JPH0621005B2 - Chlorine dioxide manufacturing method - Google Patents

Chlorine dioxide manufacturing method

Info

Publication number
JPH0621005B2
JPH0621005B2 JP1256187A JP25618789A JPH0621005B2 JP H0621005 B2 JPH0621005 B2 JP H0621005B2 JP 1256187 A JP1256187 A JP 1256187A JP 25618789 A JP25618789 A JP 25618789A JP H0621005 B2 JPH0621005 B2 JP H0621005B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
reaction zone
waste liquid
sulfuric acid
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1256187A
Other languages
Japanese (ja)
Other versions
JPH03115102A (en
Inventor
二郎 久代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1256187A priority Critical patent/JPH0621005B2/en
Publication of JPH03115102A publication Critical patent/JPH03115102A/en
Publication of JPH0621005B2 publication Critical patent/JPH0621005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/026Preparation from chlorites or chlorates from chlorate ions in the presence of a peroxidic compound, e.g. hydrogen peroxide, ozone, peroxysulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素酸ソーダに還元剤を反応させて二酸化塩素
を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing chlorine dioxide by reacting sodium chlorate with a reducing agent.

(従来の技術) 現在工業的に実施されている二酸化塩素製造法を大別す
ると i)硫酸酸性溶液で塩素酸ソーダを亜硫酸ガスで還元す
る方法 ii)硫酸酸性溶液で塩素酸ソーダを塩化水素で還元する
方法 iii)塩素酸ソーダもしくは塩素酸カルシウムを塩酸で
還元する方法 これらのいずれの方法も二酸化塩素(および塩素)とと
もに反応廃液が生成する。上記i)、ii)の各方法の場
合いずれも硫酸と芒硝を主成分とし若干の塩素酸ソーダ
を含有しているが多くの場合、製紙パルプ用蒸解黒液に
混入して芒硝分を有効利用している。又、硫酸ばん土製
造に利用している場合もある。
(Prior art) The methods of chlorine dioxide production currently industrially implemented are roughly divided into i) a method of reducing sodium chlorate with sulfurous acid gas with an acidic sulfuric acid solution, and ii) sodium chloride with an acidic sulfuric acid solution and hydrogen chloride. Reduction method iii) Reduction method of sodium chlorate or calcium chlorate with hydrochloric acid In any of these methods, a reaction waste liquid is produced together with chlorine dioxide (and chlorine). In the case of each of the above methods i) and ii), sulfuric acid and Glauber's salt are the main components and a small amount of sodium chlorate is contained, but in many cases, the Glauber's salt is effectively used by mixing it with the cooking black liquor for papermaking pulp. is doing. It may also be used for the production of sulphate soil.

しかし、利用出来る廃液の絶対量には限度がありそれを
超える廃液が生成する場合は放棄せざるを得なくなりそ
の際は中和薬剤等を必要とするのでそのために多額の経
費を要することになる。特にii)の方法はi)に比し運
転方法が簡単であるために最近多数の工場で採用されて
いるが反応廃液生成量が極めて多量なので(発生二酸化
塩素1トンあたり芒硝約1.1トン、硫酸約2トンを含
む約7トンを副生)その処理方法が問題となることが多
い。i)の方法の廃液量はこれより少いが亜硫酸ガスの
発生装置を必要としその面で、運転操作が複雑化し、ま
た亜硫酸ガスによる公害問題の発生するおそれがある。
またi)、ii)の方法の改良法として反応廃液より中性
芒硝または酸性芒硝を回収し硫酸を再使用する方法があ
り、上記の廃液問題を解消するのに便利であるが、反面
冷凍機あるいは蒸発装置等を必要とし設備費が甚だしく
割高となり運転操作も複雑となる欠点がある。また、ii
i)の方法は廃液として少量の塩素酸塩と食塩もしくは
塩化カルシウムの希薄塩酸溶液が生成するが、これらは
製紙用薬剤として利用価値がなく少量のアルカリで中和
した後放棄されており、廃液を有効利用する方法に比し
経済的に不利となる。さらにこの廃液(食塩溶液の場
合)を電解して再び塩素酸ソーダに戻す方法もあるが、
食塩濃度がうすいので濃縮を必要とし設備費が大となり
経済的に不利である。また濃縮せずに食塩を添加すれば
廃液量が大であるため不必要に多量の濃食塩溶液が生成
されることになり、電解工程を含めた全体のプラントス
ケール上極めて不合理を来すことになる。
However, there is a limit to the amount of waste liquid that can be used, and if the amount of waste liquid exceeds that amount, it must be abandoned, and in that case, neutralizing chemicals etc. are required, which requires a large amount of expense. . In particular, the method ii) has been adopted by many factories recently because it is easier to operate than i), but the amount of reaction waste liquid generated is extremely large (about 1.1 tons of Glauber's salt per ton of chlorine dioxide generated). , About 7 tons including about 2 tons of sulfuric acid are by-produced) The treatment method is often problematic. Although the amount of waste liquid in the method i) is smaller than that, a sulfurous acid gas generator is required, and in that respect, the operation operation becomes complicated and there is a possibility that pollution problems due to sulfurous acid gas may occur.
Further, as a method for improving the methods i) and ii), there is a method of recovering neutral Glauber's salt or acidic Glauber's salt from the reaction waste liquid and reusing sulfuric acid, which is convenient for solving the above-mentioned waste liquid problem. Alternatively, there is a drawback in that an equipment such as an evaporator is required and the equipment cost is extremely high and the operation is complicated. Also, ii
The method i) produces a small amount of chlorate and salt or dilute hydrochloric acid solution of calcium chloride as waste liquid, but these are not useful as paper-making chemicals and are abandoned after neutralization with a small amount of alkali. It is economically disadvantageous as compared with the method of effectively utilizing. There is also a method of electrolyzing this waste liquid (in the case of a salt solution) and returning it to sodium chlorate again.
It is economically disadvantageous because the salt concentration is low, so concentration is required and equipment costs are high. If salt is added without concentration, an unnecessarily large amount of concentrated salt solution will be generated because the amount of waste liquid will be large, which will be extremely irrational on the whole plant scale including the electrolysis process. become.

またi)の方法は二酸化塩素のみの発生であるのに対し
て、ii)iii)の方法は同時に塩素の発生するのが特徴
である。通常この副生塩素は吸収段階で二酸化塩素と分
離された後、苛性アルカリで吸収され次亜塩素酸ソーダ
としてパルプ漂白工程で消費される。しかし、漂白工程
において次亜塩素酸ソーダの使用量が少い場合はその過
剰が問題となる。現在工業的に利用されている方法は殆
んどi)及びii)であるが、そのうち最も数多く用いら
れているのはii)の方法である。この方法の利点はすで
に述べたように亜硫酸ガス発生装置、芒硝回収装置等の
複雑な付帯設備を要せず、したがって設備費が安価で運
転操作が簡単であり、また原料塩素酸ソーダの原単位も
最も優れていることである。反面欠点としては発生廃液
量がi)に比較して多く、また塩素ガスが副生すること
でこれらは発生装置の規模が大きくなってくると問題と
なることが多い。
Further, the method i) is a method in which only chlorine dioxide is generated, whereas the method ii) and iii) is characterized in that chlorine is simultaneously generated. Usually, this by-product chlorine is separated from chlorine dioxide in the absorption stage, then absorbed by caustic alkali and consumed as sodium hypochlorite in the pulp bleaching process. However, when the amount of sodium hypochlorite used is small in the bleaching step, its excess becomes a problem. Most of the methods currently used industrially are i) and ii), and the method most often used is the method of ii). The advantage of this method is that it does not require complicated auxiliary equipment such as a sulfurous acid gas generator and a sodium sulfate recovery device as described above, therefore the equipment cost is low and the operation is simple. Is also the best. On the other hand, as a drawback, the amount of waste liquid generated is larger than that in i), and chlorine gas is a byproduct, which often causes a problem when the scale of the generator increases.

発生廃液に関して述べれば、硫酸酸性で塩素酸ソーダを
塩化水素で還元する方法では塩化水素源として塩酸を用
いる場合と食塩及び硫酸を用いる場合がある。かっては
食塩及び硫酸がよく用いられたが、これは系内のナトリ
ウムイオン量を多くし溶解度の関係で結果的に廃液量の
増加を来すため、最近は塩酸を用いる場合が多くなっ
た。これにより廃液量は確かに減少したが塩酸に伴って
系内に入る水のためi)の方法に比し、1.3倍程度の
廃液を生じている。また副生塩素が問題となることのあ
るのも前述のとおりである。
As for the generated waste liquid, in the method of reducing sodium chlorate with hydrogen chloride under sulfuric acid acidity, there are cases where hydrochloric acid is used as a hydrogen chloride source and where salt and sulfuric acid are used. In the past, common salt and sulfuric acid were often used, but since this increases the amount of sodium ions in the system, resulting in an increase in the amount of waste liquid due to the solubility, hydrochloric acid has recently been often used. Although the amount of waste liquid was certainly reduced by this, about 1.3 times as much waste liquid was produced as compared with the method i) because of the water entering the system with hydrochloric acid. As described above, by-product chlorine may be a problem.

(発明が解決しようとする課題) 本発明は以上の問題点、すなわち還元剤として塩酸を使
用する二酸化塩素の発生法における副生塩素量の削減及
び廃液量を減少させることが可能で工業的に有利な方法
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention is capable of reducing the amount of by-product chlorine and the amount of waste liquid in the method of generating chlorine dioxide using hydrochloric acid as a reducing agent, which is industrially possible. The aim is to provide an advantageous method.

(課題を解決するための手段) 本発明はすなわち、塩素酸ソーダに還元剤を反応させて
二酸化塩素を製造するにあたり反応帯域を二分し、
(I)反応帯域Aには塩素酸ソーダ、メタノール、及び
硫酸を添加反応させ、(II)反応帯域BにおいてはAよ
りの廃液に過酸化水素又は過酸化水素と硫酸とを添加反
応させて残存塩素酸ソーダを分解し、各反応帯域より発
生する二酸化塩素を分離取得することを特徴とする二酸
化塩素の製造法である。
(Means for Solving the Problems) The present invention is to divide a reaction zone into two in the production of chlorine dioxide by reacting a reducing agent with sodium chlorate.
(I) Sodium chlorate, methanol, and sulfuric acid are added and reacted in the reaction zone A, and (II) Hydrogen peroxide or hydrogen peroxide and sulfuric acid are added and reacted with the waste liquid from A in the reaction zone B and left. It is a method for producing chlorine dioxide, which is characterized by decomposing sodium chlorate and separating and obtaining chlorine dioxide generated from each reaction zone.

次に本発明方法を図面により説明する。Next, the method of the present invention will be described with reference to the drawings.

二酸化塩素発生槽(1)(反応帯域A)には貯槽(2)より塩
素酸ソーダ(3)とともに硫酸(4)を添加し、またメタノー
ル(5)は後記の不活性ガス(9)と共に導入する。また二酸
化塩素発生槽(6)(反応帯域B)には塩素酸ソーダが残
存するように反応させた二酸化塩素発生槽(1)よりの廃
液(7)を導き過酸化水素(8)を添加する。各槽(1)(6)の下
部よりは空気等の不活性ガス(9)を吸込んで発生する二
酸化塩素ガス(10)を取り出し、二酸化塩素吸収塔(11)に
導き冷水(12)により二酸化塩素ガスを吸収させ二酸化塩
素水(13)を製造する。二酸化塩素発生槽(6)よりの廃液
(14)は硫酸、芒硝分を主成分とし、パルプ蒸解用に使用
される。各二酸化塩素発生槽で発生する二酸化塩素ガス
吸収部は共通にして差支えない。また反応帯域A,Bに
おけるそれぞれの塩素酸ソーダの分解率はメタノール、
硫酸、過酸化水素の添加量により任意に調節することが
できる。なお硫酸は必要量の全量を反応帯域Aに添加し
てもよくその一部を反応帯域Bに添加してもよい。
To the chlorine dioxide generation tank (1) (reaction zone A), add sulfuric acid (4) together with sodium chlorate (3) from the storage tank (2), and introduce methanol (5) together with the inert gas (9) described below. To do. Further, to the chlorine dioxide generation tank (6) (reaction zone B), lead the waste liquid (7) from the chlorine dioxide generation tank (1) that has been reacted so that sodium chlorate remains, and add hydrogen peroxide (8). . Chlorine dioxide gas (10) generated by inhaling an inert gas (9) such as air is taken out from the bottom of each tank (1) (6), led to a chlorine dioxide absorption tower (11) and cooled with cold water (12). Chlorine dioxide is absorbed to produce chlorine dioxide water (13). Waste liquid from chlorine dioxide generation tank (6)
(14) has sulfuric acid and Glauber's salt as main components and is used for pulp cooking. The chlorine dioxide gas absorption part generated in each chlorine dioxide generation tank may be common. The decomposition rates of sodium chlorate in reaction zones A and B are methanol,
It can be arbitrarily adjusted by the addition amount of sulfuric acid and hydrogen peroxide. The required amount of sulfuric acid may be added to the reaction zone A or a part thereof may be added to the reaction zone B.

反応帯域A(二酸化塩素発生槽1)における主反応式は
次式で示され NaClO3+1/2H2SO4+1/2CH3OH→ ClO2+1/2Na2SO4+1/2HCHO+H2O…(1) 反応帯域B(二酸化塩素発生槽6)における主反応式は
次式で示される。
The main reaction equation in reaction zone A (chlorine dioxide generation tank 1) is shown by the following equation: NaClO 3 + 1 / 2H 2 SO 4 + 1 / 2CH 3 OH → ClO 2 + 1 / 2Na 2 SO 4 + 1 / 2HCHO + H 2 O ... (1) The main reaction equation in the reaction zone B (chlorine dioxide generation tank 6) is shown by the following equation.

NaClO3+1/2H2SO2+1/2CH2SO4→ ClO2+1/2Na2SO4+H2O+1/2O2…(2) (作用) メタノールにより硫酸酸性の塩素酸ソーダ水溶液を還元
することによって二酸化塩素を製造する方法は“ソルベ
イ法”として公知である。しかしこの反応は、元来反応
収率は良好であるが非常に緩慢であり、多数の大容量の
反応器を用いても未反応塩素酸ソーダ等を含む多量の廃
液を排出し、この反応率の低いことにより原料塩素酸ソ
ーダの原単位の劣っていることが欠点とされていた。
NaClO 3 + 1 / 2H 2 SO 2 + 1 / 2CH 2 SO 4 → ClO 2 + 1 / 2Na 2 SO 4 + H 2 O + 1 / 2O 2 (2) (Action) Sodium chlorate acidified with sulfuric acid by methanol A method for producing chlorine dioxide by reducing an aqueous solution is known as a "Solvay method". However, this reaction has a very good reaction yield, but is very slow. Even if a large number of large-capacity reactors are used, a large amount of waste liquid containing unreacted sodium chlorate, etc. is discharged, and this reaction rate It was considered that the raw material soda chlorate was inferior in unit consumption due to its low value.

本発明方法ではメタノールによる反応は反応帯域Aにお
いてのみ実施するので、反応帯域Aよりの反応廃液に未
反応塩素酸ソーダが含まれていても、反応帯域Bにおい
てより効率よく分解されて二酸化塩素になるため、全体
としての塩素酸ソーダの原単位は良好である。
In the method of the present invention, since the reaction with methanol is carried out only in the reaction zone A, even if the unreacted sodium chlorate is contained in the reaction waste liquid from the reaction zone A, it is more efficiently decomposed in the reaction zone B into chlorine dioxide. Therefore, the basic unit of sodium chlorate is good as a whole.

またメタノールは安価で使用量も少く硫酸の使用量も相
対的に減少するため、二酸化塩素の製造コストを引上げ
ることはない。一方、過酸化水素により二酸化塩素ガス
発生に伴う副生塩素を減少させる方法は、特開昭53−
66892号、特開昭63−8203号に記載されてい
るが、過酸化水素は高価であり二酸化塩素の製造原価を
増加させる原因となる。しかし本発明方法においてはそ
の使用が反応帯域Bに限られるため、その使用量は二酸
化塩素発生量に対し相対的に減少させることができコス
トを引上げることはない。
Further, since methanol is inexpensive, its amount used is small, and the amount of sulfuric acid used is relatively reduced, it does not increase the production cost of chlorine dioxide. On the other hand, a method of reducing by-product chlorine accompanying the generation of chlorine dioxide gas with hydrogen peroxide is disclosed in JP-A-53-53.
As described in JP-A-66892 and JP-A-63-8203, hydrogen peroxide is expensive and causes an increase in production cost of chlorine dioxide. However, in the method of the present invention, since the use thereof is limited to the reaction zone B, the use amount thereof can be relatively reduced with respect to the chlorine dioxide generation amount and the cost is not increased.

(発明の効果) 本発明方法による種々の利点を列挙すると次の如くであ
る。
(Effects of the Invention) Various advantages of the method of the present invention are listed below.

1)反応帯域A・Bにおいて塩酸又は塩化水素発生源と
なる塩化物を使用しないため、副生塩素の量を減少もし
くは実質的にゼロにできるので、副生塩素過剰による問
題を解消し得る。また漂白工程で次亜塩素酸ソーダ又は
塩素の使用量が減少しても対応が可能である。
1) Since hydrochloric acid or a chloride serving as a hydrogen chloride generation source is not used in the reaction zones A and B, the amount of by-product chlorine can be reduced or substantially reduced to zero, so that the problem due to excess by-product chlorine can be solved. It is also possible to deal with the decrease in the amount of sodium hypochlorite or chlorine used in the bleaching process.

2)系内に入る水が減少するため、前記従来の方法ii)
iii)はもちろのこと、i)の方法に比べてもさらに廃
液量を減少することが可能となった。したがって廃液過
剰による問題を回避し得る。
2) Since the amount of water entering the system is reduced, the conventional method ii)
It is possible to further reduce the amount of waste liquid as compared with the method of i). Therefore, the problem due to excess waste liquid can be avoided.

3)以上の利点に加えて、経済的に高価な過酸化水素と
安価なメタノールとの併用によりそのバランスが保たれ
二酸化塩素の製造原価を従来法より上昇させることはな
い。
3) In addition to the above advantages, the economically expensive hydrogen peroxide and the inexpensive methanol are used in combination to keep the balance, and the production cost of chlorine dioxide is not increased as compared with the conventional method.

4)従来法の場合の亜硫酸ガス発生装置や廃液の濃縮設
備、晶出設備のような付帯設備を要せず、運転操作が簡
単で容易に自動運転を実施することができ、したがって
設備の建設費、運転費を軽減できるうえ既存設備からの
転換が容易にできる。
4) The conventional method does not require auxiliary equipment such as a sulfurous acid gas generator, waste liquid concentration equipment, crystallization equipment, etc., and the operation is simple and automatic operation can be carried out easily. Costs and operating costs can be reduced, and conversion from existing equipment can be done easily.

(実施例) 以下実施例、比較例により本発明方法を説明する。(Examples) The method of the present invention will be described below with reference to Examples and Comparative Examples.

実施例1 図面に示す装置を使用し、反応帯域AにNaClO3639g
/の水溶液を31/hr、濃硫酸14.9/hr
の割合で注加し、約40℃に加温して下部よりメタノー
ルを2.5/hr、空気を28Nm/hrの割合で
吹込んだ。反応帯域Aより排出される廃液流量は41
/hr、組成はNaClO3 90g/、H2SO4483g/
、Na2SO4267g/、メタノールtraceであり、こ
れを反応帯域Bに導入しながら過酸化水素水(H2O235
%)を1.4/hrの割合で注加し、液を50〜60
℃に加温して、下部より空気を5.7m/hrの割合
で吹込んだ。反応帯域Aよりの発生ガス(ClO2 10.
1kg/hr)と反応帯域Bよりの発生ガス(ClO2
kg/hr)を同一の二酸化塩素吸収塔で5℃の冷水に
吸収させて、二酸化塩素水(ClO2 7g/)を172
0/hrの割合で得た。一方反応帯域Bより流出する廃
液流量は40/hr、組成はNaClO3 10g/、Na
2SO4 324g/、H2SO4450g/、H2O2traceで
あり、発生二酸化塩素トン当りの各物質原単位は次の通
りであった。
Example 1 Using the apparatus shown in the drawings, 639 g of NaClO 3 was added to reaction zone A.
Aqueous solution of 31 / hr, concentrated sulfuric acid 14.9 / hr
At a rate of 40 ° C., and methanol was blown in from the bottom at a rate of 2.5 / hr and air was blown at a rate of 28 Nm 3 / hr. The flow rate of the waste liquid discharged from the reaction zone A is 41
/ Hr, composition: NaClO 3 90 g /, H 2 SO 4 483 g /
, Na 2 SO 4 267 g /, methanol trace, while introducing this into the reaction zone B, hydrogen peroxide solution (H 2 O 2 35
%) At a ratio of 1.4 / hr, and the liquid is 50-60.
After heating to ℃, air was blown in from the bottom at a rate of 5.7 m 3 / hr. Gas evolved from reaction zone A (ClO 2 10.
1 kg / hr) and the gas generated from the reaction zone B (ClO 2 2
(kg / hr) is absorbed in cold water at 5 ° C. in the same chlorine dioxide absorption tower to give 172 chlorine dioxide water (ClO 2 7 g /).
Obtained at a rate of 0 / hr. On the other hand, the flow rate of the waste liquid flowing out from the reaction zone B is 40 / hr, the composition is NaClO 3 10 g /, Na
2 SO 4 324 g /, H 2 SO 4 450 g /, H 2 O 2 trace, and each substance basic unit per ton of chlorine dioxide generated was as follows.

NaClO31,650kg,35%H2O2140kg、 H2SO4 2,290kg、メタノール167kg、 廃硫酸1,500kg 比較例1 反応帯域AにNaClO3 639g/の水溶液 25.8
/hr、濃硫酸14.2/hr,35%過酸化水素
水7/hrの割合で注加し40〜60℃に加温する。
また下部より空気を28Nm/hrの割合で吹込む。
発生ガス(ClO210.1kg/hr)を5℃の冷水に吸
収させて二酸化塩素水(ClO2 7g/)を1430
/hrの割合で得た。一方反応帯域Aより流出する廃液
流量は38/hr、組成はNaClO3 8g/、Na2SO4
289g/、H2SO4 465g/、H2O2traceであ
り発生二酸化塩素トン当りの各物質原単位は次のとおり
であった。
1,650 kg of NaClO 3 , 140 kg of 35% H 2 O 2 , 2,290 kg of H 2 SO 4 , 167 kg of methanol, 1,500 kg of waste sulfuric acid Comparative Example 1 In reaction zone A, an aqueous solution of 639 g of NaClO 3 25.8.
/ Hr, concentrated sulfuric acid 14.2 / hr, 35% hydrogen peroxide solution 7 / hr, and the mixture is heated to 40 to 60 ° C.
Further, air is blown from the bottom at a rate of 28 Nm 3 / hr.
Generated gas (ClO 2 10.1 kg / hr) is absorbed in cold water at 5 ° C. to make chlorine dioxide water (ClO 2 7 g /) 1430
/ Hr. On the other hand, the flow rate of the waste liquid flowing out from the reaction zone A is 38 / hr, the composition is NaClO 3 8 g /, Na 2 SO 4
It was 289 g /, H 2 SO 4 465 g /, H 2 O 2 trace, and the basic unit of each substance per ton of chlorine dioxide generated was as follows.

NaClO3 1,650kg,35%H2O2 850kg、H2
SO4 2,560kg,廃硫酸1,770kg この例は、硫酸酸性溶液で塩素酸ソーダを塩素イオンを
媒体として過酸化水素で還元して二酸化塩素を発生させ
る方式であるが、実施例と比較して高価な過酸化水素を
多く要し、経済性に劣ることが判る(ちなみに35%過
酸化水素の市価はメタノールの約3倍である)。
NaClO 3, 1,650 kg, 35% H 2 O 2 850 kg, H 2
SO 4, 2,560 kg, waste sulfuric acid 1,770 kg In this example, sodium chlorate is reduced with hydrogen peroxide using chlorine ion as a medium in a sulfuric acid acidic solution to generate chlorine dioxide. It requires much expensive hydrogen peroxide and is inferior in economic efficiency (By the way, the market price of 35% hydrogen peroxide is about three times that of methanol).

比較例2 反応帯域AにNaClO3 639g/の水溶液を31/
hr、濃硫酸14.9/hrの割合で注加し、40〜
50℃に加温して下部よりメタノール25.2/h
r、空気を28Nm/hrの割合で吹込んだ。一方、
反応帯域Aより流出する廃液流量は40.3/hr、
組成はNaClO3 90g/、Na2SO4 267g/、H2
SO4 483g/であり、発生二酸化塩素トン当りの
各物質原単位は次のとおりであった。
Comparative Example 2 In reaction zone A, an aqueous solution of NaClO 3 639 g / 31 /
hr and concentrated sulfuric acid 14.9 / hr were added at a ratio of 40-
Warm up to 50 ° C and methanol 25.2 / h from the bottom
r and air were blown in at a rate of 28 Nm 3 / hr. on the other hand,
The flow rate of waste liquid flowing out from the reaction zone A is 40.3 / hr,
The composition is 90 g of NaClO 3 /, 267 g of Na 2 SO 4 /, H 2
SO 4 was 483 g /, and the basic unit of each substance per ton of chlorine dioxide generated was as follows.

NaClO3 1,980kg,メタノール200kg、H2SO
42,740kg、廃硫酸1,950kg この例は硫酸酸性溶液で塩素酸ソーダをメタノールで還
元するいわゆるソルベー法であり、実施例に比し副生塩
素はほぼゼロであるが、廃硫酸は多く塩素酸ソーダの原
単位も悪く経済性に劣ることが判る。
NaClO 3, 1,980 kg, methanol 200 kg, H 2 SO
4 2,740Kg, waste sulfuric acid 1,950kg This example is the so-called Solvay Process for reducing the chlorine sodium in methanol with sulfuric acid acidic solution, although byproduct chlorine than in Example is almost zero, the waste sulfuric acid number It can be seen that the basic unit of sodium chlorate is also poor and the economy is poor.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明法を実施するための装置を示す概略図であ
る。 1……二酸化塩素発生槽(反応帯域A)、 6……同(反応帯域B)、 3……塩素酸ソーダ水溶液の注入経路、 4……硫酸の注入経路、5……メタノール注入経路、 7……反応帯域AよりBへの廃液経路、 8……過酸化水素水の注入経路、 11……二酸化塩素吸収塔。
The drawing is a schematic diagram showing an apparatus for carrying out the method of the present invention. 1 ... Chlorine dioxide generation tank (reaction zone A), 6 ... Same (reaction zone B), 3 ... Sodium chlorate aqueous solution injection path, 4 ... Sulfuric acid injection path, 5 ... Methanol injection path, 7 ... Waste liquid path from reaction zone A to B, 8 ... Hydrogen peroxide water injection path, 11 ... Chlorine dioxide absorption tower.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩素酸ソーダに還元剤を反応させて二酸化
塩素を製造するにあたり、反応帯域を2分し、(I)反
応帯域Aには、塩素酸ソーダ、メタノール、硫酸を添加
反応させ、(II)反応帯域BにおいてはAよりの廃液に
過酸化水素、又は過酸化水素と硫酸とを添加反応させて
残存塩素酸ソーダを分解し、各反応帯域より発生する二
酸化塩素を取得することを特徴とする二酸化塩素の製造
法。
1. To produce chlorine dioxide by reacting sodium chlorate with a reducing agent, the reaction zone is divided into two parts, and (I) reaction zone A is reacted with sodium chlorate, methanol and sulfuric acid. (II) In the reaction zone B, hydrogen peroxide, or hydrogen peroxide and sulfuric acid are added to the waste liquid from A to react with each other to decompose the residual sodium chlorate and to obtain chlorine dioxide generated from each reaction zone. Characteristic chlorine dioxide production method.
JP1256187A 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method Expired - Lifetime JPH0621005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256187A JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256187A JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Publications (2)

Publication Number Publication Date
JPH03115102A JPH03115102A (en) 1991-05-16
JPH0621005B2 true JPH0621005B2 (en) 1994-03-23

Family

ID=17289115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256187A Expired - Lifetime JPH0621005B2 (en) 1989-09-29 1989-09-29 Chlorine dioxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621005B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486344A (en) 1992-06-09 1996-01-23 Eka Nobel Inc. Method of producing chlorine dioxide
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
US5380517B1 (en) * 1993-02-26 1999-01-19 Eka Nobel Inc Process for continuously producing chlorine dioxide
US5478446A (en) * 1993-07-02 1995-12-26 Eka Nobel Inc. Electrochemical process
SE9402856L (en) * 1994-08-26 1995-11-27 Eka Nobel Ab Process of producing chlorine dioxide
MX2007002706A (en) * 2004-09-24 2007-05-18 Akzo Nobel Nv A process for the production of chlorine dioxide.
US8431104B2 (en) 2007-01-12 2013-04-30 Akzo Nobel N.V. Process for the production of chlorine dioxide
TWI447065B (en) 2007-07-13 2014-08-01 Akzo Nobel Nv Process for the production of chlorine dioxide
SA109300539B1 (en) 2008-10-06 2012-04-07 اكزو نوبل أن . في Process For The Production Of Chlorine Dioxide
BRPI1009016A2 (en) 2009-06-16 2016-08-23 Akzo Nobel Nv process for the continuous production of chlorine dioxide
JP5735985B2 (en) 2010-01-18 2015-06-17 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Chlorine dioxide production method
WO2020041916A1 (en) * 2018-08-30 2020-03-05 广西博世科环保科技股份有限公司 Method for preparing high-purity chlorine dioxide using combination of methyl alcohol and hydrogen peroxide as reducing agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386915A (en) 1964-03-18 1968-06-04 Solvay Process for the manufacturing of chlorine dioxide in solution and the use of the solution thus obtained

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366892A (en) * 1976-11-27 1978-06-14 Osaka Soda Co Ltd Production of chlorine dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386915A (en) 1964-03-18 1968-06-04 Solvay Process for the manufacturing of chlorine dioxide in solution and the use of the solution thus obtained

Also Published As

Publication number Publication date
JPH03115102A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JP2584718B2 (en) Continuous production method of chlorine dioxide
US4465658A (en) Chlorine dioxide process
US3864456A (en) Manufacture of chlorine dioxide, chlorine and anhydrous sodium sulphate
US4473540A (en) High efficiency chlorine dioxide process
JP2819065B2 (en) Method for producing chlorine dioxide
JPH0742090B2 (en) Chlorine dioxide production method
JPH0742091B2 (en) Chlorine dioxide production method
US5324497A (en) Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor
US2484402A (en) Process for producing chlorine dioxide
US3933988A (en) Method of simultaneously producing chlorine dioxide and a sulfate salt
JPH0621005B2 (en) Chlorine dioxide manufacturing method
US2936219A (en) Production of chlorine dioxide
US3341288A (en) Production of chlorine dioxide
US3760065A (en) Production of chlorine dioxide
CA1118580A (en) Production of chlorine dioxide having low chlorine
US4145401A (en) High efficiency chlorine dioxide production at low acidity with methanol addition
JPH0621004B2 (en) Chlorine dioxide manufacturing method
US3933987A (en) Simultaneous production of chlorine dioxide and a salt of a strong acid
CA1105877A (en) Process for producing chlorine dioxide
US3733395A (en) Process for producing chlorine dioxide,chlorine and a neutral sulfate salt in the sulfate or kraft process of preparing wood pulp
US5851374A (en) Process for production of chlorine dioxide
US3864457A (en) Process for the production of chlorine dioxide
CA2079633C (en) Method for the preparation of chlorates from waste gas streams obtained from the production of chlorine dioxide
US4206193A (en) Versatile process for generating chlorine dioxide
US3524728A (en) Closed cycle system for the generation of chlorine dioxide