JPS638203A - Production of high-purity chlorine dioxide - Google Patents

Production of high-purity chlorine dioxide

Info

Publication number
JPS638203A
JPS638203A JP14803786A JP14803786A JPS638203A JP S638203 A JPS638203 A JP S638203A JP 14803786 A JP14803786 A JP 14803786A JP 14803786 A JP14803786 A JP 14803786A JP S638203 A JPS638203 A JP S638203A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
mol
chloride
sulfuric acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14803786A
Other languages
Japanese (ja)
Inventor
Hideo Yamamoto
秀雄 山本
Minoru Fukuda
実 福田
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP14803786A priority Critical patent/JPS638203A/en
Publication of JPS638203A publication Critical patent/JPS638203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily, efficiently and continuously produce high-purity ClO2 at a low cost, by reducing an alkali metal chlorate with H2O2 in presence of a specific amount of a chloride in an acidic aqueous solution of sulfuric acid. CONSTITUTION:(A) An alkali metal chlorate, e.g. NaClO3, is dissolved in (B) a strong acidic aqueous solution of sulfuric acid in 8-11 N acid concentration to give 0.03-0.2mol/l concentration of the above-mentioned alkali metal chlorate. (D) H2O2 in an amount of 5-10% excess of the theoretical amount based on the component (A) is as a reducing agent added to the resultant solution to carry out reductive reaction in the presence of (C) a chloride, e.g. NaCl, in a concentration as low as 0.02-0.1mol/l at 30-50 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続式の反応槽を用いて、硫酸酸性水溶液中で
アルカリ金属塩素酸塩を還元して二酸化塩素を製造する
方法において、過酸化水素を還元剤として高純度の二酸
化塩素を容易にかつ安価に製造する方法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing chlorine dioxide by reducing an alkali metal chlorate in an acidic sulfuric acid solution using a continuous reaction tank. The present invention relates to a method for easily and inexpensively producing high-purity chlorine dioxide using hydrogen as a reducing agent.

(従来の技術) 高純度の二酸化塩素は近年パルプ漂白は勿論のこと、上
下水道の殺菌や脱硝などの分野を使用されている。二酸
化塩素は特にパルプ漂白剤としては欠くべからざるもの
として大量に製造され、主として晒クラフトパルプの漂
白に利用されている。
(Prior Art) In recent years, high-purity chlorine dioxide has been used in fields such as pulp bleaching, sterilization of water and sewage systems, and denitrification. Chlorine dioxide is particularly indispensable as a pulp bleaching agent and is produced in large quantities, and is primarily used for bleaching bleached kraft pulp.

従来、二酸化塩素の製造法として広く利用されているR
2法は、硫酸酸性水溶液中で塩化物を還元剤として塩素
酸塩を還元する方法であり、還元剤として塩酸を例にと
れば主反応は次式で示される。
Conventionally, R has been widely used as a method for producing chlorine dioxide.
Method 2 is a method in which chlorate is reduced in an aqueous sulfuric acid solution using chloride as a reducing agent. Taking hydrochloric acid as an example of the reducing agent, the main reaction is shown by the following formula.

N a CI O1+ HCl + 1 / 2 H2
S O−−CI02+1/2CI2+1/2Na2S○
4+H20・・ ・(1) この方法は装置ら簡単であり、収率もよいので極めて好
評であるが、モル比で二酸化塩素の半量の塩素の生成は
避けることができない。この副生塩素はアルカリに吸収
させて次亜塩素酸塩(ハイポ)として使用するのが普通
であり、塩素は有効に利用されてきた。
N a CI O1+ HCl + 1/2 H2
SO--CI02+1/2CI2+1/2Na2S○
4+H20... (1) This method is extremely popular because it uses simple equipment and has a good yield, but it cannot avoid producing chlorine that is half the amount of chlorine dioxide in terms of molar ratio. This by-product chlorine is normally absorbed by alkali and used as hypochlorite (hypo), and chlorine has been used effectively.

(発明が解決しようとする問題点) ところが最近では日本においてら、漂白系列は従来主流
であった塩素処理(E段)−アルカリ抽出(E段)−ハ
イポ処理(H段)−アルカリ抽出(E段)−二酸化塩素
処理(D段)すなわちCEHEDからCEDEDへと移
行の傾向がある。漂白系列がCEDEDになった場合、
H段がなく、副生塩素のハイポとしての利用が不可能に
なる。副生塩素を水に吸収させて0段に利用することも
考えられるが、希薄塩素水しか得ら八ないので、必ずし
も好ましい利用方法とは言えない。
(Problem to be solved by the invention) However, recently in Japan, the bleaching series has changed from chlorine treatment (E stage) - alkaline extraction (E stage) - hypo treatment (H stage) - alkaline extraction (E stage). stage) - chlorine dioxide treatment (stage D), that is, there is a tendency to transition from CEHED to CEDED. If the bleaching series becomes CEDED,
There is no H stage, making it impossible to use by-product chlorine as hypo. Although it is possible to absorb the by-product chlorine in water and use it in the zero stage, it is not necessarily a preferable method of use since only dilute chlorine water can be obtained.

塩化水素を還元剤として二酸化塩素を発生させるに当た
って過酸化水素を添加する方法が提案されている(特開
昭53−66892)。この方法における反応液組成な
どは明らかにされていないが、大量の塩化物の共存下で
の反応であり、副生塩素量を減少させ高純度の二酸化塩
素の製造は可能であるが、アルカリ金属塩素酸塩の消費
量が多く、過酸化水素も大量に必要とするので効率のよ
い方法とは言えない。
A method has been proposed in which hydrogen peroxide is added to generate chlorine dioxide using hydrogen chloride as a reducing agent (Japanese Patent Laid-Open No. 53-66892). Although the composition of the reaction solution in this method has not been clarified, it is a reaction in the coexistence of a large amount of chloride, and it is possible to reduce the amount of by-product chlorine and produce high-purity chlorine dioxide, but it is possible to produce high-purity chlorine dioxide. It is not an efficient method because it consumes a large amount of chlorate and also requires a large amount of hydrogen peroxide.

ここに塩素を副生しない方法で、簡単かつ効率良く高純
度の二酸化塩素を製造する方法の開発が要望されてきて
いる。
Therefore, there has been a demand for the development of a method for easily and efficiently producing high-purity chlorine dioxide without producing chlorine as a by-product.

(問題点を解決するための手段) 本発明者らは上記問題を解決するために鋭意研究を重ね
jこ結果、特定の反応条件下で過酸化水素を還元剤とし
て添加することにより高純度の二酸化塩素を容易かつ安
価に製造できることを見出した。すなわち本発明は、硫
酸酸性水溶液中でアルカリ金属塩素酸塩を還元して二酸
化塩素を連続的に製造する方法において、0.02ない
し0.1モル/lの塩化物の存在下で酸濃度を8ないし
11N、アルカリ金属塩素酸塩を0.03ないし0.2
モル/lとし、反応温度を30ないし50°Cに調整し
て、過酸化水素で還元することを特徴とする高純度の二
酸化塩素を製造する方法である。
(Means for Solving the Problems) The present inventors have conducted extensive research to solve the above problems, and as a result, by adding hydrogen peroxide as a reducing agent under specific reaction conditions, high purity It has been discovered that chlorine dioxide can be produced easily and inexpensively. That is, the present invention provides a method for continuously producing chlorine dioxide by reducing an alkali metal chlorate in an acidic aqueous solution of sulfuric acid, in which the acid concentration is reduced in the presence of 0.02 to 0.1 mol/l of chloride. 8 to 11N, alkali metal chlorate 0.03 to 0.2
This is a method for producing high-purity chlorine dioxide, which is characterized by reducing the chlorine dioxide with hydrogen peroxide while adjusting the reaction temperature to 30 to 50°C.

強酸性下で塩素酸塩を還元して二酸化塩素を発生する機
構については、’vV 、 H、Ra p s o n
 の説[Tappi  第39巻 第8号 第554頁
1956年1が広く支持されている。この説に従い、ア
ルカリ金属塩素酸塩として塩素酸ナトリウムを例−とし
て説明すると本発明の反応内容は次のように考えられる
Regarding the mechanism of reducing chlorate under strong acidity to generate chlorine dioxide, see 'vV, H, Rapson
The theory [Tappi Vol. 39, No. 8, p. 554, 1956, 1] is widely supported. According to this theory, when sodium chlorate is used as an example of an alkali metal chlorate, the reaction content of the present invention can be considered as follows.

2NaC1○、+H2So、 == 2HCIOs+Na25O−’ ”(2)HCIOっ+
HCI ;: HCIO2+HCl0  ・・(3) HC103+HCl02== 2CI02+820   ・・(4) HCIO+H2O2=: HC1+820+02 ・・(5) (2)〜(5)式を辺々加えると本発明の主反応式、(
6)式が得られる。
2NaC1○, +H2So, == 2HCIOs+Na25O-' (2) HCIO+
HCI;: HCIO2+HCl0...(3) HC103+HCl02== 2CI02+820...(4) HCIO+H2O2=: HC1+820+02...(5) By adding various equations (2) to (5), the main reaction formula of the present invention, (
6) Equation is obtained.

2NaC1○、+H2O2+H2SO4→2C1○2+
Na25O,+2H20+02・・(6) この反応を好ましい状態で進行させるためには種々の条
件が必要である。すなわち反応槽中における硫酸濃度は
8ないしIIN、アルカリ金属塩素酸塩0.03モル/
lないし0.2モル/lとし反応温度を30ないし50
°Cの範囲)こおいて、塩化物を0.02モル/lない
し0.1モル/l存在させjこ状態で過酸化水素を還元
剤として反応させることが必要である。
2NaC1○, +H2O2+H2SO4→2C1○2+
Na25O, +2H20+02...(6) Various conditions are required to allow this reaction to proceed under favorable conditions. That is, the sulfuric acid concentration in the reaction tank is 8 to IIN, and the alkali metal chlorate is 0.03 mol/
l to 0.2 mol/l and the reaction temperature to 30 to 50 mol/l.
C), it is necessary to react with hydrogen peroxide as a reducing agent in the presence of chloride in an amount of 0.02 mol/l to 0.1 mol/l.

本発明を理解しやすいように次のように語句を定義し、
アルカリ金属塩素酸塩としては塩素酸ナトリウムを例に
して説明する。
To make it easier to understand the present invention, the following terms and phrases are defined,
As the alkali metal chlorate, sodium chlorate will be explained as an example.

二酸化塩素純度(%): 塩素酸ナトリウム原単位: 塩素酸ナトリウム供給量(kg) 二酸化塩素発生量(kg) 過酸化水素原単位: 二酸化塩素発生量(kg) まず硫酸濃度について説明すると8Nより低い濃度では
副反応の生成が多く塩素酸ナトリウム原単位が増加する
ので好ましくない。また低酸濃度では、高純度の二酸化
塩素を得ようとすると過酸化水素原単位が上昇し、逆に
過酸化水素の原単位を下げると二酸化塩素純度が低下す
るので好ましくない。逆に硫酸濃度をIINより高くし
ても、塩素酸ナトリウムや過酸化水素原単位の低下は殆
ど無いので特に利点はないばかりでなく、硫酸原単位が
上昇し、運転停止時に液温か下がり酸性ボウ硝の析出に
よるトラブルがあるなど工業的利用価値が減少する。
Chlorine dioxide purity (%): Sodium chlorate consumption: Sodium chlorate supply (kg) Chlorine dioxide generation (kg) Hydrogen peroxide consumption: Chlorine dioxide generation (kg) First, let's talk about sulfuric acid concentration: It is lower than 8N. Concentrations are not preferable because many side reactions occur and the sodium chlorate consumption rate increases. In addition, low acid concentration is not preferable because if an attempt is made to obtain highly pure chlorine dioxide, the hydrogen peroxide basic unit increases, and conversely, if the hydrogen peroxide basic unit is lowered, the chlorine dioxide purity decreases. Conversely, even if the sulfuric acid concentration is higher than IIN, there is almost no reduction in the sodium chlorate or hydrogen peroxide consumption, so not only is there no particular advantage, but the sulfuric acid consumption also increases, and the liquid temperature decreases when the operation is stopped. The industrial value decreases due to problems due to sulfur precipitation.

アルカリ金属塩素酸塩としてはカリウム塩あるいはナト
リウム塩か゛用いられるか主として塩素酸ナトリウムが
用いられ、その濃度は広い範囲で使用て゛きるが好まし
い濃度は0.03モル/lないし0.2モル/lである
。この場合、反応槽は1槽ででもよいが、塩素酸ナトリ
ウムの原単位を考慮すると、従来のSC2法やR2法で
広く用いられている第2反応槽を補助的手段として使用
してもよい。前述した塩素酸ナトリウム濃度は第1反応
槽(主反応槽)の濃度である。塩素酸ナトリウム濃度が
0.03モル/l未満では二酸化塩素を発生する主反応
率の低下によって塩素酸ナトリウムの原単位が上昇する
。一方0.2モル/lより高濃度では反応塩素酸す) 
+7ウムに対する生成二酸化塩素の比率は高く、二酸化
塩素への転換率は十分であるが、排酸中への塩素酸す)
 +7ウムの損失が多く、たとえ第2反応槽を補助的に
用いたとしても結果的には塩素酸ナトリウムの原単位は
高くなり工業的には好ましくない。
As the alkali metal chlorate, potassium salt or sodium salt is used, or mainly sodium chlorate is used, and its concentration can be used in a wide range, but the preferred concentration is 0.03 mol/l to 0.2 mol/l. be. In this case, only one reaction tank may be used, but considering the basic unit of sodium chlorate, a second reaction tank, which is widely used in the conventional SC2 method and R2 method, may be used as an auxiliary means. . The sodium chlorate concentration mentioned above is the concentration in the first reaction tank (main reaction tank). When the sodium chlorate concentration is less than 0.03 mol/l, the basic unit of sodium chlorate increases due to a decrease in the main reaction rate for generating chlorine dioxide. On the other hand, if the concentration is higher than 0.2 mol/l, the reaction will be with chloric acid)
The ratio of produced chlorine dioxide to +7 um is high, and the conversion rate to chlorine dioxide is sufficient, but the amount of chloric acid in the exhaust acid is high.
There is a large loss of +7 um, and even if the second reaction tank is used auxiliary, the basic unit of sodium chlorate becomes high as a result, which is not preferred industrially.

反応温度は30ないし50°Cが好ましい。30°Cよ
り低温度であっても反応速度が遅いことを除いては反応
そのものに問題はない。しかし反応は総括的には発熱反
応であるので反応液を一定温度に保つためには冷却が必
要であるが、30℃未満に保つことは特別に設備を必要
とし工業的製造としては得策ではない。反応温度が50
°Cより高い温度では過酸化水素の無効分解などによる
原単位の上昇がある池に、工業製造としては二酸化塩素
の分解(パフ)が起き易く安全な操業かでトない。
The reaction temperature is preferably 30 to 50°C. Even if the temperature is lower than 30°C, there is no problem with the reaction itself, except that the reaction rate is slow. However, since the reaction is generally an exothermic reaction, cooling is necessary to keep the reaction solution at a constant temperature, but keeping it below 30°C requires special equipment and is not a good idea for industrial production. . reaction temperature is 50
At temperatures higher than °C, the unit consumption rate increases due to the ineffective decomposition of hydrogen peroxide, and for industrial production, chlorine dioxide decomposition (puffing) is likely to occur, making safe operation impossible.

本発明の方法を極めて効果的に実施するためには反応槽
中の塩化物濃度を低濃度に保つことが必要である。前記
したように特開昭53−66892には塩素酸ナトリウ
ムと塩化ナトリウムをほぼ等モル供給する方法が挙げら
れているが、過酸化水素な添加した場合、相当する塩化
物は常に生成するのでこの条件で処理した場合は塩素酸
すFリウムの原単位は悪く、好ましい結果は得られない
ばかりか、緋酸中の塩化物濃度が高いため、その排酸の
利用方法に制限をうけることになる。本発明における塩
化物濃度は0.02モル/lないし0.1モル/lと低
濃度であるので、反応をスムーズに進行させることがで
き、しかも徘酸中の塩化物濃度が低いのて・、黒液中)
こ混入する場合あるいは硫酸パン土の製造に利用する場
合など極めて好ましい。
In order to carry out the process of the invention very effectively, it is necessary to maintain a low chloride concentration in the reaction vessel. As mentioned above, JP-A-53-66892 describes a method of supplying sodium chlorate and sodium chloride in approximately equal moles, but when hydrogen peroxide is added, the corresponding chloride is always produced, so this When treated under these conditions, the basic unit of Fium chlorate is poor, and not only is it not possible to obtain favorable results, but the high chloride concentration in scarlet acid imposes restrictions on how the waste acid can be used. . Since the chloride concentration in the present invention is as low as 0.02 mol/l to 0.1 mol/l, the reaction can proceed smoothly, and since the chloride concentration in hydrochloric acid is low, , in black liquor)
It is extremely preferable when mixed with sulfuric acid or when used in the production of sulfuric acid bread clay.

なおこの塩化物濃度をこの範囲1こ保つためには塩素酸
塩中に0.5ないし10モル%の塩化すYリウムを混合
する方法、あるいは塩素酸塩の0.5ないし10モル%
の塩酸を35%塩酸の型で供給するなどの方法で容易i
こ実施できる。
In order to maintain the chloride concentration within this range, 0.5 to 10 mol% of Ylium chloride is mixed into the chlorate, or 0.5 to 10 mol% of the chlorate is mixed.
Hydrochloric acid can easily be supplied in the form of 35% hydrochloric acid.
This can be done.

還元剤として使用する過酸化水素は上述した(6)式(
二よれば、塩素酸ナトリウムのモル比で1/2でよいこ
とになるが、一部列反応に使用されることもあり、理論
量の5〜10%増で添加するのか良い。これ以上過剰の
使用はコスト的にも不利であるばかりか、排酸中に残存
するなど好ましくない点が多い。塩素酸塩の利用を十分
にするために第2反応槽へ少量の過酸化水素を添加する
ことも、利用率を高める手段であり、その量は主反応槽
への添加量の3〜5%で十分である。
Hydrogen peroxide used as a reducing agent is expressed by the above-mentioned formula (6) (
According to 2, the molar ratio of sodium chlorate should be 1/2, but since it may be used in a partial reaction, it is better to add 5 to 10% more than the theoretical amount. Using an excess amount is not only disadvantageous in terms of cost, but also has many undesirable points such as remaining in the exhaust acid. Adding a small amount of hydrogen peroxide to the second reactor to ensure sufficient chlorate utilization is also a means of increasing the utilization rate, with the amount being 3-5% of the amount added to the main reactor. is sufficient.

以下に本発明を実施例および比較例iこより説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

(実施例1) 溢流口を有する21のガラス製連続式反応槽に、塩素酸
ナトリウム0.14モル/l(約15g/l)、硫酸9
.5Nおよび塩化物0.05モル/l(塩化ナトリウム
として約3g/l)の組成からなる水溶液を満たし35
°Cに保温した。塩化ナトリウムを少量含む塩素酸ナト
リウム水溶液(塩素酸ナトリウム5.6モル/l、塩化
ナトリウム0.15モル/l)を68m1/hr、98
%硫酸を36m1/hr、および60%過酸化水素を9
.2ml/hrの割合で供給した。空気を120On+
l/分の割合で吹き込んだところ二酸化塩素ガス24.
9g/hrか連続的に発生し、その純度は98.2%で
あった。二の結果から塩素酸ナトリウムと過酸化水素(
60%として)の原単位はそれぞれ1.63および0.
46であった。なお反応液組成はほぼ最初の組成の主ま
で推移した。
(Example 1) 0.14 mol/l (approximately 15 g/l) of sodium chlorate and 9 mol/l of sulfuric acid were placed in 21 continuous glass reaction vessels each having an overflow port.
.. Filled with an aqueous solution consisting of 5N and 0.05 mol/l chloride (approximately 3 g/l as sodium chloride).
The temperature was kept at °C. A sodium chlorate aqueous solution containing a small amount of sodium chloride (sodium chlorate 5.6 mol/l, sodium chloride 0.15 mol/l) was added at 68 ml/hr, 98
% sulfuric acid at 36 ml/hr and 60% hydrogen peroxide at 9 ml/hr.
.. It was supplied at a rate of 2 ml/hr. 120On+ air
When blown in at a rate of 1/min, chlorine dioxide gas was 24.
It was continuously generated at 9 g/hr and its purity was 98.2%. From the second result, sodium chlorate and hydrogen peroxide (
60%) are 1.63 and 0.63, respectively.
It was 46. The composition of the reaction solution remained almost the same as the initial composition.

(実施例2) 実施例1と同様の反応槽を使用して、塩素酸ナトリウム
0.11モル/l (約12g/l)、硫酸10、ON
および塩化物0.03モル月(塩化ナトリウム約2g/
I)の組成からなる水溶液を満たし、45°Cに保温し
た。塩素酸ナトリウム5.6モル/lの水溶液を83m
1/hr、98%硫酸を43m1/ h r、60%過
酸化水素を11.0ml/hrおよび少量の35%塩酸
を1.1ml/hrの割合で供給した。空気を1400
+ml/分の割合で吹ぎ込んだところ約30分で平衡に
達したので1時間後に分析を行なったところ二酸化塩素
ガスが30 、4 g/hr(0,45モル/ h r
 )で発生しその二酸化塩素ガス純度は98.0%であ
った。この結果から塩素酸ナトリウムと過酸化水素原単
位はそれぞれ1.62および0.46(60%過酸化水
素として)であった。反応液組成はほぼ最初のままで推
移した。
(Example 2) Using the same reaction tank as in Example 1, sodium chlorate 0.11 mol/l (approximately 12 g/l), sulfuric acid 10, ON
and 0.03 moles of chloride per month (approx. 2 g of sodium chloride/
It was filled with an aqueous solution having the composition of I) and kept at 45°C. 83ml of an aqueous solution of 5.6mol/l sodium chlorate
1/hr, 98% sulfuric acid at 43 ml/hr, 60% hydrogen peroxide at 11.0 ml/hr, and a small amount of 35% hydrochloric acid at 1.1 ml/hr. 1400 air
When the gas was injected at a rate of +ml/min, equilibrium was reached in about 30 minutes, and an analysis was performed after 1 hour.
), and the purity of the chlorine dioxide gas was 98.0%. From these results, the basic units of sodium chlorate and hydrogen peroxide were 1.62 and 0.46 (as 60% hydrogen peroxide), respectively. The reaction solution composition remained almost as it was at the beginning.

(比較例1) 実施例1と同様の反応槽を使って塩素酸す) l)ラム
0.11モル/l1(約12g/l)、硫酸7.ONお
よび塩化物0.05モル/l(塩化ナトリウム約3g/
I)の組成からなる水溶液を満たし、45°Cに保温し
た。塩素酸ナトリウム5.6モル/lの水溶液を83m
1/hr、98%硫酸を34m1/hr、60%過酸化
水素を11.Oml/hrおよび少量の35%塩化水素
を14.3ml/hrの割合で供給した。空気を140
0+++1/分の割合で吹き込んだところ約1時間で平
衡に達したのでガス分析した結果、二酸化塩素ガスが2
6.8g/hr(0,397モル/hr)で発生し、二
酸化塩素純度は81.9%であった。この結果から塩素
酸ナトリウムの原単位は1.758、過酸化水素(60
%として)原単位は0.509であった。なお反応液の
平衡濃度は塩素酸ナトリウム0.19モル/l、硫酸7
.ONおよび塩化物0.223モル/lであった。
(Comparative Example 1) Chloric acid was added using the same reaction tank as in Example 1. l) Rum 0.11 mol/l (approximately 12 g/l), sulfuric acid 7. ON and chloride 0.05 mol/l (about 3 g sodium chloride/
It was filled with an aqueous solution having the composition of I) and kept at 45°C. 83ml of an aqueous solution of 5.6mol/l sodium chlorate
1/hr, 98% sulfuric acid at 34ml/hr, 60% hydrogen peroxide at 11. Oml/hr and a small amount of 35% hydrogen chloride were fed at a rate of 14.3 ml/hr. 140 air
When the gas was blown at a rate of 0 + + + 1/min, equilibrium was reached in about 1 hour, and gas analysis revealed that chlorine dioxide gas was 2
It was generated at 6.8 g/hr (0,397 mol/hr), and the chlorine dioxide purity was 81.9%. From this result, the basic unit of sodium chlorate is 1.758, hydrogen peroxide (60
(as %) was 0.509. The equilibrium concentration of the reaction solution was 0.19 mol/l of sodium chlorate and 7 mol/l of sulfuric acid.
.. ON and chloride were 0.223 mol/l.

(比較例2) 実施例1と同様の反応槽を使用して塩素酸ナトリウム/
塩化ナトリウム混合液(塩素酸ナトリウム3.10モル
/lla化ナトリウム3.13モル/l)を122 m
l/hr、 98%硫酸を67m1/hr。
(Comparative Example 2) Using the same reaction tank as in Example 1, sodium chlorate/
122 m of sodium chloride mixed solution (3.10 mol of sodium chlorate/3.13 mol of sodium chloride/l)
l/hr, 98% sulfuric acid at 67ml/hr.

60%過酸化水素を9.2ml/hrの割合で供給し液
温を35℃に保温した。空気を1200wl/分の割合
で吹き込みながら運転を行ない30分で平衡になったの
で分析を行なったところ、二酸化塩素は22.5g/h
rで発生しており、二酸化塩素ガス純度は75.6%で
あった。この結果塩素酸ナトリウムおよび過酸化水素(
60%として)の原単位はそれぞれ1.76および0.
50であった。
60% hydrogen peroxide was supplied at a rate of 9.2 ml/hr, and the liquid temperature was kept at 35°C. The operation was carried out while blowing air at a rate of 1200 wl/min. Equilibrium was reached in 30 minutes, so analysis was performed and the amount of chlorine dioxide was 22.5 g/h.
The purity of chlorine dioxide gas was 75.6%. As a result, sodium chlorate and hydrogen peroxide (
60%) are 1.76 and 0.0%, respectively.
It was 50.

(実施例3) 実施例1と同様の反応槽を使って塩素酸ナトリウム0.
10モル/l、(約10.6g/l)、硫酸10.9N
および塩化物0.027モル/l(塩化ナトリウム約1
.6g/l)の組成からなる水溶液を満たし、35°C
に保温した。塩素酸ナトリウムを5.6モル/lの水溶
液を33+al/hr、98%硫酸を46m1/hr、
60%過酸化水素を11.Oml/hrおよび少量の3
5%塩酸を1.1ml/hrの割合で供給した。空気を
1400+++l/分の割合で吹き込んだところ約30
分後に平衡に達した。反応開始1時間後から分析を行な
ったところ二酸化塩素ガス30.5g/hrで発生し、
二酸化塩素純度は98.2%であった。この結果から塩
素酸ナトリウムと過酸化水素(60%物として)の原単
位はそれぞれ1.62および0.46であって、実施例
2とほぼ同じ結果が得られた。
(Example 3) Using the same reaction tank as in Example 1, 0.0% sodium chlorate was added.
10 mol/l, (approximately 10.6 g/l), sulfuric acid 10.9N
and chloride 0.027 mol/l (sodium chloride approx.
.. 6 g/l) and heated at 35°C.
It was kept warm. 33+ al/hr of 5.6 mol/l aqueous solution of sodium chlorate, 46 ml/hr of 98% sulfuric acid,
11. 60% hydrogen peroxide. Oml/hr and small quantity 3
5% hydrochloric acid was supplied at a rate of 1.1 ml/hr. When air was blown at a rate of 1400+++ l/min, the result was approximately 30
Equilibrium was reached after minutes. An analysis was conducted 1 hour after the start of the reaction, and 30.5 g/hr of chlorine dioxide gas was generated.
The purity of chlorine dioxide was 98.2%. From this result, the basic units of sodium chlorate and hydrogen peroxide (as a 60% product) were 1.62 and 0.46, respectively, and almost the same results as in Example 2 were obtained.

(実施例4) 実施例1と同様の反応槽を用いて反応温度を45℃とし
、硫酸濃度を8.5Nの条件で行なった。塩素酸ナトリ
ウム5.6モル/lの水溶液を81 、1 ml/hr
、98%硫酸を33.5ml/hr、60%過酸化水素
を11 、7 +nl/ hrおよび35%塩酸1.8
ml/hrの割合で供給し、平衡になったところで分析
を行なった。二酸化塩素の発生量は29.5g/hr(
0,438モル/hr)であり、二酸化塩素純度は97
.0%であった。この結果から塩素酸ナトリ久ムと過酸
化水素(60%物として)原単位はそれぞれ1,640
および0.494であった・ (比較例3) 実施例1と同様の反応槽を用いて反応温度を35°Cと
し、硫酸濃度を12.ONとした。塩素酸ナトリウム5
.6モル/lの水溶液を83m1/hr、98%硫酸を
50m1/hr、60%過酸化水素を11.Oml/h
rおよび35%塩酸を1.1ml/hrの割合で供給し
た。平衡に達したところで分析した結果、二酸化塩素発
生量は30.4g/hrであり、二酸化塩素ガス純度は
98.1%であった。この結果から塩素酸ナトリウムと
過酸化水素(60%物として)の原単位はそれぞれ1.
62および0.46であったが、硫酸原単位が上昇し、
反応停止後、室温(20’C)で放置したところボウ硝
の析出が見られた。
(Example 4) Using the same reaction tank as in Example 1, the reaction temperature was 45°C and the sulfuric acid concentration was 8.5N. 81 ml/hr of an aqueous solution of 5.6 mol/l of sodium chlorate
, 98% sulfuric acid 33.5ml/hr, 60% hydrogen peroxide 11,7 +nl/hr and 35% hydrochloric acid 1.8
The solution was supplied at a rate of ml/hr, and analysis was performed when equilibrium was reached. The amount of chlorine dioxide generated is 29.5g/hr (
0,438 mol/hr), and the purity of chlorine dioxide is 97
.. It was 0%. From this result, the basic units of sodium chlorate and hydrogen peroxide (as 60%) are each 1,640.
and 0.494 (Comparative Example 3) Using the same reaction tank as in Example 1, the reaction temperature was 35°C, and the sulfuric acid concentration was 12. It was turned on. Sodium chlorate 5
.. 6 mol/l aqueous solution at 83 ml/hr, 98% sulfuric acid at 50 ml/hr, 60% hydrogen peroxide at 11. Oml/h
r and 35% hydrochloric acid were supplied at a rate of 1.1 ml/hr. When equilibrium was reached, analysis showed that the amount of chlorine dioxide generated was 30.4 g/hr, and the purity of chlorine dioxide gas was 98.1%. From this result, the basic units of sodium chlorate and hydrogen peroxide (as a 60% product) are each 1.
62 and 0.46, but the sulfuric acid consumption rate increased,
After the reaction was stopped, the mixture was allowed to stand at room temperature (20'C), and precipitation of sulfur was observed.

(比較例4) 実施例1と同様の反応槽に塩素酸ナトリウム5.6モル
/lの水溶液を82 、5’ml/ hr、98%硫酸
を41 、1 ml/hr、60%過酸化水素を13 
、7 ml/hrおよび35%塩酸を1.8ml/hr
の割合で供給し液温を45℃に保持した。空気を140
0ml/分の割合で吹き込んだところ塩素酸ナトリウム
0.02モル/l、硫酸9.5Nおよび塩化物(塩化ナ
トリウム)0.10モル/l(約5.8g/l)で平衡
に達した。ガス分析の結果、二酸化塩素ガスが29.O
g/hr(0,430モル/ h r )で発生し、そ
の二酸化塩素純度は97.3%であった。この結果から
塩素酸ナトリウムと過酸化水素(60%物として)の原
単位はそれぞれ1.697および0.586であった。
(Comparative Example 4) In the same reaction tank as in Example 1, an aqueous solution of 5.6 mol/l of sodium chlorate was added at 82 mL, 5'ml/hr, and 98% sulfuric acid was added at 41 mL, 1 ml/hr, 60% hydrogen peroxide. 13
, 7 ml/hr and 35% hydrochloric acid 1.8 ml/hr
The liquid temperature was maintained at 45°C. 140 air
When the mixture was blown at a rate of 0 ml/min, equilibrium was reached with 0.02 mol/l of sodium chlorate, 9.5 N of sulfuric acid, and 0.10 mol/l (about 5.8 g/l) of chloride (sodium chloride). As a result of gas analysis, chlorine dioxide gas was 29. O
g/hr (0,430 mol/hr), and its chlorine dioxide purity was 97.3%. From this result, the basic units of sodium chlorate and hydrogen peroxide (as a 60% product) were 1.697 and 0.586, respectively.

(発明の効果) 本発明の方法によると複雑な反応装置を必要とせずに容
易に高純度の二酸化塩素を製造することができる。主た
、アルカリ金属塩素酸塩、過酸化水素の原単位を最小に
することができるので、高純度の二酸化塩素を安価にか
つ効率よく製造することができる。
(Effects of the Invention) According to the method of the present invention, high purity chlorine dioxide can be easily produced without requiring a complicated reaction device. Mainly, since the basic units of alkali metal chlorate and hydrogen peroxide can be minimized, high-purity chlorine dioxide can be produced at low cost and efficiently.

Claims (1)

【特許請求の範囲】[Claims] 硫酸酸性水溶液中でアルカリ金属塩素酸塩を還元して二
酸化塩素を連続的に製造する方法において、0.02な
いし0.1モル/lの塩化物の存在下で酸濃度を8ない
し11N、アルカリ金属塩素酸塩を0.03ないし0.
2モル/lとし、反応温度を30ないし50℃の範囲に
調整して、過酸化水素で還元することを特徴とする高純
度の二酸化塩素を製造する方法。
In a method for continuously producing chlorine dioxide by reducing an alkali metal chlorate in an acidic aqueous solution of sulfuric acid, the acid concentration is reduced to 8 to 11N in the presence of 0.02 to 0.1 mol/l of chloride, and the alkali Metal chlorate at 0.03 to 0.
A method for producing high-purity chlorine dioxide, which is characterized by reducing the amount of chlorine dioxide with hydrogen peroxide at a concentration of 2 mol/l and adjusting the reaction temperature within the range of 30 to 50°C.
JP14803786A 1986-06-26 1986-06-26 Production of high-purity chlorine dioxide Pending JPS638203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14803786A JPS638203A (en) 1986-06-26 1986-06-26 Production of high-purity chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14803786A JPS638203A (en) 1986-06-26 1986-06-26 Production of high-purity chlorine dioxide

Publications (1)

Publication Number Publication Date
JPS638203A true JPS638203A (en) 1988-01-14

Family

ID=15443707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14803786A Pending JPS638203A (en) 1986-06-26 1986-06-26 Production of high-purity chlorine dioxide

Country Status (1)

Country Link
JP (1) JPS638203A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091166A (en) * 1990-08-31 1992-02-25 Eka Nobel Ab Process for the production of chlorine dioxide
US5091167A (en) * 1990-08-31 1992-02-25 Eka Nobel Ab Process for the production of chlorine dioxide
US5324477A (en) * 1989-08-30 1994-06-28 Henkel Komnmanditgesellschaft Auf Aktien Process for disinfecting hard surfaces with chlorine dioxide
EP0612686A2 (en) * 1993-02-26 1994-08-31 Eka Nobel Ab A process for continuously producing chlorine dioxide
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
US6322768B1 (en) 1998-09-29 2001-11-27 International Paper Company Recovery of chlorine dioxide from gas streams
US6555085B2 (en) * 2000-02-01 2003-04-29 Superior Plus Inc. Method of improving yield of chlorine dioxide generation processes
US6576213B1 (en) * 1994-03-18 2003-06-10 Eka Chemicals, Inc. Method of producing chlorine dioxide
WO2011086147A1 (en) 2010-01-18 2011-07-21 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
US8168153B2 (en) 2007-07-13 2012-05-01 Akzo Nobel N.V. Process for the production of chlorine dioxide
US8431104B2 (en) 2007-01-12 2013-04-30 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9340422B2 (en) 2009-06-16 2016-05-17 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9994449B2 (en) 2008-10-06 2018-06-12 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324477A (en) * 1989-08-30 1994-06-28 Henkel Komnmanditgesellschaft Auf Aktien Process for disinfecting hard surfaces with chlorine dioxide
US5091166A (en) * 1990-08-31 1992-02-25 Eka Nobel Ab Process for the production of chlorine dioxide
US5091167A (en) * 1990-08-31 1992-02-25 Eka Nobel Ab Process for the production of chlorine dioxide
JPH04231305A (en) * 1990-08-31 1992-08-20 Eka Nobel Ab Manufacture of chlorine dioxide
US5565182A (en) * 1993-02-26 1996-10-15 Eka Chemicals, Inc. Process of producing chlorine dioxide
EP0612686A3 (en) * 1993-02-26 1994-10-05 Eka Nobel Ab A process for continuously producing chlorine dioxide.
US5380517A (en) * 1993-02-26 1995-01-10 Eka Nobel Inc. Process for continuously producing chlorine dioxide
US5487881A (en) * 1993-02-26 1996-01-30 Eka Nobel Inc. Process of producing chlorine dioxide
EP0612686A2 (en) * 1993-02-26 1994-08-31 Eka Nobel Ab A process for continuously producing chlorine dioxide
US6576213B1 (en) * 1994-03-18 2003-06-10 Eka Chemicals, Inc. Method of producing chlorine dioxide
US6322768B1 (en) 1998-09-29 2001-11-27 International Paper Company Recovery of chlorine dioxide from gas streams
US6555085B2 (en) * 2000-02-01 2003-04-29 Superior Plus Inc. Method of improving yield of chlorine dioxide generation processes
US8431104B2 (en) 2007-01-12 2013-04-30 Akzo Nobel N.V. Process for the production of chlorine dioxide
US8168153B2 (en) 2007-07-13 2012-05-01 Akzo Nobel N.V. Process for the production of chlorine dioxide
US9994449B2 (en) 2008-10-06 2018-06-12 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide
US9340422B2 (en) 2009-06-16 2016-05-17 Akzo Nobel N.V. Process for the production of chlorine dioxide
WO2011086147A1 (en) 2010-01-18 2011-07-21 Akzo Nobel Chemicals International B.V. Process for the production of chlorine dioxide

Similar Documents

Publication Publication Date Title
US4465658A (en) Chlorine dioxide process
JP2584718B2 (en) Continuous production method of chlorine dioxide
EP0644852B2 (en) Hydrogen peroxide-based chlorine dioxide process
US4473540A (en) High efficiency chlorine dioxide process
CA2374665C (en) Chemical composition and method
JPS638203A (en) Production of high-purity chlorine dioxide
JPH10259003A (en) Production of chlorine dioxide
JPH04231305A (en) Manufacture of chlorine dioxide
JP2819065B2 (en) Method for producing chlorine dioxide
JPH04231304A (en) Manufacture of chlorine dioxide
JPS5953205B2 (en) Method of producing high purity chlorine dioxide
US3920801A (en) Method of producing chlorine dioxide from hydrogen chloride
US4216195A (en) Production of chlorine dioxide having low chlorine content
JPH03115102A (en) Production of chlorine dioxide
US4145401A (en) High efficiency chlorine dioxide production at low acidity with methanol addition
US4372939A (en) Process of producing chlorine dioxide
US3933987A (en) Simultaneous production of chlorine dioxide and a salt of a strong acid
US5433938A (en) Chlorine-destruct method
RU2163882C2 (en) Method of preparing chlorine dioxide
EP0131378B2 (en) Process for the production of chlorine dioxide
CA1181224A (en) High efficiency chlorine dioxide process
JPH0312306A (en) Production of high purity chlorine dioxide
EP0963945B1 (en) High purity alkali metal chlorite and method manufacture
JPH0621004B2 (en) Chlorine dioxide manufacturing method
CA2085375C (en) Methanol-based chlorine dioxide process