが塩酸に伴って
系内に入るためI)の方法に比し、1.8倍程度の廃液
を生じている。また副生塩素が問題となることのあるの
も前述のとおりである。
Regarding the generated waste liquid, in the method of reducing sodium chlorate with hydrogen chloride using sulfuric acid, there are cases where hydrochloric acid is used as the hydrogen chloride source, and there are cases where common salt and sulfuric acid are used. In the past, common salt and sulfuric acid were often used7, but these tend to increase the amount of sodium ions in the system (due to solubility, resulting in an increase in the amount of waste liquid), so recently hydrochloric acid is often used. This certainly reduced the amount of waste liquid, but since it entered the system together with hydrochloric acid, the amount of waste liquid was about 1.8 times that of method I). Furthermore, as mentioned above, by-product chlorine can be a problem.

(発明が解決しようとする課N) 本発明は以上の問題点、すなわち還元剤として塩酸を使
用する二酸化塩素の発生法における副生塩素量の削減及
び廃液量を減少させることが可能で、さらに需要家の必
要度によりこれらの屋を調節しうる工業的に有利な方法
を提供することを目的とする。
(Problem N to be solved by the invention) The present invention solves the above problems, that is, it is possible to reduce the amount of by-product chlorine and the amount of waste liquid in a method for generating chlorine dioxide using hydrochloric acid as a reducing agent, and furthermore, it is possible to reduce the amount of by-product chlorine and the amount of waste liquid. It is an object of the present invention to provide an industrially advantageous method that can adjust these stores according to the needs of consumers.

(al[を解決するための手段) 本発明はすなわち、塩素酸ソーダに還元剤を反応させて
二酸化塩素を製造するにあたり反応帯域を2分し、(I
)反応帯域Aには塩素酸ソーダ、メタノール、塩酸及び
硫酸を添加反応させるか、又は上記のうち塩酸を除く各
成分を添加反応させ、(I)反応帯域Bにおいてはムよ
りの廃液に塩酸を添加反応させて残存塩素酸ソーダを分
解し、各反応帯域より発生する二酸化塩素と塩素の混合
ガスより二酸化塩素を分離取得することを特徴こする二
酸化塩素の製造法である。
(Means for solving al
) In reaction zone A, sodium chlorate, methanol, hydrochloric acid and sulfuric acid are added and reacted, or each of the above components except hydrochloric acid is added and reacted, and (I) in reaction zone B, hydrochloric acid is added to the waste liquid from the mu. This method of producing chlorine dioxide is characterized by carrying out an addition reaction to decompose residual sodium chlorate, and then separating and obtaining chlorine dioxide from a mixed gas of chlorine dioxide and chlorine generated from each reaction zone.

次に本発明方法を図面により説明する。Next, the method of the present invention will be explained with reference to the drawings.

二酸化塩素発生槽(1)(反応帯域ム)には貯槽(2)
より塩素酸ソーダ(3)とともに硫酸(4)、塩酸(6
)を添加し、またメタノール(6)は後記の不活性ガス
(10)と共に導入する。また二酸化塩素発生槽(ア)
(反応帯域B)には塩素酸ソーダが残存するように反応
させた二酸化塩素発生槽(1)よりの廃液(8)を導き
塩酸(9)を添加する。各種(1)(7)の下部よりは
空気等の不活性ガス(10)を吹込んで発生する二酸化
塩素と塩素の混合ガス(11)を取り出し、二酸化塩素
吸収塔(12)に導き冷水(13)により二酸化塩素ガ
スを吸収させ二酸化塩素水(14)を製造する。
The chlorine dioxide generation tank (1) (reaction zone) has a storage tank (2).
With sodium chlorate (3), sulfuric acid (4) and hydrochloric acid (6
), and methanol (6) is introduced together with an inert gas (10) described later. Also, chlorine dioxide generating tank (a)
In (reaction zone B), the waste liquid (8) from the chlorine dioxide generation tank (1), which has been reacted so that sodium chlorate remains, is led and hydrochloric acid (9) is added. From the bottom of each type (1) and (7), a mixed gas of chlorine dioxide and chlorine (11) generated by blowing in an inert gas such as air (10) is taken out and led to a chlorine dioxide absorption tower (12) where it is filled with cold water (13). ) to absorb chlorine dioxide gas to produce chlorine dioxide water (14).

水に吸収されない塩素ガスは塩素吸収塔(15)に導か
れ苛性アルカリ又は石灰乳(16)に吸収させ次亜塩素
酸塩溶液(′ty)とする。二酸化塩素発生槽(7)よ
りの廃液(18)は硫酸、芒硝分を主成分とし、パルプ
蒸解用黒液に使用される。各二酸化塩素発生槽で発生す
る二酸化塩素と塩素の比率は異るがガス吸収部は共通に
して差支えない。また二酸化塩素と塩素の分離方法はこ
こに例示した方法に限らず公知の化学的物理的各種の分
離法が適用しうる。
Chlorine gas that is not absorbed by water is led to a chlorine absorption tower (15) and absorbed into caustic alkali or milk of lime (16) to form a hypochlorite solution ('ty). The waste liquid (18) from the chlorine dioxide generating tank (7) contains sulfuric acid and sodium sulfate as main components, and is used as black liquor for pulp cooking. Although the ratio of chlorine dioxide and chlorine generated in each chlorine dioxide generating tank is different, the gas absorption part can be shared. Furthermore, the method for separating chlorine dioxide and chlorine is not limited to the method exemplified here, and various known chemical and physical separation methods can be applied.

また二酸化塩素発生槽(1)には塩酸を省略し、塩素酸
ソーダ、硫酸、メタノールを添加反応させることもでき
る。この場合は反応帯域Aにおいては二酸化塩素ガスの
み発生する。また反応帯域A。
Alternatively, hydrochloric acid may be omitted from the chlorine dioxide generation tank (1), and sodium chlorate, sulfuric acid, and methanol may be added for reaction. In this case, only chlorine dioxide gas is generated in reaction zone A. Also, reaction zone A.

Bにおけるそれぞれの塩素酸ソーダの分解率はメタノー
ル、塩酸、硫酸の添加量により任意に調節することがで
きる。なお硫酸は必要量の全量を反応帯域Aに添加して
もよくその一部を反応帯域Bに添加してもよい。
The decomposition rate of each sodium chlorate in B can be arbitrarily adjusted by adjusting the amounts of methanol, hydrochloric acid, and sulfuric acid added. Note that the entire required amount of sulfuric acid may be added to reaction zone A, or a portion thereof may be added to reaction zone B.

反応帯域ム(二酸化塩素発生槽1)における主反応式は
次式(1)(2)で示される。
The main reaction equations in the reaction zone (chlorine dioxide generation tank 1) are shown by the following equations (1) and (2).

Na0NO,+ 1/2H,804+ 1/20H,O
TI −+(!10. +1/72Na、So、 +1
/2H(IO+H,0−(1)NaOIOl + ’1
/2Ht804 + Hog →CeO,+ 1/20
11t+ 1/2Na、80. +H,O”’ (2)
また反応帯域B(二酸化塩素発生槽7)における主反応
式は上記式(2)又は次式(3)で示される。
Na0NO, + 1/2H, 804+ 1/20H, O
TI −+(!10. +1/72Na, So, +1
/2H(IO+H,0-(1)NaOIOl+'1
/2Ht804 + Hog →CeO, + 1/20
11t+ 1/2Na, 80. +H, O"' (2)
Further, the main reaction formula in reaction zone B (chlorine dioxide generation tank 7) is shown by the above formula (2) or the following formula (3).

2Na(JO,+ 411(J →2ceo、 +Of
!、 +2NaCJ + 2H,0−(5)(作用及び
発明の効果) 本発明法は以上のように反応帯域をABに分け、それぞ
れ別異の還元剤を使用し、さらに上記2つの帯域による
反応率を調節することにより下記のごとき効果を生ずる
2Na(JO, + 411(J → 2ceo, +Of
! , +2NaCJ + 2H,0-(5) (Function and Effects of the Invention) As described above, the method of the present invention divides the reaction zone into AB, uses different reducing agents in each zone, and further reduces the reaction rate in the above two zones. By adjusting , the following effects are produced.

1)反応帯域ムにおいて還元剤として使用される塩酸の
一部又は全部をメタノールで置換することにより系内に
入る水が減少する結果、上記I)の方法よりさらに廃液
量を減少させることが可能になり、過剰な廃液量処理の
問題が回避される。
1) By replacing part or all of the hydrochloric acid used as a reducing agent in the reaction zone with methanol, the amount of water entering the system is reduced, making it possible to further reduce the amount of waste liquid compared to method I) above. This avoids the problem of excessive waste liquid disposal.

2)同じく反応帯域Aにおけるメタノールの使用により
副生塩素の量を減少させることができ、副生塩素過剰に
よる問題を解消することができる。
2) Similarly, by using methanol in reaction zone A, the amount of by-product chlorine can be reduced, and the problem caused by excessive by-product chlorine can be solved.

すなわち需要先において塩素(例えば漂白剤としての次
亜塩素酸ソーダ)を必要としない場合は反応帯域ムにお
ける塩酸の添加をゼロとすればよい。逆に塩素が需要先
の必要量を満さない場合は、反応帯域Aにおける塩酸の
添加量をその必要量が満たせるまで増加すればよい。こ
のように需要先の必要により副生物の生産量を任意に調
節し得ることも本発明法の大きな特徴である。
That is, if chlorine (for example, sodium hypochlorite as a bleaching agent) is not required at the customer, the addition of hydrochloric acid in the reaction zone may be set to zero. Conversely, if the amount of chlorine does not meet the requirements of the demand, the amount of hydrochloric acid added in reaction zone A may be increased until the required amount is met. A major feature of the method of the present invention is that the production amount of by-products can be arbitrarily adjusted according to the needs of the customers.

3)還元剤としてメタノールを使用すること自体は“ツ
ルベイ法”として公知である。しかしこの反応は元来反
応収率は良好であるが非常に緩慢であり、多数の大容量
の反応器を用いても、未反応塩素酸ソーダを含む多量の
廃液を排出し、反応率の低いことにより原料塩素酸ソー
ダの原単位が劣っていることが欠点とされていた。
3) The use of methanol as a reducing agent is itself known as the "Trubey method". However, although this reaction originally has a good reaction yield, it is very slow, and even if a large number of large-capacity reactors are used, a large amount of waste liquid containing unreacted sodium chlorate is discharged, resulting in a low reaction rate. As a result, the disadvantage was that the basic unit of sodium chlorate as a raw material was inferior.

本発明法においては、メタノールによる反応は反応帯域
Aにおいてのみ実施するので、Aよりの廃液に未反応塩
素酸ソーダが残存するようニスレバ、これが反応帯域B
において塩酸により効率よく分解され二酸化塩素となる
ため、メタノール法の欠点がカバーされ、全体として塩
素酸ソーダの原単位が良好となる。
In the method of the present invention, the reaction with methanol is carried out only in reaction zone A, so the Nislever is used to ensure that unreacted sodium chlorate remains in the waste liquid from A.
Since it is efficiently decomposed into chlorine dioxide by hydrochloric acid in the process, the drawbacks of the methanol method are covered, and the basic unit of sodium chlorate is improved overall.

4)上記I)の方法のように亜硫酸ガス発生装置や廃液
の濃縮設備あるいは晶出設備のような複雑な付帯設備を
要せず、運転操作が簡単で容易に自動運転を実施するこ
とができる。したがって既存設備の塩素副生量や廃液発
生量減少のための転換が容易である。またメタノールは
安価で使用量も少くてよく、硫酸の使用量も相対的に減
少するため、二酸化塩素のコストを引上げることはない
4) Unlike method I) above, there is no need for complicated incidental equipment such as a sulfur dioxide gas generator, waste liquid concentration equipment, or crystallization equipment, and the operation is simple and automatic operation can be carried out easily. . Therefore, it is easy to convert existing equipment to reduce the amount of chlorine by-product and waste liquid generated. Furthermore, methanol is inexpensive and only needs to be used in a small amount, and the amount of sulfuric acid used is also relatively reduced, so the cost of chlorine dioxide does not increase.

(実施例) 以下実施例、比較例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1 図面に示す装置を使用し反応帯域ムにNa(40g8 
S 9 f/l の水溶液を37 (!/hr 、濃硫
酸18.61/hr、S 6%塩酸2.81/hrの割
合で添加し、40〜50℃に加温して下部よりメタノー
ルを2.51/hr、空気を34 N m /hrcD
割合で吹込んだ。反応帯域Aより排出される廃液流量は
51//hr、  組成はNa0IO185,8f//
l −HC11101/1. H,80,4799/1
. Na、804255f/l 、メタノール1 f/
l+ HOHOtraceである。
Example 1 Using the apparatus shown in the drawing, Na (40g8
An aqueous solution of S 9 f/l was added at a rate of 37 (!/hr), concentrated sulfuric acid 18.61/hr, S 6% hydrochloric acid 2.81/hr, heated to 40-50°C, and methanol was added from the bottom. 2.51/hr, air at 34 N m/hrcD
Injected in proportion. The flow rate of waste liquid discharged from reaction zone A is 51//hr, and the composition is NaIO185,8f//
l-HC11101/1. H,80,4799/1
.. Na, 804255f/l, methanol 1f/l
l+HOHOtrace.

この廃液を反応帯域Bに導入しながら35%塩酸をs、
 s l/hrの割合で注6加し液を50〜60℃に加
温して下部より空気を8.8 N ml/hr  の割
合で吹込んだ。反応帯域Aよりの発生ガス(CeO!1
2、1 kg/hr 、 C(1ffi1.2 kg/
hr)  と反応帯域Bよりの発生ガX (C!NO,
2,4kg/hr 、 (J、 1.4kg/hr)を
同一の二酸化塩素吸収塔で6℃の冷水に吸収せしめて、
二酸化塩素水CClO271/e 。
While introducing this waste liquid into reaction zone B, add 35% hydrochloric acid to
Note 6: The added solution was heated to 50 to 60°C at a rate of sl/hr, and air was blown from the bottom at a rate of 8.8 Nml/hr. Generated gas from reaction zone A (CeO!1
2, 1 kg/hr, C (1ffi1.2 kg/
hr) and gas generated from reaction zone B (C!NO,
2.4 kg/hr, (J, 1.4 kg/hr) was absorbed into 6°C cold water in the same chlorine dioxide absorption tower,
Chlorine dioxide water CClO271/e.

C1tO,S f/I)を2.0801/hrの割合で
得た。
C1tO, S f/I) was obtained at a rate of 2.0801/hr.

さらに吸収塔よりの排ガスをNaOH401/l水溶液
に吸収させて次亜塩素酸ソーダ溶液(有効塩素31.6
 ’l/l’)を501/hr ノ割合で得た。一方反
応帯域Bより流出する廃液の流量は51.01/hi紹
成はNaCe0 9 f/l 、 HOI  2 f/
1.Na0IO1慕 5051/l、 E[,804442f/II テアt
)、発生二酸化塩素トン当りの各物質の原単位は次のと
おりであった。
Furthermore, the exhaust gas from the absorption tower was absorbed into a NaOH401/l aqueous solution and a sodium hypochlorite solution (available chlorine 31.6
'l/l') was obtained at a rate of 501/hr. On the other hand, the flow rate of the waste liquid flowing out from the reaction zone B is 51.01/hi, NaCe0 9 f/l for the reaction zone, and 2 f/l for the HOI.
1. Na0IO1 5051/l, E[,804442f/II Thea t
), and the basic units of each substance per ton of chlorine dioxide generated were as follows.

Na0e0. 1,650kg 、  36%塩酸 6
23kg。
Na0e0. 1,650kg, 36% hydrochloric acid 6
23kg.

H,80,2458kg 、  メタノール  130
kg。
H, 80,2458kg, methanol 130
kg.

廃硫酸 1.670kg 、副生C#、   177k
g実施例2 反応帯域ムにNaCl0.639 t/l  の水溶液
を31//hrの割合で注加し、同時に濃硫酸14.8
1/hrの割合で注加する。これを40〜60′cに加
温し下部よりメタノール2.51/hr、空気を28 
N m”/hr の割合で吹込む。反応帯域Aより排出
される廃液流量は40 (t/hr 、その組成はNa
0IO1s O’I/e、 Na、80.2871/l
Waste sulfuric acid 1.670kg, by-product C#, 177k
g Example 2 An aqueous solution of 0.639 t/l of NaCl was poured into the reaction zone at a rate of 31//hr, and at the same time 14.8 t/l of concentrated sulfuric acid was poured into the reaction zone.
Inject at a rate of 1/hr. This was heated to 40 to 60'C, and methanol 2.51/hr and air 28/hr were added from the bottom.
Blow in at a rate of N m"/hr. The flow rate of waste liquid discharged from reaction zone A is 40 (t/hr, its composition is Na
0IO1s O'I/e, Na, 80.2871/l
.

II、80448 ! 9/l 、メタノール197g
II, 80448! 9/l, methanol 197g
.

HC!HOtraceであり、これを反応帯域Bに導入
しながら55%塩酸を2J#/hrの割合で注加し液を
50〜60℃に加温して、下部より空気を5、7 N 
m’ 、、’h r  の割合で吹込んだ。反応帯域ム
よりの発生ガス((J’0.10.1 kg/hr )
と、反応帯域Bよりの発生ガス(CIo、  2kg/
hr、 O#、t、tkg/hr)を同一の二酸化塩素
吸収塔で5℃の冷水に吸収させて、二酸化塩素水(0/
!0.7 fl/l。
HC! While introducing this into reaction zone B, 55% hydrochloric acid was added at a rate of 2 J#/hr, the solution was heated to 50-60°C, and air was introduced from the bottom at 5.7 N.
It was blown in at a rate of m',,'hr. Gas generated from the reaction zone ((J'0.10.1 kg/hr)
and gas generated from reaction zone B (CIo, 2 kg/
hr, O#, t, tkg/hr) in 5°C cold water in the same chlorine dioxide absorption tower, and
! 0.7 fl/l.

agffio、g IIl)  を172011/hr
の割合で得た。
agffio, g IIl) 172011/hr
obtained at a rate of

さらに吸収塔よりの排ガスをNaOH401/l水溶液
に吸収させて次亜塩素酸ソーダ溶液(有効塩素! 1.
6 f/l’)  を22 (1/hrの割合で得た。
Furthermore, the exhaust gas from the absorption tower is absorbed into a NaOH401/l aqueous solution to form a sodium hypochlorite solution (available chlorine! 1.
6 f/l') was obtained at a rate of 22 (1/hr).

−方反応帯域Bよりの廃液の流量は40.1 e/hr
 。
- The flow rate of waste liquid from reaction zone B is 40.1 e/hr
.

組成ハNaCeOs 10 fl/l −HCII  
2f/II −Na0IO1S 18 f/11− H
t80+ 441 t/(lであり、発生二酸化塩素ト
ン当りの各物質原単位は次のとおりであった。
Composition: NaCeOs 10 fl/l -HCII
2f/II-Na0IO1S 18 f/11-H
t80+ 441 t/(l), and the basic unit of each substance per ton of generated chlorine dioxide was as follows.

Na010g  1−1−6601C35%塩酸 28
5kg。
Na010g 1-1-6601C35% hydrochloric acid 28
5kg.

H,80,2◆290kg、  メタノール  167
kg。
H,80,2◆290kg, methanol 167
kg.

廃硫1M!1.500kg、  副生CI、   10
0kg比較例1 反応帯域AにN a C110s 639 f/ lの
水溶液を25、 fJ l/hr 、濃硫酸14.9 
e/hr。35%塩酸14、511/hrの各割合で注
加し、40〜50℃に加温する。また下部より空気を2
8Nm/hr  の割合で吹込む。発生ガス(C1ot
 10.1 kg/hr 。
Waste sulfur 1M! 1.500kg, by-product CI, 10
0kg Comparative Example 1 In reaction zone A, an aqueous solution of Na C110s 639 f/l was added at 25 fJ l/hr, concentrated sulfuric acid 14.9
e/hr. 35% hydrochloric acid was added at a rate of 14 and 511 times per hour, and the mixture was heated to 40 to 50°C. Also, air is pumped in from the bottom.
Blow at a rate of 8 Nm/hr. Generated gas (C1ot
10.1 kg/hr.

0 (It 5.8 kg/ h r )を5℃の冷水
に吸収させて二酸化塩素水(010,7fl/e、 C
1l、 1 g/l’)  を14301/hrの割合
で得た。さらに吸収塔よりの排ガスをNaOH401/
11 水溶液に吸収させて次亜塩素酸ソーダ溶液(有効
塩素31.69/(1)をI S 91/hrの割合で
得た。一方反応帯域Bより流出する廃液の流量は48.
0 #/hr 、組成はNa OJOi  8 II 
(! 、)!Ol  39/ l −Nag Bo42
51 f/11. H,8044659/11 テアF
)、発生二酸化塩素トン当りの各物質原単位は次のとお
りであった。
0 (It 5.8 kg/hr) was absorbed into 5°C cold water to make chlorine dioxide water (010.7 fl/e, C
1 l, 1 g/l') at a rate of 14301/hr. Furthermore, the exhaust gas from the absorption tower is treated with NaOH401/
11 was absorbed into an aqueous solution to obtain a sodium hypochlorite solution (available chlorine 31.69/(1) at a rate of IS 91/hr. On the other hand, the flow rate of the waste liquid flowing out from reaction zone B was 48.
0 #/hr, composition is Na OJOi 8 II
(!,)! Ol 39/ l -Nag Bo42
51 f/11. H,8044659/11 Thea F
), and the basic unit of each substance per ton of chlorine dioxide generated was as follows.

N a OI Os  1=650 kg。36%塩酸
 1,710kg。
N a OI Os 1 = 650 kg. 36% hydrochloric acid 1,710 kg.

H,80,2,745kg、  廃硫酸   1,85
0kg。
H, 80, 2,745 kg, waste sulfuric acid 1,85
0kg.

副生(J、   580kg この例は硫酸酸性溶液で塩素酸ソーダを塩酸で還元する
方法であるが、実施例に比べ廃硫酸と副生JIji素の
多いことが判る。
By-product (J, 580 kg) This example is a method of reducing sodium chlorate with hydrochloric acid using a sulfuric acid solution, and it can be seen that there are more waste sulfuric acid and by-product JIji compared to the examples.

比較例2 反応帯域AにNaclo、859 fil(D水溶、V
を! 1 /l/hr、濃硫酸14.91/hr、 J
り、/ −ル25、2 g/hrの割合で注加し40〜
60℃に加温する。また下部より空気を28NKIm/
hrの割合で吹込む。発生ガス(110,10,1kg
/hr)  を6℃の冷水で吸収せしめて二酸化塩素水
(ago、 rf/l ’)を1430 g/hrの割
合で得た。一方反応帯域より流出する廃液の流量は40
.3 (j/hr 。
Comparative Example 2 Naclo, 859 fil (D water soluble, V
of! 1/l/hr, concentrated sulfuric acid 14.91/hr, J
Added at a rate of 25, 2 g/hr, 40~
Warm to 60°C. Also, air is pumped out from the bottom by 28NKIm/
Insert at the rate of hr. Generated gas (110, 10, 1kg
/hr) was absorbed with cold water at 6°C to obtain chlorine dioxide water (ago, rf/l') at a rate of 1430 g/hr. On the other hand, the flow rate of waste liquid flowing out from the reaction zone is 40
.. 3 (j/hr.

NaCJOi 901/1. Na、804267 f
i(1,Jり/ −k j f//l 、 ECHO1
raceであり、発生二酸化塩素トン当りの各物質原単
位は次のとおりである。
NaCJOi 901/1. Na, 804267 f
i(1,Jri/-k j f//l, ECHO1
race, and the basic unit of each substance per ton of generated chlorine dioxide is as follows.

Na01Oa  1 saokg 、  fi タンー
ル200kg。
Na01Oa 1 saokg, fi tanur 200kg.

Ht 804 2,745kg −廃硫酸 1.116
0kg。
Ht 804 2,745kg - Waste sulfuric acid 1.116
0kg.

副生OJ、  なし この例は硫酸酸性溶液で塩素酸ソーダをメタメールで還
元する方法であり実施例に比し副生塩素はほぼゼロで少
いが、廃硫酸は多(、塩素酸ソーダの原単位も悪く経済
性に劣ることが判る。
By-product OJ, none This example is a method of reducing sodium chlorate with metamer in a sulfuric acid solution, and the amount of by-product chlorine is almost zero compared to the example, but the amount of waste sulfuric acid is large (and the amount of sodium chlorate It can be seen that the basic unit is also poor and the economical efficiency is inferior.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明法を実施するための装置を示す概略図であ
る。 1・・・二酸化塩素発生槽(反応帯域A)、7・・・閾
(反応帯域B)、 6.8・・・塩酸の注入経路、 8・・・反応帯域ムよりBへの廃液経路、11・・・発
生ガス経路 12・・・二酸化塩素吸収塔、 15・・・塩素吸収塔
The drawing is a schematic illustration of an apparatus for carrying out the method of the invention. 1... Chlorine dioxide generation tank (reaction zone A), 7... Threshold (reaction zone B), 6.8... Hydrochloric acid injection route, 8... Waste liquid route from reaction zone B to B. 11... Generated gas route 12... Chlorine dioxide absorption tower, 15... Chlorine absorption tower

Claims (2)

【特許請求の範囲】[Claims] (1)塩素酸ソーダに還元剤を反応させて二酸化塩素を
製造するにあたり、反応帯域を二 分し、( I )反応帯域Aには、塩素酸ソーダ、メタノ
ール、塩酸及び硫酸を添加反応させ、(II)反応帯域B
においてはAよりの廃液に塩酸を添加反応させて残存塩
素酸ソーダを 分解し、各反応帯域より発生する二酸化塩 素と塩素の混合ガスより二酸化塩素を分離 取得することを特徴とする二酸化塩素の製 造法。
(1) In producing chlorine dioxide by reacting sodium chlorate with a reducing agent, the reaction zone is divided into two. (I) In reaction zone A, sodium chlorate, methanol, hydrochloric acid, and sulfuric acid are added and reacted. II) Reaction zone B
The production of chlorine dioxide is characterized in that hydrochloric acid is added to the waste liquid from A to cause a reaction to decompose residual sodium chlorate, and chlorine dioxide is separated and obtained from a mixed gas of chlorine dioxide and chlorine generated from each reaction zone. Law.
(2)請求項1に記載の方法において、反応帯域Aに、
塩素酸ソーダ、メタノール及び硫 酸を添加反応させる二酸化塩素の製造法。
(2) In the method according to claim 1, in the reaction zone A,
A method for producing chlorine dioxide by adding and reacting sodium chlorate, methanol, and sulfuric acid.
JP1222639A 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method Expired - Lifetime JPH0621004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222639A JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222639A JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Publications (2)

Publication Number Publication Date
JPH0383802A true JPH0383802A (en) 1991-04-09
JPH0621004B2 JPH0621004B2 (en) 1994-03-23

Family

ID=16785610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222639A Expired - Lifetime JPH0621004B2 (en) 1989-08-29 1989-08-29 Chlorine dioxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621004B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514535A (en) * 2004-09-24 2008-05-08 アクゾ ノーベル エヌ.ブイ. Method for producing chlorine dioxide
JP2013517199A (en) * 2010-01-18 2013-05-16 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ Chlorine dioxide production method
US11130677B2 (en) 2017-03-24 2021-09-28 Ecolab Usa Inc. Low risk chlorine dioxide onsite generation system
US11225421B2 (en) 2017-08-17 2022-01-18 Ecolab Usa Inc. Low risk chlorine dioxide onsite generation system
US11535541B2 (en) 2017-02-27 2022-12-27 Ecolab Usa Inc. Method for onsite production of chlorine dioxide
US11970393B2 (en) 2018-07-05 2024-04-30 Ecolab Usa Inc. Decomposition mediation in chlorine dioxide generation systems through sound detection and control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514535A (en) * 2004-09-24 2008-05-08 アクゾ ノーベル エヌ.ブイ. Method for producing chlorine dioxide
JP2012067007A (en) * 2004-09-24 2012-04-05 Akzo Nobel Nv Method for producing chlorine dioxide
JP4913057B2 (en) * 2004-09-24 2012-04-11 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing chlorine dioxide
JP2013517199A (en) * 2010-01-18 2013-05-16 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ Chlorine dioxide production method
US11535541B2 (en) 2017-02-27 2022-12-27 Ecolab Usa Inc. Method for onsite production of chlorine dioxide
US11130677B2 (en) 2017-03-24 2021-09-28 Ecolab Usa Inc. Low risk chlorine dioxide onsite generation system
US11225421B2 (en) 2017-08-17 2022-01-18 Ecolab Usa Inc. Low risk chlorine dioxide onsite generation system
US11970393B2 (en) 2018-07-05 2024-04-30 Ecolab Usa Inc. Decomposition mediation in chlorine dioxide generation systems through sound detection and control

Also Published As

Publication number Publication date
JPH0621004B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
AU657648B2 (en) A process for continuously producing chlorine dioxide
AU603252B2 (en) Process for production of chlorine dioxide
US3789108A (en) Production of chlorine dioxide
JPH03115102A (en) Production of chlorine dioxide
US3341288A (en) Production of chlorine dioxide
CA1074726A (en) Method of producing chlorine dioxide from hydrogen chloride
US3760065A (en) Production of chlorine dioxide
US4216195A (en) Production of chlorine dioxide having low chlorine content
JPH0383802A (en) Production of chlorine dioxide
JPS638203A (en) Production of high-purity chlorine dioxide
US3974266A (en) Production of chlorine dioxide
AU2010305879B2 (en) Process for production of chlorine dioxide
Qian et al. A clean production process of sodium chlorite from sodium chlorate
US3404952A (en) Process for the preparation of chlorine dioxide
US5433938A (en) Chlorine-destruct method
US3976758A (en) Production of chlorine dioxide
US4049784A (en) Production of chlorine dioxide with product slurry metathesis
NO116964B (en)
US6251357B1 (en) High purity alkali metal chlorite and method of manufacture
EP0560316B1 (en) Method for producing alkaline metal hydroxide
US4049785A (en) Production of chlorine dioxide with product slurry metathesis
US4224120A (en) Electrolytic method and apparatus for producing magnesium from a salt solution containing magnesium sulphate
CA2116427C (en) Acidity control in chlorine dioxide manufacture
CN103935971A (en) Green cycle production novel method of hydrazine hydrate, hydrazonium salts, and ADC foaming agent
CN1075298A (en) A kind of method of producing chlorine dioxide of high concentration and stable state