JPH03115102A - Production of chlorine dioxide - Google Patents

Production of chlorine dioxide

Info

Publication number
JPH03115102A
JPH03115102A JP25618789A JP25618789A JPH03115102A JP H03115102 A JPH03115102 A JP H03115102A JP 25618789 A JP25618789 A JP 25618789A JP 25618789 A JP25618789 A JP 25618789A JP H03115102 A JPH03115102 A JP H03115102A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
sodium chlorate
sulfuric acid
reaction zone
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25618789A
Other languages
Japanese (ja)
Other versions
JPH0621005B2 (en
Inventor
Jiro Kushiro
久代 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1256187A priority Critical patent/JPH0621005B2/en
Publication of JPH03115102A publication Critical patent/JPH03115102A/en
Publication of JPH0621005B2 publication Critical patent/JPH0621005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/026Preparation from chlorites or chlorates from chlorate ions in the presence of a peroxidic compound, e.g. hydrogen peroxide, ozone, peroxysulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain chlorine dioxide without generating by-product chlorine by reducing an aq. sodium chlorate soln. acidified with sulfuric acid with methanol to produce chlorine dioxide and allowing hydrogen peroxide to react with the waste soln. to decompose the remaining sodium chlorate into chlorine dioxide. CONSTITUTION:Sodium chlorate 3 and sulfuric acid 4 are added to a chlorine dioxide generating vessel 1, methanol 5 is further introduced along with an inert gas 9, and a reduction reaction is carried out so that sodium chlorate is left to generate chlorine dioxide 10. The chlorine dioxide 10 is discharged by the inert gas 9, introduced into an absorption tower 11 and absorbed in cold water 12. The waste soln. 7 from the vessel 1 is introduced into a chlorine dioxide generating vessel 6, hydrogen peroxide 8 is added to cause a reaction, and the remaining sodium chlorate is decomposed into chlorine dioxide 10. The inert gas 9 is blown in to discharge the chlorine dioxide 10, which is introduced into the absorption tower 11 and absorbed in cold water 12 to produce aq. chlorine dioxide 13. In addition, the waste soln. 14 from the vessel 6 is used for cooking pulp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素酸ソーダに還元剤を反応させて二酸化塩素
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing chlorine dioxide by reacting sodium chlorate with a reducing agent.

(従来の技術) 現在工業的に実施されている二酸化塩素製造法を大別す
ると i)硫酸酸性溶液で塩素酸ソーダを亜硫酸ガスで還元す
る方法 ii )硫酸酸性溶液で塩素酸ソーダを塩化水素で還元
する方法 iii )塩素酸ソーダもしくは塩素酸カルシウムを塩
酸で還元する方法 これらのいずれの方法も二酸化塩素(および塩素)とと
もに反応廃液が生成する。上記i)、ii)の各方法の
場合いずれも硫酸と芒硝を主成分とし若干の塩素酸ソー
ダを含有しているが多くの場合、製紙パルプ用蒸解黒液
に混入して芒硝針を有効利用している。又、硫酸ばん土
製造に利用している場合もある。
(Prior art) The methods for producing chlorine dioxide that are currently being industrially implemented can be roughly divided into: i) a method in which sodium chlorate is reduced with sulfur dioxide gas in a sulfuric acid solution; ii) a method in which sodium chlorate is reduced with hydrogen chloride in a sulfuric acid solution; Reduction method iii) Method of reducing sodium chlorate or calcium chlorate with hydrochloric acid In both of these methods, a reaction waste liquid is produced together with chlorine dioxide (and chlorine). In the case of methods i) and ii) above, the main components are sulfuric acid and mirabilite, and some sodium chlorate is also included, but in many cases, the mirabilite needles are mixed into the cooking black liquor for paper pulp to effectively utilize the mirabilite needles. are doing. In some cases, it is also used in the production of sulfate clay.

しかし、利用出来る廃液の絶対量には限度がありそれを
超える廃液が生成する場合は放棄せざるを得なくなりそ
の際は中和薬剤等を必要とするのでそのために多額の経
費を要することになる。特にii)の方法は1)に比し
運転方法が簡単であるために最近多数の工場で採用され
ているが反応廃液生成量が極めて多量なので(発生二酸
化塩素lトンあたり芒硝約1.1トン、硫酸約2トンを
含む約7トンを副生)その処理方法が問題となることが
多い。i)の方法の廃液量はこれより少いが亜硫酸ガス
の発生装置を必要としその面で、運転操作が複雑化し、
また亜硫酸ガスによる公害問題の発生するおそれがある
。またi)、ii)の方法の改良法として反応廃液より
中性芒硝または酸性芒硝を回収し硫酸を再使用する方法
があり、上記の廃液問題を解消するのに便利であるが、
反面冷凍機あるいは蒸発装置等を必要とし設備費が甚だ
しく割高となり運転操作も複雑となる欠点がある。
However, there is a limit to the absolute amount of waste liquid that can be used, and if waste liquid exceeds this limit, it must be discarded, and in that case, neutralizing agents are required, which requires a large amount of expense. . In particular, method ii) has been recently adopted by many factories because it is simpler to operate than method 1), but the amount of reaction waste liquid produced is extremely large (approximately 1.1 tons of Glauber's sulfate per ton of chlorine dioxide generated). (about 7 tons, including about 2 tons of sulfuric acid, are produced as by-products).The treatment method is often a problem. Although the amount of waste liquid in method i) is smaller than this, it requires a sulfur dioxide gas generator, which complicates the operation.
Additionally, there is a risk of pollution problems caused by sulfur dioxide gas. In addition, as an improvement to methods i) and ii), there is a method of recovering neutral mirabilite or acidic mirabilite from the reaction waste liquid and reusing sulfuric acid, which is convenient for solving the above-mentioned waste liquid problem.
On the other hand, it requires a refrigerator or an evaporator, resulting in extremely high equipment costs and complicated operation.

また、111)の方法は廃液として少量の塩素酸塩と食
塩もしくは塩化カルシウムの希薄塩酸溶液が生成するが
、これらは製紙用薬剤として利用価値がな(少量のアル
カリで中和した後放棄されており、廃液を有効利用する
方法に比し経済的に不利となる。さらにこの廃液(食塩
溶液の場合)を電解して再び塩素酸ソーダに戻す方法も
あるが、食塩濃度かうずいので濃縮を必要とし設備費が
大となり経済的に不利である。また濃縮せずに食塩を添
加すれば廃液量が大であるため不必要に多量の4食塩溶
液が生成されることになり、電解工程を含めた全体のプ
ラントスケール上極めて不合理を来すことになる。
In addition, the method of 111) produces a small amount of chlorate and common salt or a dilute hydrochloric acid solution of calcium chloride as waste liquid, but these have no utility value as papermaking chemicals (they are discarded after being neutralized with a small amount of alkali). This method is economically disadvantageous compared to methods that effectively utilize waste liquid.Furthermore, there is a method to electrolyze this waste liquid (in the case of a salt solution) and return it to sodium chlorate again, but the salt concentration is too high and concentration is required. This is economically disadvantageous due to high equipment costs.Furthermore, if salt is added without concentrating, the amount of waste liquid will be large, resulting in the production of an unnecessarily large amount of 4-salt solution, including the electrolytic process. This would be extremely unreasonable on the scale of the entire plant.

またi)の方法は二酸化塩素のみの発生であるのに対し
て、1i)iii)の方法は同時に塩素の発生するのが
特徴である。通常この副生塩素は吸収段階で二酸化塩素
と分離された後、苛性アルカリで吸収され次亜塩素酸ソ
ーダとしてパルプ漂白工程で消費される。しかし、漂白
工程において次亜塩素酸ソーダの使用量が少い場合はそ
の過剰が問題となる。現在工業的に利用されている方法
は殆んどi)及びii)であるが、そのうち最も数多く
用いられているのはii)の方法である。この方法の利
点はすでに述べたように亜硫酸ガス発生装置、芒硝回収
装置等の複雑な付帯設備を要せず、したがって設備費が
安価で運転操作が筒車であり、また原料塩素酸ソーダの
原単位も最も優れていることである。反面欠点としては
発生廃液量がi)に比較して多く、また塩素ガスが副生
ずることでこれらは発生装置の規模が大きくなってくる
と問題となることが多い。
Further, method i) generates only chlorine dioxide, whereas methods 1i) and iii) are characterized in that chlorine is generated at the same time. Normally, this by-product chlorine is separated from chlorine dioxide in the absorption stage, then absorbed with caustic alkali and consumed as sodium hypochlorite in the pulp bleaching process. However, if the amount of sodium hypochlorite used in the bleaching process is small, excess poses a problem. Most of the methods currently used industrially are i) and ii), of which method ii) is the most commonly used. As already mentioned, the advantages of this method are that it does not require complicated incidental equipment such as a sulfur dioxide gas generator or a mirabilite recovery equipment, so the equipment cost is low, the operation is done using an hour wheel, and the raw material for sodium chlorate is The units are also the best. On the other hand, the drawbacks are that the amount of waste liquid generated is larger than in (i), and chlorine gas is produced as a by-product, which often becomes a problem as the scale of the generator increases.

発生廃液に関して述べれば、硫酸酸性で塩素酸ソーダを
塩化水素で還元する方法では塩化水素源として塩酸を用
いる場合と食塩及び硫酸を用いる場合がある。かっては
食塩及び硫酸妬くよく用いられたが、これは系内のナト
リウムイオン量を多くし溶解度の関係で結果的に廃液量
の増加を来すため、最近は塩酸を用いる場合が多くなっ
た。これにより廃液量は確かに減少したが塩酸に伴って
系内に入る水のためi)の方法に比し、1.3倍程度の
廃液を生じている。また副生塩素が問題となることのあ
るのも前述のとおりである。
Regarding the generated waste liquid, in the method of reducing sodium chlorate with hydrogen chloride using sulfuric acid, there are cases where hydrochloric acid is used as the hydrogen chloride source, and there are cases where common salt and sulfuric acid are used. In the past, common salt and sulfuric acid were often used, but because these increase the amount of sodium ions in the system and result in an increase in the amount of waste liquid due to solubility, recently hydrochloric acid has been used more often. This method certainly reduced the amount of waste liquid, but due to water entering the system along with the hydrochloric acid, the amount of waste liquid was about 1.3 times that of method i). Furthermore, as mentioned above, by-product chlorine can be a problem.

(発明が解決しようとする課題) 本発明は以上の問題点、すなわち還元剤として塩酸を使
用する二酸化塩素の発生法における副生塩素早の削減及
び廃液量を減少させることが可能で工業的に有利な方法
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention solves the above problems, that is, it is possible to reduce the amount of by-product chlorine and the amount of waste liquid in a method for generating chlorine dioxide that uses hydrochloric acid as a reducing agent, and it is possible to do so industrially. The purpose is to provide an advantageous method.

(課題を解決するための手段) 本発明はすなわち、塩素酸ソーダに還元剤を反応させて
二酸化塩素を製造するにあたり反応帯域を二分し、口→
反応帯域Aには塩素酸ソーダ、メタノール、及び硫酸を
添加反応させ、(It)反応帯域BにおいてはAよりの
廃液に過酸化水素又は過酸化水素と硫酸とを添加反応さ
せて残存塩素酸ソーダを分解し、各反応帯域より発生す
る二酸化塩素を分離取得することを特徴とする二酸化塩
素の製造法である。
(Means for Solving the Problems) In other words, in producing chlorine dioxide by reacting sodium chlorate with a reducing agent, the reaction zone is divided into two, and the opening →
In reaction zone A, sodium chlorate, methanol, and sulfuric acid are added and reacted, and in reaction zone B, hydrogen peroxide or hydrogen peroxide and sulfuric acid are added and reacted with the waste liquid from A to remove residual sodium chlorate. This is a method for producing chlorine dioxide, which is characterized by decomposing chlorine dioxide and separating and obtaining chlorine dioxide generated from each reaction zone.

次に本発明方法を図面により説明する。Next, the method of the present invention will be explained with reference to the drawings.

二酸化塩素発生槽(1)(反応帯域A)には貯槽(2)
より塩素酸ソーダ(3)とともに硫酸(4)を添加し、
またメタノール(5)は後記の不活性ガス(9)と共に
導入する。また二酸化塩素発生槽(6)(反応帯域B)
には塩素酸ソーダが残存するように反応させた二酸化塩
素発生槽(1)よりの廃液(7)を導き過酸化水素(8
)を添加する。各槽(1) (6)の下部よりは空気等
の不活性ガス(9)を吹込んで発生する二酸化塩素ガス
(10)を取り出し、二酸化塩素吸収塔(11)に導き
冷水(12)により二酸化塩素ガスを吸収させ二酸化塩
素水(13)を製造する。二酸化塩素発生槽(6)より
の廃液(14)は硫酸、芒硝分を主成分とし、パルプ蒸
解用に使用される。各二酸化塩素発生槽で発生する二酸
化塩素ガス吸収部は共通にして差支えない。また反応帯
域A、Bにおけるそれぞれの塩素酸ソーダの分解率はメ
タノール、硫酸、過酸化水素の添加四により任意に調節
することができる。なお硫酸は必要量の全量を反応帯域
Aに添加してもよくその一部を反応帯域Bに添加しても
よい。
The chlorine dioxide generation tank (1) (reaction zone A) has a storage tank (2).
Add sulfuric acid (4) together with sodium chlorate (3),
Further, methanol (5) is introduced together with an inert gas (9) described later. Also, chlorine dioxide generation tank (6) (reaction zone B)
The waste liquid (7) from the chlorine dioxide generation tank (1), which has been reacted so that sodium chlorate remains, is introduced into hydrogen peroxide (8).
) is added. From the bottom of each tank (1) (6), chlorine dioxide gas (10) generated by blowing in an inert gas (9) such as air is taken out and led to a chlorine dioxide absorption tower (11) where it is oxidized with cold water (12). Chlorine gas is absorbed to produce chlorine dioxide water (13). The waste liquid (14) from the chlorine dioxide generating tank (6) contains sulfuric acid and sodium sulfate as main components, and is used for pulp cooking. The chlorine dioxide gas absorption unit generated in each chlorine dioxide generating tank may be shared. Further, the decomposition rate of sodium chlorate in reaction zones A and B can be arbitrarily adjusted by adding methanol, sulfuric acid, and hydrogen peroxide. Note that the entire required amount of sulfuric acid may be added to reaction zone A, or a portion thereof may be added to reaction zone B.

反応帯域A(二酸化塩素発生槽1)における主反応式は
次式で示され NaCl 03 + 1/21LtSOt + 1/2
CI+3011−Cl O,+ 1/2NatSO,+
 1/211CIIO+ 1lzo ・(1)反応帯域
B(二酸化塩素発生槽6)における主反応式は次式で示
される。
The main reaction formula in reaction zone A (chlorine dioxide generation tank 1) is shown by the following formula: NaCl 03 + 1/21LtSOt + 1/2
CI+3011-ClO,+ 1/2NatSO,+
1/211CIIO+ 1lzo (1) The main reaction formula in reaction zone B (chlorine dioxide generating tank 6) is shown by the following formula.

NaCI O,+ 1/211tOi +1/2112
5Oa →Cl (h + 1/2NazSO4+ 2
 HzO+ Ot・(2)(作用) メタノールにより硫酸酸性の塩素酸ソーダ水溶液を還元
することによって二酸化塩素を製造する方法は“ツルベ
イ法”として公知である。しかしこの反応は、元来反応
収率は良好であるが非常に緩慢であり、多数の大容量の
反応器を用いても未反応塩素酸ソーダ等を含む多量の廃
液を排出し、この反応率の低いことにより原料塩素酸ソ
ーダの原単位の劣っていることが欠点とされていた。
NaCI O, + 1/211tOi +1/2112
5Oa →Cl (h + 1/2NazSO4+ 2
HzO+ Ot·(2) (Function) A method for producing chlorine dioxide by reducing a sulfuric acid acidic sodium chlorate aqueous solution with methanol is known as the "Tsurubay method". However, although this reaction originally has a good reaction yield, it is very slow, and even if a large number of large-capacity reactors are used, a large amount of waste liquid containing unreacted sodium chlorate etc. is discharged, and the reaction rate is low. The disadvantage was that the basic unit of raw material sodium chlorate was inferior due to the low value of sodium chlorate.

本発明方法ではメタノールによる反応は反応帯域Aにお
いてのみ実施するので、反応帯域Aよりの反応廃液に未
反応塩素酸ソーダが含まれていても、反応帯域Bにおい
てより効率よく分解されて二酸化塩素になるため、全体
としての塩素酸ソーダの原単位は良好である。
In the method of the present invention, the reaction with methanol is carried out only in reaction zone A, so even if the reaction waste liquid from reaction zone A contains unreacted sodium chlorate, it is more efficiently decomposed into chlorine dioxide in reaction zone B. Therefore, the overall consumption of sodium chlorate is good.

またメタノールは安価で使用量も少く硫酸の使用量も相
対的に減少するため、二酸化塩素の製造コストを引上げ
ることはない。一方、過酸化水素により二酸化塩素ガス
発止に伴う副生塩素を減少させる方法は、特開昭53−
66892号、特開昭63−8203号に記載されてい
るが、過酸化水素は高価であり二酸化塩素の製造原価を
増加させる原因となる。しかし本発明方法においてはそ
の使用が反応帯域Bに限られるため、その使用量は二酸
化塩素発生量に対し相対的に減少させることができコス
トを引上げることはない。
Furthermore, since methanol is cheap and the amount used is small, and the amount of sulfuric acid used is also relatively reduced, the production cost of chlorine dioxide does not increase. On the other hand, a method for reducing by-product chlorine due to the generation of chlorine dioxide gas using hydrogen peroxide was disclosed in Japanese Patent Application Laid-Open No.
However, hydrogen peroxide is expensive and causes an increase in the production cost of chlorine dioxide. However, in the method of the present invention, its use is limited to reaction zone B, so the amount used can be reduced relative to the amount of chlorine dioxide generated, and the cost will not increase.

(発明の効果) 本発明方法による種々の利点を列挙すると次の如くであ
る。
(Effects of the Invention) Various advantages of the method of the present invention are listed below.

l)反応帯域A−Bにおいて塩酸又は塩化水素発生源と
なる塩化物を使用しないため、副生塩素の■を減少もし
くは実質的にゼロにできるので、副生塩素過剰による問
題を解消し得る。また漂白工程で次亜塩素酸ソーダ又は
塩素の使用量が減少しても対応が可能である。
l) Since chloride, which is a source of hydrochloric acid or hydrogen chloride, is not used in the reaction zone A-B, the amount of by-product chlorine can be reduced or made substantially zero, thereby eliminating the problem of excessive by-product chlorine. It is also possible to reduce the amount of sodium hypochlorite or chlorine used in the bleaching process.

2)系内に入る水が減少するため、前記従来の方法1i
)iii)はもちろんのこと、i)の方法に比べてもさ
らに廃液量を減少することが可能となった。したがって
廃液過剰による問題を回避し得る。
2) Because the amount of water entering the system is reduced, the conventional method 1i
It has become possible to further reduce the amount of waste liquid compared to method (i) as well as method (iii)). Therefore, problems caused by excess waste liquid can be avoided.

3)以上の利点に加えて、経済的に高価な過酸化水素と
安価なメタノールとの併用によりそのバランスが保たれ
二酸化塩素の製造原価を従来法より上昇させることはな
い。
3) In addition to the above advantages, the combination of economically expensive hydrogen peroxide and inexpensive methanol maintains a balance and does not increase the production cost of chlorine dioxide compared to conventional methods.

4)従来法の場合の亜硫酸ガス発生装置や廃液の濃縮設
備、晶出設備のような付帯設備を要せず、運転操作が簡
単で容易に自動運転を実施することができ、したがって
設備の建設費、運転費を軽減できるうえ既存設備からの
転換が容易にできる。
4) There is no need for incidental equipment such as a sulfur dioxide gas generator, waste liquid concentration equipment, or crystallization equipment in the case of conventional methods, and operation is simple and automatic operation can be carried out easily. In addition to reducing costs and operating costs, it is also easy to convert from existing equipment.

(実施例) 以下実施例、比較例により本発明方法を説明する。(Example) The method of the present invention will be explained below with reference to Examples and Comparative Examples.

実施例1 図面に示す装置を使用し、反応帯域AにNaC4(h6
39 g/lの水溶液を311/hr、濃硫酸14、9
1 / h rの割合で性別し、約40℃に加温して下
部よりメタノールを2.51 / h r、空気を28
Nm3/hrの割合で吹込んだ。反応帯域Aより排出さ
れる廃液流量は411/hr、組成はNaCA’Oz 
 90 g/ l、 HzSOa 483 g/ 11
NazSOa  267 g/ 1、メタノールtra
ceであり、これを反応帯域Bに導入しながら過酸化水
素水(1120235%)を1.4 E / h rの
割合で注加し、液を50〜60℃に加温して、下部より
空気を5、7 m3/ h rの割合で吹込んだ。反応
帯域Aよりの発生ガス(Cj!Oz  10.1 k 
g / h r)と反応帯域Bよりの発生ガス(C1o
z  2 k g/ h r)を同一の二酸化塩素吸収
塔で5℃の冷水に吸収させて、二酸化塩素水(010□
 7 g / 1 )を1720!/hrの割合で得た
。一方反応帯域Bより流出する廃液流量は4 Q l 
/ h r 、組成はNaC120310g / 1%
NazSOa  324 g / Il、 1IzsO
a 450g / Il 、 1Izo、 trace
であり、発生二酸化塩素トン当りの各物質原単位は次の
通りであった。
Example 1 Using the apparatus shown in the drawing, NaC4 (h6
39 g/l aqueous solution at 311/hr, concentrated sulfuric acid 14,9
Mix at a rate of 1/hr, heat to about 40°C, and pour methanol from the bottom at a rate of 2.51/hr and air at a rate of 28
It was blown in at a rate of Nm3/hr. The flow rate of waste liquid discharged from reaction zone A is 411/hr, and the composition is NaCA'Oz
90 g/l, HzSOa 483 g/11
NazSOa 267 g/1, methanol tra
ce, and while introducing it into reaction zone B, hydrogen peroxide solution (1120235%) was added at a rate of 1.4 E/hr, the liquid was heated to 50 to 60 °C, and the mixture was poured from the bottom. Air was blown in at a rate of 5.7 m3/hr. Generated gas from reaction zone A (Cj!Oz 10.1 k
g/hr) and gas generated from reaction zone B (C1o
z 2 kg/hr) into 5°C cold water in the same chlorine dioxide absorption tower to obtain chlorine dioxide water (010□
7 g/1) to 1720! /hr. On the other hand, the flow rate of waste liquid flowing out from reaction zone B is 4 Q l
/ hr, composition is NaC120310g/1%
NazSOa 324 g/Il, 1IzsO
a 450g/Il, 1Izo, trace
The basic unit of each substance per ton of generated chlorine dioxide was as follows.

NaC7031,650k g−35%1120214
0 kg −1+2SO,2,290kg、メタノール
167kg。
NaC7031,650kg-35%1120214
0 kg -1+2SO, 2,290 kg, methanol 167 kg.

廃硫酸1.500kg 比較例1 反応帯域AにNa2SO4639g / lの水溶液2
5、81 / h r 、 ?H硫酸14.21 / 
h r、35%過酸化水素水7 (! / h rの割
合で注加し40〜60℃に加温する。また下部より空気
を28Nm3/hrの割合で吹込む0発生ガス<CIo
1.500 kg of waste sulfuric acid Comparative example 1 Aqueous solution 2 of Na2SO4639 g/l in reaction zone A
5,81/hr, ? H sulfuric acid 14.21 /
hr, 35% hydrogen peroxide solution 7 (! / hr) and warm to 40 to 60°C. Also, blow air from the bottom at a rate of 28 Nm3/hr until 0 generated gas <CIo
.

10、1 k g / h r)を5℃の冷水で吸収さ
せて二酸化塩素水(CI 0□ 1g/l)を143(
1/hrの割合で得た。一方反応帯域Aより流出する廃
液流量は381 / h r 、組成はNaC7!0:
+  ag/l、NatSOa  289g/11Hz
SO4465g/l 、 )1.0.traceであり
発生二酸化塩素トン当りの各物質原単位は次のとおりで
あった。
10.1 kg/hr) was absorbed with cold water at 5°C, and chlorine dioxide water (CI 0□ 1 g/l) was dissolved in
It was obtained at a rate of 1/hr. On the other hand, the flow rate of waste liquid flowing out from reaction zone A is 381/hr, and the composition is NaC7!0:
+ ag/l, NatSOa 289g/11Hz
SO4465g/l, )1.0. trace, and the basic unit of each substance per ton of generated chlorine dioxide was as follows.

NaClO31,650k g−35%1Izoz  
850k gSHzSO42,560k g−廃硫酸1
,770g この例は、硫酸酸性溶液で塩素酸ソーダを塩素イオンを
媒体として過酸化水素で還元して二酸化塩素を発生させ
る方式であるが、実施例と比較して高価な過酸化水素を
多く要し、経済性に劣ることが判る(ちなみに35%過
酸化水素の市価はメタノールの約3倍である)。
NaClO31,650kg-35%1Izoz
850kg SHHzSO42,560kg-waste sulfuric acid 1
, 770g In this example, chlorine dioxide is generated by reducing sodium chlorate in a sulfuric acid solution with hydrogen peroxide using chlorine ions as a medium, but compared to the example, a large amount of expensive hydrogen peroxide is required. However, it is found to be less economical (by the way, the market price of 35% hydrogen peroxide is about three times that of methanol).

比較例2 反応帯域AにNaCff0:+  639 g / 1
の水溶液を311 / h r 、 ?W硫酸14.9
12 / h rのv1合で注加し、40〜50℃に加
温して下部よりメタノール25.21 / h r 、
空気を28Nm3/hrの割合で吹込んだ。一方、反応
帯域Aより流出する廃液流星は40.31/hrll成
はNaC10゜90 g/ E、 Na2SO4267
g/l、112504483g/lであり、発生二酸化
塩素トン当りの各物質原単位は次のとおりであった。
Comparative Example 2 NaCff0: + 639 g/1 in reaction zone A
An aqueous solution of 311/hr, ? W sulfuric acid 14.9
12/hr, heated to 40-50°C, and poured methanol from the bottom at 25.21/hr,
Air was blown in at a rate of 28 Nm3/hr. On the other hand, the waste liquid meteor flowing out from reaction zone A has a composition of 40.31/hrll, NaC10°90 g/E, Na2SO4267
g/l, 112504483 g/l, and the basic unit of each substance per ton of chlorine dioxide generated was as follows.

NaClO31,980k g−メタノール200kg
、 11□so、 2,740 k g、廃硫酸1,9
50g この例は硫酸酸性溶液で塩素酸ソーダをメタノールで還
元するいわゆるソルベー法であり、実施例に比し副生塩
素はほぼゼロであるが、廃硫酸は多く塩素酸ソーダ原単
位も悪く経済性に劣ることが判る。
NaClO3 1,980 kg - methanol 200 kg
, 11□so, 2,740 kg, waste sulfuric acid 1.9
50g This example is the so-called Solvay method in which sodium chlorate is reduced with methanol using a sulfuric acid solution, and the by-product chlorine is almost zero compared to the example, but there is a lot of waste sulfuric acid and the sodium chlorate consumption rate is poor, making it less economical. It turns out that it is inferior to

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明法を実施するための装置を示す概略図であ
る。 1・・・二酸化塩素発生槽(反応帯域A)、6・・・同
(反応帯域B)、 3・・・塩素酸ソーダ水溶液の注入経路、4・・・硫酸
の注入経路、5・・・メタノール注入経路、7・・・反
応帯域AよりBへの廃液経路、8・・・過酸化水素水の
注入経路、 11・・・二酸化塩素吸収塔。
The drawing is a schematic illustration of an apparatus for carrying out the method of the invention. 1... Chlorine dioxide generation tank (reaction zone A), 6... Same (reaction zone B), 3... Sodium chlorate aqueous solution injection route, 4... Sulfuric acid injection route, 5... Methanol injection route, 7... Waste liquid route from reaction zone A to B, 8... Hydrogen peroxide solution injection route, 11... Chlorine dioxide absorption tower.

Claims (1)

【特許請求の範囲】[Claims] 塩素酸ソーダに還元剤を反応させて二酸化塩素を製造す
るにあたり、反応帯域を2分し、( I )反応帯域Aに
は、塩素酸ソーダ、メタノール、硫酸を添加反応させ、
(II)反応帯域BにおいてはAよりの廃液に過酸化水素
、又は過酸化水素と硫酸とを添加反応させて残存塩素酸
ソーダを分解し、各反応帯域より発生する二酸化塩素を
取得することを特徴とする二酸化塩素の製造法。
In producing chlorine dioxide by reacting sodium chlorate with a reducing agent, the reaction zone is divided into two, (I) sodium chlorate, methanol, and sulfuric acid are added to reaction zone A and reacted;
(II) In reaction zone B, hydrogen peroxide or hydrogen peroxide and sulfuric acid are added to the waste liquid from A and reacted to decompose the remaining sodium chlorate and obtain chlorine dioxide generated from each reaction zone. Characteristic method for producing chlorine dioxide.
JP1256187A 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method Expired - Lifetime JPH0621005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256187A JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256187A JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Publications (2)

Publication Number Publication Date
JPH03115102A true JPH03115102A (en) 1991-05-16
JPH0621005B2 JPH0621005B2 (en) 1994-03-23

Family

ID=17289115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256187A Expired - Lifetime JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621005B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612686A2 (en) * 1993-02-26 1994-08-31 Eka Nobel Ab A process for continuously producing chlorine dioxide
US5478446A (en) * 1993-07-02 1995-12-26 Eka Nobel Inc. Electrochemical process
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
US5523072A (en) * 1994-08-26 1996-06-04 Eka Nobel Inc. Process of producing chlorine dioxide
WO2006033609A1 (en) * 2004-09-24 2006-03-30 Akzo Nobel N.V. A process for the production of chlorine dioxide
EP0644853B2 (en) 1992-06-09 2007-06-27 Eka Chemicals AB Method of producing chlorine dioxide
WO2011086147A1 (en) 2010-01-18 2011-07-21 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
US8168153B2 (en) 2007-07-13 2012-05-01 Akzo Nobel N.V. Process for the production of chlorine dioxide
US8431104B2 (en) 2007-01-12 2013-04-30 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9340422B2 (en) 2009-06-16 2016-05-17 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9994449B2 (en) 2008-10-06 2018-06-12 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
CN110382409A (en) * 2018-08-30 2019-10-25 广西博世科环保科技股份有限公司 A kind of methanol combines the method that reduction prepares chlorine dioxide with high purity with hydrogen peroxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366892A (en) * 1976-11-27 1978-06-14 Osaka Soda Co Ltd Production of chlorine dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386915A (en) 1964-03-18 1968-06-04 Solvay Process for the manufacturing of chlorine dioxide in solution and the use of the solution thus obtained

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366892A (en) * 1976-11-27 1978-06-14 Osaka Soda Co Ltd Production of chlorine dioxide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644853B2 (en) 1992-06-09 2007-06-27 Eka Chemicals AB Method of producing chlorine dioxide
EP0612686A3 (en) * 1993-02-26 1994-10-05 Eka Nobel Ab A process for continuously producing chlorine dioxide.
US5380517A (en) * 1993-02-26 1995-01-10 Eka Nobel Inc. Process for continuously producing chlorine dioxide
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
US5565182A (en) * 1993-02-26 1996-10-15 Eka Chemicals, Inc. Process of producing chlorine dioxide
EP0612686A2 (en) * 1993-02-26 1994-08-31 Eka Nobel Ab A process for continuously producing chlorine dioxide
US5478446A (en) * 1993-07-02 1995-12-26 Eka Nobel Inc. Electrochemical process
US5523072A (en) * 1994-08-26 1996-06-04 Eka Nobel Inc. Process of producing chlorine dioxide
AU2005285645B2 (en) * 2004-09-24 2010-12-16 Akzo Nobel Chemicals International B.V. A process for the production of chlorine dioxide
JP2008514535A (en) * 2004-09-24 2008-05-08 アクゾ ノーベル エヌ.ブイ. Method for producing chlorine dioxide
WO2006033609A1 (en) * 2004-09-24 2006-03-30 Akzo Nobel N.V. A process for the production of chlorine dioxide
JP2012067007A (en) * 2004-09-24 2012-04-05 Akzo Nobel Nv Method for producing chlorine dioxide
JP4913057B2 (en) * 2004-09-24 2012-04-11 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing chlorine dioxide
US8431104B2 (en) 2007-01-12 2013-04-30 Akzo Nobel N.V. Process for the production of chlorine dioxide
US8168153B2 (en) 2007-07-13 2012-05-01 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9994449B2 (en) 2008-10-06 2018-06-12 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
US9340422B2 (en) 2009-06-16 2016-05-17 Akzo Nobel N.V. Process for the production of chlorine dioxide
WO2011086147A1 (en) 2010-01-18 2011-07-21 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
JP2013517199A (en) * 2010-01-18 2013-05-16 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ Chlorine dioxide production method
CN110382409A (en) * 2018-08-30 2019-10-25 广西博世科环保科技股份有限公司 A kind of methanol combines the method that reduction prepares chlorine dioxide with high purity with hydrogen peroxide

Also Published As

Publication number Publication date
JPH0621005B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP2584718B2 (en) Continuous production method of chlorine dioxide
US4465658A (en) Chlorine dioxide process
US6436345B1 (en) Method for generating chlorine dioxide
JPH0742090B2 (en) Chlorine dioxide production method
JP2819065B2 (en) Method for producing chlorine dioxide
JPH0742091B2 (en) Chlorine dioxide production method
US3789108A (en) Production of chlorine dioxide
US5324497A (en) Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor
CA1333519C (en) Process for the production of chlorine dioxide
JPH03115102A (en) Production of chlorine dioxide
NO121721B (en)
US2936219A (en) Production of chlorine dioxide
US3754081A (en) Process for the production of chlorine dioxide,chlorine and a mixtureof an alkali metal sulfate and bisulfate
US3341288A (en) Production of chlorine dioxide
US20020114759A1 (en) Process for the production of hydrochloric acid and neutralized sulfates
US3760065A (en) Production of chlorine dioxide
US4216195A (en) Production of chlorine dioxide having low chlorine content
US3755068A (en) Regeneration of chlorine dioxide for pulp treatment
US3929974A (en) Production of chlorine dioxide
JPS638203A (en) Production of high-purity chlorine dioxide
US3404952A (en) Process for the preparation of chlorine dioxide
US3733395A (en) Process for producing chlorine dioxide,chlorine and a neutral sulfate salt in the sulfate or kraft process of preparing wood pulp
US4486399A (en) Method to reduce the potential salt cake content of chlorine dioxide generator spent acids
JPH0621004B2 (en) Chlorine dioxide manufacturing method
US5378447A (en) Method for the preparation of chlorates from waste gas streams obtained from the production of chlorine dioxide