EP0519322B1 - Flächiger Polsterkörper, insbesondere Matratze - Google Patents

Flächiger Polsterkörper, insbesondere Matratze Download PDF

Info

Publication number
EP0519322B1
EP0519322B1 EP92109817A EP92109817A EP0519322B1 EP 0519322 B1 EP0519322 B1 EP 0519322B1 EP 92109817 A EP92109817 A EP 92109817A EP 92109817 A EP92109817 A EP 92109817A EP 0519322 B1 EP0519322 B1 EP 0519322B1
Authority
EP
European Patent Office
Prior art keywords
corrugated
bodies
body according
profile
corrugated profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92109817A
Other languages
English (en)
French (fr)
Other versions
EP0519322A1 (de
Inventor
Siegfried Dipl.-Ing. Heerklotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0519322A1 publication Critical patent/EP0519322A1/de
Application granted granted Critical
Publication of EP0519322B1 publication Critical patent/EP0519322B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/15Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays consisting of two or more layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/14Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
    • A47C27/142Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities
    • A47C27/144Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays with projections, depressions or cavities inside the mattress or cushion
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/22Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with both fibrous and foamed material inlays

Definitions

  • the invention relates to a flat cushion body, in particular a mattress, with an elastic core, which comprises at least two layers of spring bodies arranged one above the other, which are held in support engagement with their mutually facing sides, which have a wave contour on their surface, the spring bodies from in their wave contour their top and bottom sides of corrugated profile bodies formed in the same direction are made of a material with rubber-elastic behavior and are provided with through openings.
  • Such a cushion body with the features of the preamble of claim 1 is known from GB-A-293 086.
  • the known cushion body has simple circular through openings which are arranged at certain intervals perpendicular to the plane of the corrugated profile body and reduce the weight. These openings or perforations are preferably formed during the molding process of the corrugated profile body.
  • foam mattresses in a wide variety of designs have been known for many years, which also have an elastic or innerspring core, but which does not contain spring elements made of metal, which are common today are rejected for health reasons, but foam in various forms, for example latex foam or polyurethane foam, used to form spring bodies or generally to bring about the desired spring properties of a mattress.
  • All these foams have a three-dimensional, irregular cell structure, which means that when using the upholstered body or the mattress, the pressure load due to spatially curved support surfaces in all directions with high resistance moments and high rigidity is converted into multi-axis stress states with compressive stresses in all directions. The consequence of this is that only little deformation work takes place under the pressure load, since this is largely prevented by an uncontrolled buckling of the cell walls under load. This is accompanied by an uneven distribution of deformation and stress, with the result of selective overloading of the foam material and rapid fatigue and destruction of the cell structure.
  • foam mattresses have a shorter lifespan than the base material would actually allow, and are also disadvantageous in that the material, i.e. especially the elastic core, not easily cleaned by a washing or rinsing process of dust accumulations and the like. Impurities due to the irregular pore structure of the foam, so that for this reason alone the service life of foam mattresses or cushion bodies is limited.
  • the invention has for its object to provide a flat cushion body, in particular a mattress, which, as is also the case with foam mattresses, avoids steel or metal springs as spring elements of the elastic core, but which allows an improved utilization of the material elasticity compared to the foam padding , has good cleaning options and has a long service life.
  • this object is achieved according to the invention in that the corrugated profile bodies are provided with incisions extending through the height of the wave crests transversely to their longitudinal extension as through openings which are arranged independently of one another Form load-bearing sections of the shaft combs in the manner of double-sided clamped bending beams.
  • the material used to form the corrugated profile body can consist of fiber material in the form of suitable natural and / or synthetic or chemical fibers with an elastomer jacket.
  • natural fibers are in particular horsehair, coconut hair, sisal or palm fibers, while all those that can be processed into textiles and that would only go too far here, even for example, could be used as synthetic or chemical fibers.
  • These fibers can easily get their elastomer jacket by spraying a suitable elastomer in the liquid phase.
  • All types of rubber are particularly suitable as elastomers for this purpose, with the application of the liquid or plastic rubber composition to the fiber being followed by a vulcanization process by means of which the rubber is converted into the elastic state, including the fiber material.
  • natural fiber material such as in particular coconut fibers
  • natural rubber that is to say latex-based
  • the waveform provided in accordance with the invention converts the large deformation path in the loading direction with a small force into a small deformation path with a large force in the horizontal direction. This makes the relatively hard material softer.
  • corrugated profile bodies designed in the same direction in their corrugated contour on their upper and lower sides are produced in their defined corrugated profile shapes, in particular vulcanization molds, the upper and lower corrugated contour not only in the same direction, but also uniformly, but instead also non-uniformly , ie with a different waveform on the top or bottom.
  • the formation of corrugated profile bodies with a uniform wall thickness provides for this, which can be recommended for a uniform structure, in particular of an upholstered body used as a mattress.
  • the wall thickness can also be non-uniform, for example with a shape for seat cushions.
  • corrugated profile bodies of the desired dimensions can be formed from the mat or plate-shaped elastic corrugated profile material by simple cutting processes.
  • the corrugated profile bodies can therefore have the basic shape of corrugated sheets, and these in turn can correspond to the generally rectangular upholstery surface or mattress format or format parts.
  • the subdivision of the corrugated profile starting material can, however, also be carried out to such an extent that comparatively narrow corrugated strips are formed which are arranged at a distance from one another in the respective position of the elastic core.
  • the corrugated contour on the support sides of the superimposed corrugated profile bodies can run in different directions, in particular crossing one another at right angles. Instead, a design and arrangement can also be selected in which the shaft contour runs on the support sides of the two superimposed corrugated profile bodies in the same directions with a mutual offset of half a wavelength.
  • the corrugated contour of the or each corrugated profile body can extend in two different, namely perpendicular directions in the main plane of the corrugated profile body, as a result of which the corrugated contour of the corrugated profile body is designed in the manner of an egg carton.
  • the individual layers of the elastic core plate-shaped, in particular flat, additional layers which in turn consist of a rubber-elastic material, for example in the form of a lower base plate, an upper cover plate or one or more intermediate plates, in which case the type of Shaft contour of the support sides of the corrugated profile body which are in support engagement with such supplementary layers for their support on the supplementary layer is not critical.
  • the elastic core conveys suspension properties which are characterized by a high degree of point elasticity, such as are comparable to much more complex steel spring cores, but without using steel springs or similar metal parts to achieve the spring effect.
  • the natural fibers used in the context of the invention which are largely inelastic in nature and can be regarded as extremely hard cushioning material, due to their sheath made of an elastomer, in particular natural rubber, which are desirable for good lying or sitting comfort obtain controllable spring properties by spraying a previously twisted and thus ultimately curly fiber structure to create a large number of small spiral springs that largely prevent kinking.
  • the cushion bodies according to the invention can be easily freed from dust accumulations and the like, since the cavities caused by the corrugated structure of the spring bodies ensure that the corrugated profile bodies give way in a load direction when the upholstery body is used , also significantly improve the passage of the cleaning medium through the elastic core of the cushion body between the individual corrugated profile bodies. In this way, the cushion body according to the invention can always be brought back into a hygienically perfect condition. This combines in an advantageous manner with the long service life of the cushion body according to the invention, which is due to a favorable bending deformation and avoidance of local stress peaks due to buckling in the corrugated profile bodies used according to the invention.
  • a cushion body with a rectangular cushion surface which can in particular form a mattress.
  • cushioning bodies also cover the cushioning surface of Form sitting, lying or backrests and, as such, can also have a square or otherwise contoured cushion surface, also in height, for example due to wave heights of different heights.
  • the upholstered body has an elastic core designated as a whole as 1, which according to FIG. 1 consists of five layers 2, 3, 4, 5 and 6 of corrugated profile bodies 7 and of an upper supplementary layer 8, which is flat and has an upper cover plate of elastic Core 1 forms.
  • the corrugated profile body 7 consist of fiber material with rubber-elastic behavior, in particular of natural fibers such as coconut fibers with an elastomer sheath formed from preferably natural rubber and are formed in their corrugated contour on their top and bottom sides in the same direction and uniformly with a uniform wall thickness.
  • the cover plate 8 in turn consists of a material with rubber-elastic behavior, which, however, can have a different, for example more abrasion-resistant, structure from that of the corrugated profile body 7.
  • the corrugated profile body 7 of the core layers 2 to 6 are supported with their mutually facing sides directly on one another or in such a way that when the basic orientation of the corrugated profile body 7 alternates at right angles, the corrugation troughs are rotated by 90 ° in the core layers 2 to 6 9 of an upper core layer, for example the core layer 6, lie on the shaft ridges 10 of the next lower core layer, for example the core layer 5.
  • the cover plate 8 lies on the shaft ridges 10 of the corrugated profile body 7 of the upper core layer 6.
  • the corrugated profile bodies 7 have the same configuration of their corrugated contour in all core layers 2 to 6 and impart an elastic or resilient flexibility in the direction of loading, which is essentially perpendicular to a horizontal position of use assumed in FIG. 1, due to their material properties and the corrugation form.
  • the corrugated profile bodies 7 have the basic shape of corrugated sheets, for training purposes a different hardness zone in the area of the lower core layer 2, insert bodies 11 are arranged between the corrugated profile bodies 7 of the two adjacent lower core layers 2 and 3.
  • the insert bodies 11 are formed by stiffening bars with, for example, a round cross section made of, for example, wood, plastic or another material that is harder than the corrugated profile bodies 7 and lie in the troughs 12 of the corrugated profile bodies 7 of the lower core layer 2 defined by the troughs 9.
  • the insert body 11 increases the rigidity or spring hardness of the elastic core 1 in the plane of the lower core layer 2.
  • a partial reduction in the spring hardness of the elastic core 1 can be achieved by one or more gaps in at least one of the core layers 2 to 6, which gaps are free of corrugated profiles, as is illustrated, for example, in FIG. 1 by the gap 13 in the core layer 3.
  • the gap 13 can be formed in the core layer 3 in a simple manner by a corresponding spacing of two corrugated profile body sections 7 ′.
  • the individual corrugated profile body 7 shown there is provided with slot-shaped incisions 14 extending over the height of the wave crests 10 transversely to their longitudinal extent.
  • the incisions 14 have an appropriate mutual, preferably uniform, distance in the longitudinal direction of the wave crests 10 and are suitable for reducing the bending stiffness of the corrugated profile body 7 transversely to the longitudinal extent of the wave crests 10, in this way by arranging sections of the wave crests 14 which spring independently of one another under the action of a load Type of bilaterally clamped bending beam is created, which increases the point elasticity of the corrugated profile body 7.
  • the corrugated profile body 7 provided with the incisions 14 can form one or more, in particular upper, or all core layers 2 to 6 in the arrangement in the individual layers 2 to 6, alternately rotated by 90 °, as shown in FIG. 1.
  • the corrugated profile body 7 consists of a plurality at a distance parallel corrugated strips 24 arranged from one another.
  • the corrugated strips 24 have, for example, a width of approximately 20 to 30 mm, the distance between the corrugated strips 24 in the form of longitudinal slots 25 being approximately 3 to 10 mm.
  • the core layers 15 to 23 they have an arrangement rotated alternately by 90 ° in order to achieve the mutual support explained with reference to FIG. 1.
  • 3 is completed by additional layers 26 and 27 in the form of a lower base plate and an upper cover plate.
  • the corrugated strips 24 can be connected to one another, in particular glued, to maintain their defined spacing from core layer to core layer. Due to the construction of the elastic core 1 from a multiplicity of individual corrugated strips 24 crossing each other at right angles in the individual core layers 15 to 23, the point elasticity of the elastic core can be further increased and in particular also an elastic core 1 with a comparatively low spring hardness, i.e. soft padding.
  • the shape of the corrugated strips 24 does not necessarily have to have the cross-sectional shape of a flat rectangle shown in FIGS. 3 and 7, but can generally consist of material strands of any suitable, for example also round, cross-section.
  • Suitable materials with rubber-elastic behavior are the materials mentioned at the outset, such as appropriately shaped natural and / or synthetic fibers with an elastomer jacket, or else solid elastomers, which can be extruded as such in a strand and subsequently change their waveform e.g. obtained in vulcanization forms or thermoplastic.
  • configurations according to FIG. 3 can also be combined in layers, for example, with configurations according to FIG. 1. It is also possible to design the core 1 to achieve different hardness zones according to FIG. 3 by using corrugated profile parts or corrugated strips 28 in regions, which correspond in their corrugated contour and wall thickness to the corrugated strips 24, but have different, harder or softer, material properties compared to them, as is shown in FIG. 3 is identified by black coloring of the corrugated strips 28.
  • the further embodiment of a cushion body shown in FIG. 4 again consists of the elastic core 1 with the base plate 26 and the upper cover plate 27, both of which are flat, as well as between these layers 29, 30, 31 and 32 of corrugated profile bodies 7 which are supported directly with one another , which in this exemplary embodiment have a wave contour with two different wave shapes that run horizontally and at right angles to one another, as a result of which the corrugated profile bodies 7, which also have a plate-like basic shape in this example, are designed in the manner of an egg carton.
  • the wave contour on the mutually facing support sides of two superimposed corrugated profile bodies 7 runs with a mutual offset of half a wavelength, from which the mutual support of the corrugated profile bodies 7 with their wave troughs 9 on the wave crests 10 can be seen from FIG. 4 and in particular from FIG. 8 of the next lower corrugated profile body 7 results.
  • FIG. 4 shows, like the cover plate 27, a textile sheath 33 which is shown broken away in some areas and which, although not always shown, is basically provided in all embodiments and envelops the elastic core 1 as a whole.
  • the sleeve 33 is designed to be divisible by a zipper 34 in order to be able to remove the elastic core 1, for example for cleaning purposes or for changing the spring hardness in certain areas.
  • the cushion body according to FIG. 4 is divided into five different hardness zones, which are identified by A, B, C, D and F. Different degrees of hardness can occur can be achieved in a simple manner in that, in this example, portions 35 of the corrugated profile body 7 which are recognizable by black coloring in some areas are used in FIG. 4 and are made harder than the other corrugated profile bodies 7 in terms of the material properties.
  • the harder corrugated profile body sections 35 in one or more of the layers 29 to 32 of the core 1 By using the harder corrugated profile body sections 35 in one or more of the layers 29 to 32 of the core 1, a grading of the hardness zones over the length of the cushion body can be achieved, the spring hardness in the hardness zone C, the waist or lumbar region when the cushion body is used as a mattress , is the greatest in all core layers 29 to 32 by using only the harder corrugated profile body sections 35. This provides a strong waist or lumbar support.
  • the corrugated profile body 7 shown in FIG. 5 has the same corrugated contour as the corrugated profile body 7 of the embodiment according to FIG. 4 and illustrates a modification in which the corrugated profile body 7 is provided with through openings 36 and 37, respectively. 5 shows two possible embodiments of the through openings on both sides of a central opening-free strip of the corrugated profile body 7.
  • the through openings 36 are designed as holes with a rectangular or square cross section, while the through openings 37 on the left side in FIG. 5 are in the form of slots of any orientation with respect to the wave shape.
  • the through openings 36 and 37 are suitable for reducing the spring hardness of the corrugated profile body 7, the spring hardness being able to be regulated over a wide range by the number and size of the through openings 36, 37 per unit area.
  • the through openings 36 and 37 form, like the incisions 14 according to FIG. 2, within a part or a plate of the cushion material, a plurality of individual spring areas in the manner of bilaterally clamped bending beams, which can practically spring independently of one another in the event of a load.
  • bending occurring in one plane achieves high elasticity and the possibility of uniform stress distribution with a corresponding design of the individual spring areas or bending supports, which is possible here in a wide range of variations.
  • the even distribution of tension leads to low peak tensions, which means a low load overall, which creates good conditions for the sensible use of fibers with an elastomer jacket with sufficient durability and comfortable travel.
  • the through openings 36, 37 also provide good ventilation of the elastic core 1, which enables its production from a solid elastomer without additional incorporated fiber components, without fear of undesired condensate formation. In the extreme case, only a network of elastomer strands remains when such an elastomer corrugated profile body 7 is formed with through openings 36, 37.
  • FIG. 9 A further embodiment of a cushion body is illustrated in FIG. 9, in which the corrugated profile bodies 7 are subdivided into a large number of individual corrugated profile segments 38.
  • the corrugated profile segments 38 have the shape of a corrugated sheet segment, as can be seen with its profile side which is open at the bottom, in particular from the individual illustration according to FIG. 10.
  • the open lower profile side of the corrugated profile segments 38 faces a lower support (not shown) of the cushion body or base plate of the elastic core 1.
  • the corrugated profile segments 38 are arranged in parallel rows and in each row alternately rotated by 90 °.
  • the corrugated profile segments 38 each face each other in pairs with the open profile undersides and are thus combined to form hollow profile bodies 39 of lemniscate basic form which are open at the ends.
  • the arrangement of the hollow profile body 39 like that of the lower corrugated profile segments 38, is carried out in parallel rows and rotated alternately by 90 ° in each row.
  • the mutual support of the corrugated profile segments 38 or the hollow profile body 39 in the individual core layers 40 to 42 takes place here by the shaft contour crossing at right angles according to the principle already explained with reference to FIG. 1.
  • the corrugated profile segments 38 can have different areas, for example in the rows 43 and 44, of different material properties, as indicated by hatching, to form different hardness zones of the core 1.
  • corrugated profile segments 45 in the basic form of a truncated pyramid with a conically drawn-in cover surface of the profile shape shown in FIG. 11 or an open-bottom ring body 46 with a conically drawn-in cover surface of the profile shape shown in FIG. 12 can be used analogously to the corrugated plate segments 38 to form the elastic Kerns 1 are used.
  • hollow profile bodies corresponding to the hollow profile bodies 39 of the corrugated sheet segments 38 can be formed by pairing the corrugated profile segments 45 and 46 with open profile sides facing one another.
  • the layers of the elastic core 1 formed by the corrugated profile bodies 7 or the corrugated strips 24 or the corrugated profile segments 38, 45, 46 are preferably connected to one another, for example by gluing, in order to maintain the selected support conditions when using the upholstered body.
  • supplementary layers which have just been formed can also be arranged between the corrugated profile layers of the elastic core 1 and connected to them, like the base plate 26 and the upper cover plate 27, for example by gluing.
  • a wave profile in the manner of a sine wave is corresponding Fig. 13 has been used.
  • a wave profile with more angular wave troughs 9 and wave crests 10 as shown in FIG. 14 can occur, which would allow the use of a simpler molding tool.
  • the angular shape of the wave troughs 9 and wave crests 10 can be modified by means of a flattened portion 47 according to FIG. 15, as a result of which the sine wave shape according to FIG. 13 is approximated with simplified manufacture.
  • corrugated profile segments 48 and 49 from particularly easy-to-produce corrugated sections 50 which, in accordance with the representations in FIGS. 19 and 20, are assigned to one another in pairs to form a corrugated profile segment comprising at least one full corrugation and, if appropriate, are connected to one another in the region of their adjacent edges can be.
  • FIGS. 21 to 26 each illustrate an exemplary embodiment of a corrugated profile body, the corrugated profile of which is non-uniform on its upper and lower sides is or whose wall thickness is not uniform over the entire profile cross section.
  • Fig. 21 shows a wave profile, which is formed on the top in the manner of a sine wave and on its underside, so that the troughs 9 on the underside of the profile are V-shaped and the wave crests 10 on the top of the profile and the troughs 10a are rounded between them are.
  • FIG. 22 illustrates an embodiment in which the upper and lower sides of the profile are each shaped in the manner of a sine wave, but the wall thickness of the profile body in the area of the wave crests 10 is greater than in the area of the Wave valleys 9 is selected.
  • FIG. 23 again shows an embodiment with a wave profile designed on the top and bottom sides in the manner of a sine wave, in which, in contrast to the embodiment according to FIG. 22, the wall thickness in the area of the wave crests 10 is chosen to be smaller than in the area of the wave troughs 9. In this exemplary embodiment, too, the radius of the wave troughs 9 is significantly larger than the radius of the wave crests 10.
  • FIG. 23 again shows an embodiment with a wave profile designed on the top and bottom sides in the manner of a sine wave, in which, in contrast to the embodiment according to FIG. 22, the wall thickness in the area of the wave crests 10 is chosen to be smaller than in the area of the wave troughs 9. In this exemplary embodiment, too, the radius of the wave
  • FIG. 24 illustrates a wave profile in which flat wave crests 10 with a large radius and troughs 10a with a small radius are provided between the wave crests 10 on the upper side of the profile .
  • Thickened troughs 9 are formed on the underside of the profile opposite the troughs 10a.
  • the wave crests 10 are flattened even further and the troughs 10a are narrowed to V-shaped gussets, while the wave troughs 9 on the underside of the profile are further extended by material thickening of the profile wall in the direction pointing away from the underside thereof.
  • the troughs 10a between the wave crests 10 are flattened and widened and a further material thickening of the profile wall in the area of the wave crests 10 toward the underside of the profile with the greatest thickness in the vertical central plane of the wave crests 10 is provided.
  • These wave profile shapes with different wave contours on the top and bottom sides can also be modified in many ways.
  • Adjacent core layers can help stabilize the overall shape be attached to each other.
  • the elastomer sheath can, depending on the manufacturing process used, be designed as a surface elastomer coating that completely or essentially completely encloses each fiber, or as an elastomer wetting the more or less large surface areas of the individual fibers, for example about 30%, remain free of the elastomer.
  • a combination of materials in such a way that the corrugated profile bodies are formed from a middle layer containing natural and / or synthetic fibers and an upper and / or lower layer that is cohesively bonded therewith from an elastomer can be recommended, in particular for reasons of load technology.
  • the spring behavior of the upholstered body can be further favorably influenced in this combination of materials, but also in all other cases in which natural and / or synthetic fibers with an elastomer jacket are used as material, in that the fibers are aligned essentially parallel in their position.

Description

  • Die Erfindung betrifft einen flächigen Polsterkörper, insbesondere eine Matratze, mit einem elastischen Kern, der zumindest zwei Lagen übereinander angeordneter Federkörper umfaßt, die mit ihren einander zugewandten, eine Wellenkontur ihrer Oberfläche aufweisenden Seiten in Abstützungseingriff gehalten sind, wobei die Federkörper von in ihrer Wellenkontur auf ihrer Ober- und ihrer Unterseite gleichsinnig ausgebildeten Wellprofilkörpern aus einem Material mit gummielastischem Verhalten gebildet sind, die mit Durchgangsöffnungen versehen sind.
  • Ein derartiger Polsterkörper mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus GB-A-293 086 bekannt. Der bekannte Polsterkörper hat einfache kreisförmige Durchgangsöffnungen, die in bestimmten Abständen senkrecht zur Ebene des Wellprofilkörpers angeordnet sind und das Gewicht verringern. Diese Öffnungen bzw. Perforationen werden vorzugsweise beim Formvorgang der Wellprofilkörper gebildet.
  • Neben den früher weit verbreiteten Federkernmatratzen, bei denen im Kerninneren eine Vielzahl von Stahlfedern angeordnet ist, sind seit vielen Jahren Schaumstoffmatratzen in den vielfältigsten Ausführungsformen bekannt, die zwar ebenfalls einen elastischen bzw. Federkern aufweisen, der jedoch keine Federelemente aus Metall enthält, die heutzutage vielfach aus gesundheitlichen Gründen abgelehnt werden, sondern Schaumstoff in den verschiedensten Formen, zum Beispiel Latexschaum oder Polyurethanschaum, zur Ausbildung von Federkörpern bzw. allgemein zur Herbeiführung der gewünschten Federeigenschaften einer Matratze verwendet.
  • Allen diesen Schaumstoffen ist eine dreidimensionale, unregelmäßige Zellenstruktur zu eigen, die bedingt, daß im Gebrauch des Polsterkörpers bzw. der Matratze die Druckbelastung durch räumlich gekrümmte Stützflächen in allen Richtungen mit hohen Widerstandsmomenten und hoher Steifigkeit in mehrachsige Spannungszustände mit Druckspannungen in allen Richtungen umgewandelt wird. Die Folge hiervon ist, daß unter der Druckbelastung nur geringe Verformungsarbeit stattfindet, da diese durch ein unter Last auftretendes unkontrolliertes Knicken der Zellenwände weitgehend verhindert wird. Damit einher gehen eine ungleichmäßige Verformungs- und Spannungsverteilung, mit der Folge punktueller Überlastungen des Schaumstoffmaterials und einer, ggf. zunächst nur bereichsweisen, raschen Ermüdung und Zerstörung der Zellenstruktur.
  • Schaumstoffmatratzen haben aus diesen Gründen eine kürzere Lebensdauer als es das Grundmaterial eigentlich zulassen würde, und sind auch insofern nachteilig, als sich das Material, d.h. insbesondere des elastischen Kerns, nicht ohne weiteres durch einen Wasch- oder Spülvorgang von Staubansammlungen und dgl. Verunreinigungen aufgrund der unregelmäßigen Porenstruktur des Schaumstoffs reinigen läßt, so daß allein schon aus diesem Grund die Benutzungsdauer von Schaumstoffmatratzen oder -polsterkörpern begrenzt ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen flächigen Polsterkörper, insbesondere eine Matratze, zu schaffen, der, wie dies auch bei Schaumstoffmatratzen der Fall ist, Stahl oder Metallfedern als Federelemente des elastischen Kerns vermeidet, der jedoch gegenüber den Schaumstoffpolsterungen ein verbessertes Ausnutzen der Materialelastizität ermöglicht, gute Reinigungsmöglichkeiten aufweist und eine lange Lebensdauer besitzt.
  • Ausgehend von einem flächigen Polsterkörper der eingangs angegebenen Art wird diese Aufgabe nach der Erfindung dadurch gelöst, daß die Wellprofilkörper mit sich über die Höhe der Wellenkämme quer zu deren Längserstreckung erstreckenden Einschnitten als Durchgangsöffnungen versehen sind, die eine Anordnung von unabhängig voneinander unter Lasteinwirkung federnden Teilstücken der Wellenkämme nach Art zweiseitig eingespannter Biegeträger bilden.
  • Das zur Ausbildung der Wellprofilkörper verwendete Material kann aus Fasermaterial in Form geeigneter Natur- und/oder Kunst- bzw. Chemiefasern mit einem Elastomermantel bestehen. Als Naturfasern kommen in diesem Zusammenhang insbesondere Roßhaar, Kokoshaar-, Sisal- oder Palmenfasern in Betracht, während als Kunst- oder Chemiefasern alle diejenigen verwendet werden können, die sich textilverarbeiten lassen und die hier, selbst nur beispielsweise, aufzuzählen, zu weit führen würde. Bevorzugt werden im Rahmen der Erfindung wegen ihrer guten Gebrauchseigenschaften für den vorgesehenen Verwendungszweck in Naturfasern und hier insbesondere Kokosfasern. Diese Fasern können auf einfache Weise ihren Elastomermantel durch Aufsprühen eines geeigneten Elastomeren in der Flüssigphase erhalten. Als Elastomere hierfür eignen sich insbesondere alle Kautschukarten, wobei sich an das Aufbringen der flüssigen bzw. plastischen Kautschukmasse auf die Faser ein Vulkanisationsvorgang anschließt, durch den der Kautschuk unter Einschließung des Fasermaterials in den elastischen Zustand überführt wird. In Verbindung mit dem nach der Erfindung bevorzugten Naturfasermaterial, wie insbesondere Kokosfasern, kommt dabei vorzugsweise Naturkautschuk, d.h. solcher auf Latexbasis, in Betracht. Es ist jedoch vorteilhaft auch möglich, die Wellprofilkörper aus einem massiven Elastomeren, d.h. unter Verzicht auf gesonderte, in dieses Material eingeschlossene Fasern, nach dem Spritzgieß- oder Preßformverfahren herzustellen. Durch die nach der Erfindung vorgesehene Wellenform wird der große Verformungsweg in Belastungsrichtung mit kleiner Kraft in einen kleinen Verformungsweg mit großer Kraft in horizontaler Richtung umgewandelt. Dadurch wird das relativ harte Material weicher.
  • Die nach der Erfindung in ihrer Wellenkontur auf ihrer Ober- und ihrer Unterseite gleichsinnig ausgebildeten Wellprofilkörper werden in ihr definiertes Wellenprofil vorgebenden Formen, wie insbesondere Vulkanisationsformen, hergestellt, wobei die ober- und unterseitige Wellenkontur nicht nur gleichsinnig, sondern auch gleichförmig, stattdessen aber auch ungleichförmig, d.h. mit einer anderen Wellenform auf der Ober- oder der Unterseite, ausgeführt werden kann. Der Regelfall sieht dabei die Formung von Wellprofilkörper mit einheitlicher Wanddicke vor, was sich für einen gleichmäßigen Aufbau insbesondere einer als Matratze Verwendung findenden Polsterkörpers empfehlen kann. Die Wanddicke kann jedoch auch uneinheitlich sein, z.B. bei einer Formgebung für Sitzpolster. Anschließend können aus dem matten- bzw. plattenförmig vorliegenden elastischen Wellprofilmaterial durch einfache Schneidvorgänge einzelne Wellprofilkörper der gewünschten Abmessungen gebildet werden. Die Wellprofilkörper können mithin die Grundform von Wellplatten aufweisen, und diese wiederum können dem in der Regel rechteckigen Polsterflächen- bzw. Matratzenformat oder -Formatteilen entsprechen. Die Unterteilung des Wellprofilausgangsmaterials kann jedoch auch so weitgehend durchgeführt sein, daß vergleichsweise schmale Wellstreifen gebildet sind, die in der jeweiligen Lage des elastischen Kerns mit Abstand voneinander angeordnet sind.
  • Für eine unmittelbare gegenseitige Abstützung der Wellprofilkörper mit ihren einander zugewandten Seiten kann die Wellenkontur auf den Abstützungsseiten der übereinanderliegenden Wellprofilkörper in unterschiedlichen, insbesondere einander rechtwinklig kreuzenden, Richtungen verlaufen. Statt dessen kann auch eine Ausbildung und Anordnung gewählt werden, bei der die Wellenkontur auf den Abstützungsseiten der beiden übereinanderliegenden Wellprofilkörper in den gleichen Richtungen mit einem gegenseitigen Versatz von einer halben Wellenlänge verläuft. Insbesondere kann sich dabei die Wellenkontur des bzw. jedes Wellprofilkörpers in zwei unterschiedlichen, nämlich rechtwinklig zueinander verlaufenden Richtungen in der Hauptebene des Wellprofilkörpers erstrecken, wodurch die Wellkontur des Wellprofilkörpers eine Ausbildung nach Art eines Eierkartons erhält. Grundsätzlich ist es auch möglich, den einzelnen Lagen des elastischen Kerns plattenförmige, insbesondere ebene, ihrerseits aus einem gummielastischen Material bestehende Ergänzungslagen, zum Beispiel in Form einer unteren Basisplatte, einer oberen Deckplatte oder einer oder mehrerer Zwischenplatten, zuzuordnen, in welchem Fall die Art der Wellenkontur der mit solchen Ergänzungslagen in Abstützungseingriff stehenden Abstützungsseiten der Wellprofilkörper für deren Abstützung an der Ergänzungslage unkritisch ist.
  • Die erfindungsgemäße Ausbildung der Federkörper in den einzelnen Lagen des elastischen Kerns als Wellprofilkörper der definitionsgemäßen Art vermittelt dem elastischen Kern Federungseigenschaften, die sich durch ein hohes Maß an Punktelastizität auszeichnen, wie sie mit weit aufwendigeren Stahlfederkernen vergleichbar sind, ohne jedoch Stahlfedern oder dgl. Metallteile zur Erzielung der Federwirkung zu verwenden. Dabei hat sich gezeigt, daß gerade auch die im Rahmen der Erfindung verwendeten Naturfasern, die von ihrer Eigenbeschaffenheit her weitgehend unelastisch und als ausgesprochen hartes Polstermaterial anzusehen sind, durch ihren Mantel aus einem Elastomeren, insbesondere Naturkautschuk, die für einen guten Liege- oder Sitzkomfort erwünschten, kontrollierbaren Federeigenschaften erhalten, indem durch Besprühen einer vorher verdrillten und damit schließlich lockenförmigen Faserstruktur eine Vielzahl von kleinen Biegefedern geschaffen wird, die ein Knicken weitgehend ausschließen. Mit Hilfe eines Durchblas- oder Spülvorgangs unter Verwendung eines geeigneten Reinigungsmediums lassen sich die erfindungsgemäßen Polsterkörper ohne weiteres von Staubansammlungen und dgl. Verunreinigungen befreien, da die durch die Wellenstruktur der Federkörper bedingten Hohlräume, die ein federndes Nachgeben der Wellprofilkörper in Belastungsrichting im Gebrauch des Polsterkörpers gewährleisten, zugleich auch den Durchgang des Reinigungsmediums durch den elastischen Kern des Polsterkörpers zwischen den einzelnen Wellprofilkörpern wesentlich verbessern. Auf diese Weise kann der erfindungsgemäße Polsterkörper stets wieder in einen hygienisch einwandfreien Zustand gebracht werden. Dies verbindet sich in vorteilhafter Weise mit der langen Lebensdauer des erfindungsgemäßen Polsterkörpers, die durch eine günstige Biegeverformung und Vermeidung von örtlichen Spannungsspitzen durch Knicken bei den nach der Erfindung verwendeten Wellprofilkörpern begründet ist.
  • Zahlreiche weitere Merkmale der Erfindung ergeben sich aus den übrigen abhängigen Ansprüchen. In der Zeichung zeigen:
  • Fig. 1
    eine perspektivische Darstellung eines Eckbereichs eines von Wellprofilkörpern gebildeten elastischen Kerns eines Polsterkörpers mit weggebrochenen Bereichen,
    Fig. 2
    einen einzelnen Wellprofilkörper in einer Darstellung entsprechend Fig. 1,
    Fig. 3
    einen Eckbereich eines Polsterkörpers in einer perspektivischen Darstellung entspr. Fig. 1,
    Fig. 4
    eine schematische perspektivische Gesamtansicht eines Polsterkörpers mit weggebrochenen Bereichen,
    Fig. 5
    eine perspektivische Darstellung eines einzelnen Wellprofilkörpers gemäß Fig. 4 zur Veranschaulichung wahlweise ausführbarer Abwandlungen,
    Fig. 6
    einen Querschnitt durch einen Teilbereich des Polsterkörpers gemäß Fig. 1,
    Fig. 7
    einen Querschnitt durch einen Teilbereich des Polsterkörpers gemäß Fig. 3,
    Fig. 8
    einen Querschnitt durch einen Teilbereich des Polsterkörpers gemäß Fig. 4,
    Fig. 9
    eine perspektivische Darstellung eines Eckbereichs eines Polsterkörpers,
    Fig. 10 - 12
    jeweils eine Ausführungsform eines Verwendung findenden Wellprofilsegments,
    Fig. 13 - 18
    je ein Ausführungsbeispiel eines Wellenprofils der verwendeten Wellprofilkörper und
    Fig. 19 u.20
    je ein Beispiel der Bildung von Wellprofilkörpern oder -Segmenten aus Wellenteilstücken und
    Fig. 21 - 26
    je ein weiteres Ausführungsbeispiel eines Wellprofilkörpers.
  • In Fig. 1 ist mit einem abgebrochen dargestellten Eckbereich ein Polsterkörper mit einer rechteckigen Polsterfläche gezeigt, der insbesondere eine Matratze bilden kann. Es versteht sich jedoch, daß solche Polsterkörper auch die Polsterfläche von Sitzen, Liegen oder Rückenlehnen bilden und als solche auch eine quadratische oder anderweitig konturierte Polsterfläche, auch in der Höhe, z.B. durch unterschiedlich hohe Wellenberge, aufweisen können.
  • Der Polsterkörper besitzt einen als Ganzes mit 1 bezeichneten elastischen Kern, der gemäß Fig. 1 aus fünf Lagen 2, 3, 4, 5 und 6 von Wellprofilkörpern 7 und aus einer oberen Ergänzungslage 8 besteht, die eben ausgebildet ist und eine obere Deckplatte des elastischen Kerns 1 bildet. Die Wellprofilkörper 7 bestehen aus Fasermaterial mit gummielastischem Verhalten, insbesondere aus Naturfasern wie Kokosfasern mit einem von vorzugsweise Naturkautschuk gebildeten Elastomermantel und sind in ihrer Wellenkontur auf ihrer Ober- und ihrer Unterseite gleichsinnig und gleichförmig mit einer einheitlichen Wanddicke ausgebildet. Die Abdeckplatte 8 besteht ihrerseits aus einem Material mit gummielastischem Verhalten, das jedoch eine von dem der Wellprofilkörper 7 abweichende, zum Beispiel abriebfestere Beschaffenheit aufweisen kann.
  • Die Wellprofilkörper 7 der Kernlagen 2 bis 6 sind mit ihren einander zugewandten Seiten unmittelbar aufeinander bzw. gegenseitig in der Weise abgestützt, daß bei sich abwechselnd rechtwinklig kreuzender Grundausrichtung der Wellprofilkörper 7 durch deren jeweils um 90° gedrehte Anordnung in den Kernlagen 2 bis 6 die Wellentäler 9 einer oberen Kernlage, zum Beispiel der Kernlage 6, auf den Wellenkämmen 10 der nächstunteren Kernlage, zum Beispiel der Kernlage 5, aufliegen. Die Abdeckplatte 8 liegt auf den Wellenkämmen 10 der Wellprofilkörper 7 der oberen Kernlage 6 auf. Die Wellprofilkörper 7 besitzen in sämtlichen Kernlagen 2 bis 6 eine gleiche Ausbildung ihrer Wellenkontur und vermitteln dem Kern 1 durch ihre Materialbeschaffenheit und die Wellenform eine elastische bzw. federnde Nachgiebigkeit in Belastungsrichtung, die im wesentlichen senkrecht zu einer in Fig. 1 angenommenen horizontalen Gebrauchslage verläuft.
  • Die Wellprofilkörper 7 haben gemäß Fig. 1 die Grundform von Wellplatten, wobei zur Ausbildung einer unterschiedlichen Härtezone im Bereich der unteren Kernlage 2 Einlagekörper 11 zwischen den Wellprofilkörpern 7 der beiden benachbarten unteren Kernlagen 2 und 3 angeordnet sind. Die Einlagekörper 11 sind von Versteifungsstäben mit beispielsweise rundem Querschnitt aus zum Beispiel Holz, Kunststoff oder einem sonstigen gegenüber den Wellprofilkörpern 7 härteren Material gebildet und liegen in den von den Wellentälern 9 definierten Mulden 12 der Wellprofilkörper 7 der unteren Kernlage 2 auf. Durch die Einlagekörper 11 wird die Steifigkeit bzw. Federhärte des elastischen Kerns 1 in der Ebene der unteren Kernlage 2 erhöht. Eine bereichsweise Verringerung der Federhärte des elastischen Kerns 1 kann durch eine oder mehrere wellprofilkörperfreie Lücken in zumindest einer der Kernlagen 2 bis 6 erreicht werden, wie dies beispielsweise in Fig. 1 durch die Lücke 13 in der Kernlage 3 veranschaulicht ist. Die Lücke 13 kann auf einfache Weise durch eine entsprechende Abstandsausbildung zweier Wellprofilkörper-Teilstücke 7' in der Kernlage 3 gebildet sein.
  • Gemäß Fig. 2 ist der dort dargestellte einzelne Wellprofilkörper 7 mit sich über die Höhe der Wellenkämme 10 erstreckenden schlitzförmigen Einschnitten 14 quer zu deren Längserstreckung versehen. Die Einschnitte 14 besitzen in Längsrichtung der Wellenkämme 10 einen zweckmäßigen gegenseitigen, vorzugsweise gleichförmigen Abstand und sind geeignet, die Biegesteifigkeit des Wellprofilkörpers 7 quer zur Längserstreckung der Wellenkämme 10 herabzusetzen, indem auf diese Weise eine Anordnung von unabhängig voneinander unter Lasteinwirkung federnden Teilstücken der Wellenkämme 14 nach Art zweiseitig eingespannter Biegeträger geschaffen wird, die die Punktelastizität des Wellprofilkörpers 7 erhöht. Der mit den Einschnitten 14 versehene Wellprofilkörper 7 kann eine oder mehrere, insbesondere obere, oder sämtliche Kernlagen 2 bis 6 in der aus Fig. 1 ersichtlichen, abwechselnd um 90° gedrehten Anordnung in den einzelnen Lagen 2 bis 6 bilden.
  • Die Fig. 3 zeigt eine Ausbildung des elastischen Kerns 1 aus mehreren Kernlagen 15 bis 23. In jeder Kernlage 15 bis 23 besteht der Wellprofilkörper 7 aus einer Mehrzahl mit Abstand voneinander angeordneter paralleler Wellstreifen 24. Die Wellstreifen 24 besitzen beispielsweise eine Breite von etwa 20 bis 30 mm, wobei der Abstand zwischen den Wellstreifen 24 in Form von Längsschlitzen 25 etwa 3 bis 10 mm beträgt. Die Wellstreifen 24 haben wie die plattenförmigen Wellprofilkörper 7 der Fig. 1 jeweils eine gleichsinnige und gleichförmige Wellenkontur und können ausgehend von den plattenförmigen Wellprofilkörpern 7 der Fig. 1 hergestellt werden. Sie besitzen in den Kernlagen 15 bis 23 eine abwechselnd jeweils um 90° gedrehte Anordnung zur Erzielung der anhand der Fig. 1 erläuterten gegenseitigen Abstützung. Vervollständigt wird der elastische Kern 1 gemäß Fig. 3 durch Ergänzungslagen 26 und 27 in Form einer unteren Grundplatte und einer oberen Abdeckplatte.
  • Die Wellstreifen 24 können zur Aufrechterhaltung ihrer definierten Abstandslage von Kernlage zu Kernlage miteinander verbunden, insbesondere verklebt sein. Durch den Aufbau des elastischen Kerns 1 aus einer Vielzahl sich rechtwinklig kreuzender einzelner Wellstreifen 24 in den einzelnen Kernlagen 15 bis 23 kann die Punktelastizität des elastischen Kerns weiter erhöht und insbesondere auch ein elastischer Kern 1 mit einer vergleichsweise geringen Federhärte, d.h. einer weichen Polsterung, erreicht werden. Die Form der Wellstreifen 24 muß nicht notwendigerweise die aus den Fig. 3 und 7 ersichtliche Querschnittsform eines flachen Rechtecks aufweisen, sondern kann allgemein aus Materialsträngen eines beliebigen geeigneten, beispielsweise auch runden Querschnitts bestehen. Als Material mit gummielastischem Verhalten kommen hierbei die eingangs erwähnten Materialien, wie entsprechend geformte Natur- und/oder Kunstfasern mit einem Elastomermantel, oder aber auch massive Elastomere in Betracht, die als solche strangförmig extrudiert werden können und nachträglich ihre Wellenform z.B. in Vulkanisationsformen oder auf thermoplastischem Wege erhalten.
  • Es versteht sich, daß zur Erzielung verschiedener Härtegrade des elastischen Kerns 1 auch Ausgestaltungen gemäß Fig. 3 mit Ausgestaltungen gemäß Fig. 1 z.B. lagenweise kombiniert werden können. Auch ist es möglich, bei der Ausgestaltung des Kerns 1 gemäß Fig. 3 unterschiedliche Härtezonen durch bereichsweise Verwendung von Wellprofilteilen bzw. Wellstreifen 28 zu erreichen, die in ihrer Wellenkontur und Wanddicke mit den Wellstreifen 24 übereinstimmen, jedoch gegenüber diesen eine unterschiedliche, härtere oder weichere, Materialbeschaffenheit aufweisen, wie es in Fig. 3 durch Schwarzfärbung der Wellstreifen 28 kenntlich gemacht ist.
  • Die in Fig. 4 dargestellte weitere Ausführungsform eines Polsterkörpers besteht wiederum aus dem elastischen Kern 1 mit der Grundplatte 26 und der oberen Abdeckplatte 27, die beide eben ausgebildet sind, sowie zwischen diesen befindlichen Lagen 29, 30, 31 und 32 unmittelbar untereinander abgestützter Wellprofilkörper 7, die bei diesem Ausführungsbeispiel eine Wellenkontur mit in zwei unterschiedlichen, und zwar rechtwinkelig zueinander, horizontal verlaufenden Wellenformen besitzen, wodurch die auch bei diesem Beispiel plattenförmige Grundgestalt aufweisenden Wellprofilkörper 7 eine Ausbildung nach Art eines Eierkartons erhalten. Die Wellenkontur auf den einander zugewandten Abstützungsseiten je zweier übereinander liegender Wellprofilkörper 7 verläuft dabei mit einem gegenseitigen Versatz von einer halben Wellenlänge, woraus die aus Fig. 4 und insbesondere aus Fig. 8 ersichtliche gegenseitige Abstützung der Wellprofilkörper 7 mit ihren Wellentälern 9 auf den Wellenkämmen 10 des jeweils nächst unteren Wellprofilkörpers 7 resultiert.
  • Zusätzlich ist aus Fig. 4 eine, ebenso wie die Abdeckplatte 27, bereichsweise abgebrochen dargestellte, textile Hülle 33 ersichtlich, die, wenn auch nicht stets gezeigt, so doch grundsätzlich bei sämtlichen Ausführungsformen vorgesehen ist und den elastischen Kern 1 insgesamt einhüllt. Die Hülle 33 ist durch einen Reißverschluß 34 teilbar ausgebildet, um den elastischen Kern 1 beispielsweise zu Reinigungszwecken oder zum bereichsweisen Verändern der Federhärte entnehmen zu können.
  • Als Beispiel ist der Polsterkörper gemäß Fig. 4 in fünf unterschiedliche Härtezonen eingeteilt, die mit A, B, C, D und F gekennzeichnet sind. Unterschiedliche Härtegrade können auf einfache Weise dadurch erreicht werden, daß bei diesem Beispiel bereichsweise in Fig. 4 durch Schwarzfärbung kenntliche Abschnitte 35 der Wellprofilkörper 7 verwendet werden, die gegenüber den übrigen Wellprofilkörpern 7 von der Materialbeschaffenheit her härter ausgebildet sind.
  • Durch Verwendung der härteren Wellprofilkörperabschnitte 35 in einer oder mehreren der Lagen 29 bis 32 des Kerns 1 läßt sich eine über die Länge des Polsterkörpers abgestufte Härtezoneneinteilung erreichen, wobei die Federhärte in der Härtezone C, dem Taillen- bzw. Lendenbereich im Gebrauch des Polsterkörpers als Matratze, durch Verwendung ausschließlich der härteren Wellprofilkörperabschnitte 35 in sämtlichen Kernlagen 29 bis 32 am größten ist. Hierdurch wird eine starke Taillen- bzw. Lendenstützung erzielt.
  • Der in Fig. 5 dargestellte Wellprofilkörper 7 besitzt die gleiche Wellenkontur wie die Wellprofilkörper 7 der Ausführungsform gemäß Fig. 4 und veranschaulicht eine Abwandlung, bei der der Wellprofilkörper 7 mit Durchgangsöffnungen 36 bzw. 37 versehen ist. In Fig. 5 sind zwei mögliche Ausführungsformen der Durchgangsöffnungen beidseits eines mittleren öffnungsfreien Streifens des Wellprofilkörpers 7 veranschaulicht.
  • Auf der in Fig. 5 rechten Seite sind die Durchgangsöffnungen 36 als Löcher mit rechteckigem bzw. quadratischem Querschnitt ausgeführt, während die Durchgangsöffnungen 37 auf der in Fig. 5 linken Seite die Form von Schlitzen von in bezug auf den Wellenverlauf beliebiger Ausrichtung besitzen. Die Durchgangsöffnungen 36 bzw. 37 sind geeignet, die Federhärte des Wellprofilkörpers 7 zu verringern, wobei durch die Anzahl und Größe der Durchgangsöffnungen 36, 37 pro Flächeneinheit die Federhärte in einem weiten Bereich reguliert werden kann.
  • Die Durchgangsöffnungen 36 und 37 bilden, wie die Einschnitte 14 nach Fig. 2 innerhalb eines Teils bzw. einer Platte des Polstermaterials eine Vielzahl einzelner Federbereiche in der Art zweiseitig eingespannter Biegeträger, die im Belastungsfall praktisch unabhängig voneinander federn können. Durch die hierbei auftretende Biegung in einer Ebene sind eine hohe Elastizität und die Möglichkeit der gleichmäßigen Spannungsverteilung bei entsprechender Gestaltung der einzelnen Federbereiche bzw. Biegeträger erreicht, die vorliegend in großer Variationsbreite möglich ist. Die gleichmäßige Spannungsverteilung führt zu geringen Spitzenspannungen, was insgesamt eine geringe Belastung bedeutet, die gute Voraussetzungen für einen sinnvollen Einsatz von mit einem Elastomermantel versehenen Fasern mit ausreichender Haltbarkeit bei einem komfortablen Federweg schafft.
  • Die Durchgangsöffnungen 36, 37 bewirken auch eine gute Durchlüftung des elastischen Kerns 1, was dessen Herstellung aus einem massiven Elastomeren ohne zusätzlich eingearbeitete Faseranteile ermöglicht, ohne daß unerwünschte Kondensatbildungen zu befürchten sind. Im Extremfall verbleibt bei einer Ausbildung eines derartigen Elastomer-Wellprofilkörpers 7 mit Durchgangsöffnungen 36, 37 nur ein Netz von Elastomer-Strängen.
  • Eine weitere Ausführungsform eines Polsterkörpers veranschaulicht Fig. 9, bei der die Wellprofilkörper 7 in eine Vielzahl einzelner Wellprofilsegmente 38 unterteilt sind. Die Wellprofilsegmente 38 besitzen die Form eines Wellplattensegmentes, wie es mit seiner nach unten offenen Profilseite insbesondere aus der Einzeldarstellung gemäß Fig. 10 ersichtlich ist. In der unteren Kernlage 40 ist die offene untere Profilseite der Wellprofilsegmente 38 einer (nicht dargestellten) unteren Auflage des Polsterkörpers bzw. Grundplatte des elastischen Kerns 1 zugewandt. Dabei sind die Wellprofilsegmente 38 in parallelen Reihen und in jeder Reihe abwechselnd um 90° gedreht angeordnet. In den darüber befindlichen Lagen 41 und 42 sind die Wellprofilsegmente 38 jeweils paarweise mit den offenen Profilunterseiten einander zugewandt und auf diese Weise zu endseitig offenen Hohlprofilkörpern 39 von Lemniskaten-Grundform zusammengefaßt. Die Anordnung der Hohlprofilkörper 39 ist wie die der unteren Wellprofilsegmente 38 in parallelen Reihen und in jeder Reihe abwechselnd um 90° gedreht vorgenommen. Die gegenseitige Abstützung der Wellprofilsegmente 38 bzw. der Hohlprofilkörper 39 in den einzelnen Kernlagen 40 bis 42 erfolgt dabei durch die sich rechtwinkelig kreuzende Wellenkontur nach dem anhand der Fig. 1 bereits erläuterten Prinzip.
  • Die Wellprofilsegmente 38 können bereichsweise, zum Beispiel in den Reihen 43 und 44, eine unterschiedliche Materialbeschaffenheit, wie durch Schraffur kenntlich gemacht, zur Ausbildung unterschiedlicher Härtezonen des Kerns 1 aufweisen.
  • Anstelle der Wellplattensegmente 38 können Wellprofilsegmente 45 in Grundform eines nach unten offenen Pyramidenstumpfes mit konisch eingezogener Deckfläche der aus Fig. 11 ersichtlichen Profilform oder nach unten offene Ringkörper 46 mit konisch eingezogener Deckfläche der aus Fig. 12 ersichtlichen Profilform analog den Wellplattensegmenten 38 zur Ausbildung des elastischen Kerns 1 verwendet werden. Dabei können Hohlprofilkörper entsprechend den Hohlprofilkörpern 39 der Wellplattensegmente 38 durch paarweise Vereinigung der Wellprofilsegmente 45 und 46 mit einander zugewandten offenen Profilseiten gebildet werden. Die gegenseitige Abstützung der Wellprofilsegmente 45 und 46 bzw. der von ihnen gebildeten Hohlprofilkörper erfolgt dabei durch einen Versatz der Wellenkontur jeweils um eine halbe Wellenlänge in den übereinander liegenden Kernlagen entsprechend dem anhand der Fig. 4 erläuterten Prinzip, oder durch Kreuzung der ringförmigen Wellenkontur entsprechend dem Prinzip gemäß Fig. 1.
  • Die von den Wellprofilkörpern 7 bzw. den Wellstreifen 24 oder den Wellprofilsegmenten 38, 45, 46 gebildeten Lagen des elastischen Kerns 1 sind zur Aufrechterhaltung der gewählten Abstützungsverhältnisse im Gebrauch des Polsterkörpers vorzugsweise untereinander beispielsweise durch Verklebung verbunden. Dabei können ggf. auch eben ausgebildete Ergänzungslagen zwischen den Wellprofillagen des elastischen Kerns 1 angeordnet und mit diesen, ebenso wie die Grundplatte 26 und die obere Abdeckplatte 27, beispielsweise durch Verklebung verbunden sein.
  • Bei den anhand der Fig. 1 bis 12 erläuterten Ausführungsformen ist ein Wellenprofil nach Art einer Sinuswelle entsprechend Fig. 13 verwendet worden. An dessen Stelle kann ein Wellenprofil mit eher winklig ausgebildeten Wellentälern 9 und Wellenkämmen 10 gemäß Fig. 14 treten, was die Verwendung eines einfacheren Formwerkzeugs ermöglichen würde. Die Winkelform der Wellentäler 9 und Wellenkämme 10 kann durch eine Abflachung 47 gemäß Fig. 15 abgewandelt werden, wodurch eine weitgehende Annäherung an die Sinuswellenform gemäß Fig. 13 bei vereinfachter Herstellung erreicht ist. Die kantigen oder abgerundeten schwalbenschwanzförmigen Wellenprofile gemäß den Fig. 16 und 17 oder das girlandenartige Wellenprofil gemäß Fig. 18 stellen Wellenprofile dar, die sich beispielsweise durch Extrusion eines Elastomeren herstellen lassen, das zur Ausbildung der Wellprofilkörper 7 Verwendung finden kann. Zahlreiche weitere Abwandlungen des Wellenprofils sind im Rahmen der Erfindung möglich. Hierzu zählt auch die Bildung von Wellprofilsegmenten 48 und 49 aus besonders einfach herstellbaren Wellenteilstücken 50, die entsprechend den Darstellungen in den Fig. 19 und 20 jeweils paarweise zu einem zumindest eine volle Welle umfassenden Wellprofilsegment einander zugeordnet und ggf. im Bereich ihrer aneinandergrenzenden Ränder miteinander verbunden werden können.
  • Während bei den vorstehend beschriebenen und dargestellten Ausführungsformen der Wellprofilkörper stets eine ober- und unterseitig gleichförmige Wellenkontur und eine einheitliche Wanddicke der Wellprofilkörper vorgesehen ist, veranschaulichen die Fig. 21 bis 26 jeweils ein Ausführungsbeispiel eines Wellprofilkörpers, dessen Wellenprofil auf seiner Ober- und seiner Unterseite ungleichförmig ist bzw. dessen Wanddicke nicht über den gesamten Profilquerschnitt einheitlich ist. So zeigt Fig. 21 ein Wellenprofil, das auf der Oberseite nach Art einer Sinuswelle und auf seiner Unterseite winkelförmig ausgebildet ist, so daß die Wellentäler 9 auf der Profilunterseite V-förmig ausgebildet und die Wellenkämme 10 auf der Profiloberseite sowie die Mulden 10a zwischen diesen gerundet sind. Fig. 22 veranschaulicht demgegenüber eine Ausführungsform, bei der Profilober- und -unterseite jeweils nach Art einer Sinuswelle geformt sind, wobei jedoch die Wanddicke des Profilkörpers im Bereich der Wellenkämme 10 größer als im Bereich der Wellentäler 9 gewählt ist. Fig. 23 zeigt wiederum eine Ausführungsform mit einem oberseitig und unterseitig nach Art einer Sinuswelle ausgebildeten Wellenprofil, bei dem im Gegensatz zu der Ausführungsform gemäß Fig. 22 die Wanddicke im Bereich der Wellenkämme 10 geringer als im Bereich der Wellentäler 9 gewählt ist. Auch ist bei diesem Ausführungsbeispiel der Radius der Wellentäler 9 deutlich größer als der Radius der Wellenkämme 10. Die Fig. 24 veranschaulicht ein Wellenprofil, bei dem auf der Profiloberseite flache Wellenkämme 10 mit großem Radius und Mulden 10a mit kleinem Radius zwischen den Wellenkämmen 10 vorgesehen sind. Gegenüber den Mulden 10a sind auf der Profilunterseite verdickte Wellentäler 9 gebildet. Bei der hierzu vorgesehenen Abwandlung gemäß Fig. 25 sind die Wellenkämme 10 noch weiter abgeflacht und die Mulden 10a auf V-förmige Zwickel verengt, während die Wellentäler 9 auf der Profilunterseite durch Materialverdickung der Profilwand in von deren Unterseite fortweisender Richtung weiter verlängert sind. Ähnlich sind die Verhältnisse bei der Profilform gemäß Fig. 26, wobei jedoch die Mulden 10a zwischen den Wellenkämmen 10 abgeflacht und verbreitert sind und eine weitere Materialverdickung der Profilwand im Bereich der Wellenkämme 10 zur Profilunterseite hin mit der größten Dicke in der vertikalen Mittelebene der Wellenkämme 10 vorgesehen ist. Auch diese Wellenprofilformen mit ober- und unterseitig unterschiedlicher Wellenkontur lassen sich vielfältig abwandeln.
  • Bei der Anordnung solcher ober- und unterseitig verschieden konturierter Wellprofilkörper in mehreren Lagen übereinander oder in Kombination mit gleichförmig konturierten Federkörpern etwa gemäß den Fig. 13 bis 18 sind zahlreiche Fälle denkbar, bei denen es für eine gegenseitige Abstützung nicht auf einen lagenweisen gegenseitigen Versatz der einzelnen Federkörper oder eine sich von Lage zu Lage kreuzende Anordnung ihrer Wellenkontur ankommt. Vielmehr kann hierbei eine gegenseitige Abstützung übereinander angeordneter Wellprofilkörper durch ein nur bereichsweises Ineinandertauchen ihrer Wellenkonturen erreicht werden.
  • Benachbarte Kernlagen können zur Stabilisierung der Gesamtform aneinander befestigt sein.
  • Sofern als Material der Wellprofilkörper Natur- und/oder Kunstfasern mit einem Elastomermantel gewählt werden, kann der Elastomermantel je nach dem Anwendung findenden Herstellungsverfahren als eine oberflächige Elastomerbeschichtung, die jede Faser vollständig oder im wesentlichen vollständig umschließt, oder aber als eine Elastomerbenetzung ausgeführt sein, bei der mehr oder weniger große Oberflächenbereiche der einzelnen Faser, beispielsweise etwa 30%, von dem Elastomeren freibleiben.
  • Insbesondere aus belastungstechnischen Gründen kann sich außerdem eine Materialkombination in der Weise empfehlen, daß die Wellprofilkörper von einer Natur- und/oder Kunstfasern enthaltenden Mittelschicht und einer damit stoffschlüssig verbundenden Ober- und/oder Unterschicht aus einem Elastomeren gebildet sind. Das Federverhalten des Polsterkörpers kann bei dieser Materialkombination, aber auch in allen anderen Fällen, in denen als Material Natur- und/oder Kunstfasern mit einem Elastomermantel verwendet werden, dadurch weiter günstig beeinflußt werden, daß die Fasern in ihrer Lage im wesentlichen parallel ausgerichtet sind.

Claims (11)

  1. Flächiger Polsterkörper, inbesondere Matratze, mit einem elastischen Kern (1), der zumindest zwei Lagen (2,3,4,5) übereinander angeordneter Federkörper umfaßt, die mit ihren einander zugewandten, eine Wellenkontur ihrer Oberfläche aufweisenden Seiten in Abstützungseingriff gehalten sind, wobei die Federkörper von in ihrer Wellenkontur auf ihrer Ober- und ihrer Unterseite gleichsinnig ausgebildeten Wellprofilkörpern (7) aus einem Material mit gummielastischem Verhalten gebildet sind, die mit Durchgangsöffnungen versehen sind, dadurch gekennzeichnet, daß die Wellprofilkörper (7) mit sich über die Höhe der Wellenkämme (10) quer zu deren Längserstreckung erstreckenden Einschnitten (14) als Durchgangsöffnungen versehen sind, die eine Anordnung von unabhängig voneinander unter Lasteinwirkung federnden Teilstücken der Wellenkämme (10) nach Art zweiseitig eingespannter Biegeträger bilden.
  2. Polsterkörper nach Anspruch 1, dadurch gekennzeichnet, daß das Material der Wellprofilkörper (7) aus Natur- und/oder Kunstfasern mit einer oberflächigen Elastomerbeschichtung oder -benetzung besteht.
  3. Polsterkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Wellprofilkörper von einer Natur- und/oder Kunstfasern enthaltenden Mittelschicht und einer damit stoffschlüssig verbundenen Ober- und/oder Unterschicht aus einem Elastomeren gebildet sind.
  4. Polsterkörper nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Fasern im wesentlichen parallel ausgerichtet sind.
  5. Polsterkörper nach Anspruch 1, dadurch gekennzeichnet, daß das Material der Wellprofilkörper (7) aus einem massiven Elastomeren besteht.
  6. Polsterkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Wellenkontur auf den Abstützungsseiten zweier übereinanderliegender Wellprofilkörper (7) in unterschiedlichen Richtungen verläuft.
  7. Polsterkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wellenkontur auf den Abstützungsseiten zweier übereinanderliegender Wellprofilkörper (7) in den gleichen Richtungen jedoch mit einem gegenseitigen Versatz von einer halben Wellenlänge verläuft.
  8. Polsterkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sich die Wellenkontur des oder jedes Wellprofilkörpers (7) in zwei unterschiedlichen Richtungen in der Hauptebene des Wellprofilkörpers (7) erstreckt.
  9. Polsterkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Wellprofilkörper (7) in zumindest einer Lage (16-23) des elastischen Kerns (7) von einer Mehrzahl mit Abstand voneinander angeordneter paralleler Wellstreifen (24) oder dgl. gewellter Strangkörper gebildet sind.
  10. Polsterkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Wellprofilkörper (7) in zumindest einer Kernlage (40,41,42) in eine Vielzahl einzelner Wellprofilsegmente (38;45;46) unterteilt sind.
  11. Polsterkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß im elastischen Kern (1) unterschiedliche Härtezonen (A-E) vorgesehen sind, die insbesondere durch Zusammensetzen von Wellprofilkörpern oder -segmenten (28;35;43) unterschiedlicher Materialbeschaffenheit in zumindest einer örtlich begrenzten Zone des elastischen Kerns (1) gebildet sind.
EP92109817A 1991-06-17 1992-06-11 Flächiger Polsterkörper, insbesondere Matratze Expired - Lifetime EP0519322B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9107477U DE9107477U1 (de) 1991-06-17 1991-06-17
DE9107477U 1991-06-17

Publications (2)

Publication Number Publication Date
EP0519322A1 EP0519322A1 (de) 1992-12-23
EP0519322B1 true EP0519322B1 (de) 1997-01-29

Family

ID=6868413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109817A Expired - Lifetime EP0519322B1 (de) 1991-06-17 1992-06-11 Flächiger Polsterkörper, insbesondere Matratze

Country Status (3)

Country Link
EP (1) EP0519322B1 (de)
AT (1) ATE148317T1 (de)
DE (2) DE9107477U1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324425C2 (de) * 1993-07-21 1997-04-10 Rolf Wesemann Matratze
DE4432176A1 (de) * 1994-09-09 1996-03-14 Guenter Kura Künstlicher Seitenzahn für das menschliche Gebiß
DE29505064U1 (de) * 1995-03-25 1996-07-25 Heerklotz Siegfried Flächiger Polsterkörper
AT403759B (de) * 1996-10-30 1998-05-25 Kapsamer Kg Joka Werke Johann Aus schaumstoff bestehender innenkern

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB293086A (en) * 1927-03-25 1928-06-25 Chas Macintosh & Company Ltd Improvements in or relating to upholstery, such as cushions, mattresses and the like
CA302852A (en) * 1928-03-12 1930-08-05 Raepsaet Maurice Resilient structure
DE634547C (de) * 1930-06-04 1936-08-29 Georg Gottlieb Rosshaar- (Krollhaar-) oder Pflanzenfasermatte fuer Polsterungen aller Art
US3047282A (en) * 1956-04-26 1962-07-31 Mobay Chemical Corp Upholstery units
US3066928A (en) * 1958-10-28 1962-12-04 Reeves Bros Inc Resilient cushion structure
AT381852B (de) * 1984-09-17 1986-12-10 Elastica Matratzen Schaumstoff Matratze
DE8809982U1 (de) * 1988-08-04 1989-02-16 Wang, Cheng Wan, Pan-Chiao-Shih, Taipei, Tw
US4895352A (en) * 1989-01-09 1990-01-23 Simmons Company Mattress or cushion spring array

Also Published As

Publication number Publication date
EP0519322A1 (de) 1992-12-23
DE9107477U1 (de) 1992-10-15
ATE148317T1 (de) 1997-02-15
DE59207975D1 (de) 1997-03-13

Similar Documents

Publication Publication Date Title
EP1959797B1 (de) Matratze
DE2510182A1 (de) Sitz- bzw. rueckenpolster, insbesondere fuer fahrzeugsitze u.dgl.
DE1271333B (de) In eine Sitzschale verformbare, nach allen Richtungen durchbiegbare Platte
WO1987004909A1 (en) Chair with a seat and an elastically yielding back support
EP2123197A1 (de) Federkern mit Randverstärkung
WO2003092445A1 (de) Unterfederung für insbesondere eine matratze
EP0519322B1 (de) Flächiger Polsterkörper, insbesondere Matratze
EP0606892B1 (de) Flächiger Polsterkörper aus Schaumstoff, insbesondere Matratze
DE2442528A1 (de) Matratze aus geschaeumtem kunststoff
DE4229401C2 (de) Matratze oder Matratzenkern
DE8535344U1 (de) Federkörper
DE3023287A1 (de) Polsterauflage, insbesondere matratze und verfahren zu deren herstellung
DE202008001757U1 (de) Matratze für Liegemöbel
AT404546B (de) Aus schaumstoff bestehender innenkern einer polsterung
DE2820282A1 (de) Verfahren zum herstellen von polstern aus geschaeumtem, vorzugsweise luftdurchlaessigem werkstoff, z.b. aus geschaeumtem polyurethan, und nach diesem verfahren hergestelltes polster
DE202006018741U1 (de) Elastischer Matratzengrundkörper
DE4401665C2 (de) Aus Kunststoff bestehende Schale für einen Kraftwagensitz
DE883678C (de) Federsystem, vorzugsweise aus plattenfoermigem Material
DE102014004983A1 (de) Fahrzeugsitzpolster mit Schaumstofffedern
CH696654A5 (de) Matratze, versehen mit Federn und Komfortzonen.
DE7507389U (de) Sitz- bzw. rueckenpolster, insbesondere fuer fahrzeugsitze u.dgl.
EP0870447B1 (de) Polsterkörper aus Schaumstoff
EP0439712A1 (de) Bettstelle oder dergleichen Ruhevorrichtung
DE7829649U1 (de) Schaumfederkoerper
EP2364618B1 (de) Federelement für Matratzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19930618

17Q First examination report despatched

Effective date: 19941214

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970129

Ref country code: DK

Effective date: 19970129

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970129

Ref country code: FR

Effective date: 19970129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970129

REF Corresponds to:

Ref document number: 148317

Country of ref document: AT

Date of ref document: 19970215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59207975

Country of ref document: DE

Date of ref document: 19970313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970429

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970723

Year of fee payment: 6

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HEERKLOTZ SIEGFRIED

Effective date: 19970630

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980825

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503