EP0513407A1 - Method of manufacture of a turbine blade - Google Patents

Method of manufacture of a turbine blade Download PDF

Info

Publication number
EP0513407A1
EP0513407A1 EP91107707A EP91107707A EP0513407A1 EP 0513407 A1 EP0513407 A1 EP 0513407A1 EP 91107707 A EP91107707 A EP 91107707A EP 91107707 A EP91107707 A EP 91107707A EP 0513407 A1 EP0513407 A1 EP 0513407A1
Authority
EP
European Patent Office
Prior art keywords
blade
hot
cast body
turbine blade
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91107707A
Other languages
German (de)
French (fr)
Other versions
EP0513407B1 (en
Inventor
Mohamed Dr. Nazmy
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE59106047T priority Critical patent/DE59106047D1/en
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to EP91107707A priority patent/EP0513407B1/en
Priority to JP4116420A priority patent/JPH07166802A/en
Priority to CA002068504A priority patent/CA2068504A1/en
Priority to US07/880,036 priority patent/US5299353A/en
Priority to PL92294502A priority patent/PL168950B1/en
Priority to SU925011799A priority patent/RU2066253C1/en
Priority to KR1019920008009A priority patent/KR920021236A/en
Priority to CN92103469A priority patent/CN1025358C/en
Publication of EP0513407A1 publication Critical patent/EP0513407A1/en
Application granted granted Critical
Publication of EP0513407B1 publication Critical patent/EP0513407B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the invention is based on a turbine blade, which contains a blade body, blade root and, if appropriate, a cast body comprising an alloy on the basis of a gamma-titanium aluminide containing dopant.
  • the invention is also based on a method for producing such a turbine blade.
  • Gamma titanium aluminides have properties which favor their use as a material for turbine blades exposed to high temperatures. This includes, among other things, their low density compared to commonly used superalloys, which is more than twice as large, for example, with Ni superalloys.
  • a turbine blade of the type mentioned at the beginning is known from G. Sauthoff, "Intermetallic phases", materials between metal and ceramic, magazine new materials 1/89, pp. 15-19.
  • the material of this turbine blade has one comparatively high heat resistance, but the ductility of this material at room temperature is comparatively low, so that damage to parts of the turbine blade that are subjected to bending stresses cannot be excluded with certainty.
  • the invention is based on the object of specifying a turbine blade of the type mentioned which is distinguished by a long service life when used in a turbine operated at medium and high temperatures, and at the same time a way to point, which makes it possible to manufacture such a turbine blade in a simple and suitable for mass production.
  • the turbine blade according to the invention is distinguished from comparable turbine blades according to the prior art by a long service life even when subjected to high stress, in particular on bending. This is made possible by the fact that the differently stressed parts of the turbine blade have differently specified modifications of the gamma titanium aluminide used as the material. It proves to be particularly advantageous from a manufacturing point of view that the turbine blade is merely molded out of an inexpensive, one-piece cast body. In addition, this method can be easily implemented for mass production through the use of common means, such as casting molds, ovens, presses and mechanical and electrochemical processing devices.
  • the annealed, hot-isostatically pressed, thermoformed and heat-treated cast body shown in the figure has the essential material and shape properties of the turbine blade according to the invention. It contains an elongated airfoil 1, a blade root 2 formed on one end of the airfoil 1 and a blade cover band 3 formed on the opposite end of the airfoil.
  • the turbine blade according to the invention is produced from this cast body by slight machining.
  • the material-lifting processing essentially consists in adapting the dimensions of the cast body to the desired dimensions of the turbine blade. In the case of the blade root 2 and the blade cover band 3, this is advantageously done by grinding and polishing.
  • the fastening grooves 4 of the blade root 2 which are shown in dashed lines in the figure, can also be formed.
  • the airfoil is preferably adapted to the desired airfoil shape by electrochemical processing.
  • the cast body shown in the figure consists essentially of an alloy based on a dopant-containing gamma-titanium aluminide. At least in Parts of the airfoil 1, this alloy is in the form of a material with a coarse-grained structure and with a structure that leads to high tensile and creep strength. At least in parts of the blade root 2 and the blade shroud 3, the alloy is in the form of a material with a fine-grained structure and with a higher ductility than the material in the blade 1. This ensures a long service life for the airfoil.
  • the turbine blade according to the invention can be used advantageously at medium and high temperatures, i. H. Use at temperatures between 200 and 1000 ° C, especially in gas turbines and in compressors.
  • the blade cover sheet 3 may be present or omitted.
  • protective gas such as argon, or under vacuum
  • Suitable alloys are gamma titanium aluminides in which at least one or more of the elements B, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W and Zr are contained as dopant.
  • the amount of dopant added is preferably 0.5 to 8 atomic percent.
  • the melt is poured into a mold corresponding to the turbine blade to be manufactured.
  • the cast body formed can then advantageously be annealed at approximately 1100 ° C. for 10 hours in an argon atmosphere, for example, and cooled to room temperature.
  • the cast skin and scale layer are then removed by, for example, removing a surface layer approximately 1 mm thick by mechanical or chemical means.
  • the descaled cast body is inserted into a suitable capsule made of soft carbon steel and the latter welded gas-tight.
  • the encapsulated cast body is then hot isostatically pressed and cooled at a temperature of 1260 ° C. for 3 hours under a pressure of 120 MPa.
  • the annealing of the alloy should be carried out at temperatures between 1000 and 1100 ° C for at least half and for a maximum of thirty hours.
  • hot isostatic pressing which should advantageously be carried out at temperatures between 1200 and 1300 ° C and a pressure between 100 and 150 MPa for at least one and at most five hours.
  • thermoforming of the part of the annealed and hot-isostatically pressed cast body corresponding to the blade root 2 and / or the blade shroud 3, forming the material with a fine-grained structure, and heat treating at least the part of the annealed and hot corresponding to the airfoil 1 -isostatically pressed cast body before or after the isothermal thermoforming to form the material with a coarse-grained structure.
  • the annealed and hot-isostatically pressed cast body is heat-treated prior to the isothermal thermoforming to form the material with a coarse-grained structure
  • the part of the annealed and hot-isostatically pressed cast body after the isothermal hot-working is heat-treated to form the material with a coarse-grained structure. It has proven to be expedient to heat the annealed and hot-isostatically pressed cast body to the temperature required for the hot forming at a rate of between 10 and 50 ° C./min before the isothermal thermoforming.
  • the parts to be thermoformed such as the blade root 2 and possibly also the blade cover band 3
  • the parts to be thermoformed can first be kneaded in the forging press by upsetting in at least two directions transverse to the longitudinal axis of the turbine blade and then pressed to the final shape.
  • the finished pressed parts have a fine-grained structure with one compared to that in the airfoil located material on increased ductility.
  • the tensile strength or the ductility of the material in the airfoil 1 is 390 MPa or 0.3% and in the blade root 2 and in the blade cover band 3 is 370 MPa or 1.3%.
  • the cast body is heated to 1100 ° C., for example, at a heating rate of 10 to 50 ° C./min and is kept at this temperature.
  • the blade root 2 and / or the blade shroud 3 are forged at 1100 ° C. in accordance with the previously described method.
  • the forged parts also have a fine-grained structure with a higher ductility than the material in the airfoil 1.
  • the airfoil is then heated to a temperature of 1200 to 1400 ° C. and, depending on the heating temperature and alloy composition, heat-treated for between 0.5 and 25 hours. When cooling, another 1 to 5 h heat treatment can be carried out. After the heat treatment, the airfoil predominantly has a coarse-grained structure and a structure that leads to high tensile and creep resistance. In such a turbine blade manufactured in this way, the tensile strength and ductility of the material in the airfoil 1 or in the blade root 2 and in the blade shroud 3 have almost the same values as in the turbine blade produced by the previously described method.

Abstract

Turbine blade consisting of a casting made of an alloy based on a dopant-containing gamma titanium aluminide and comprising a blade vane (1), a blade root (2) and, if required, a shroud band (3). <??>At least in some parts of the blade vane (1), the material has a coarse-grained structure which gives a high tensile strength and long-time rupture strength. In certain parts of the blade root (2) and/or the shroud band (3) which may be provided, the material has a fine-grained structure with a higher ductility than the material in the blade root (1). <IMAGE>

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einer Turbinenschaufel, enthaltend einen Schaufelblatt, Schaufelfuss und gegebenenfalls Schaufeldeckband aufweisenden Gusskörper aus einer Legierung auf der Basis eines dotierstoffhaltigen gamma-Titanaluminids. Die Erfindung geht ferner aus von einem Verfahren, um eine solche Turbinenschaufel herzustellen.The invention is based on a turbine blade, which contains a blade body, blade root and, if appropriate, a cast body comprising an alloy on the basis of a gamma-titanium aluminide containing dopant. The invention is also based on a method for producing such a turbine blade.

STAND DER TECHNIKSTATE OF THE ART

Gamma-Titanaluminide haben Eigenschaften, welche deren Einsatz als Werkstoff für hohen Temperaturen ausgesetzte Turbinenschaufeln begünstigen. Dazu gehört unter anderem ihre gegenüber üblicherweise verwendeten Superlegierungen niedrige Dichte, die beispielsweise bei Ni-Superlegierungen mehr als doppelt so gross ist.Gamma titanium aluminides have properties which favor their use as a material for turbine blades exposed to high temperatures. This includes, among other things, their low density compared to commonly used superalloys, which is more than twice as large, for example, with Ni superalloys.

Aus G. Sauthoff, "Intermetallische Phasen", Werkstoffe zwischen Metall und Keramik, Magazin neue Werkstoffe 1/89, S. 15-19 ist eine Turbinenschaufel der eingangs genannten Art bekannt. Der Werkstoff dieser Turbinenschaufel weist eine vergleichsweise hohe Warmfestigkeit auf, jedoch ist die Duktilität dieses Werkstoffs bei Raumtemperatur vergleichsweise gering, so dass an biegebeanspruchten Teilen der Turbinenschaufel Beschädigungen nicht mit Sicherheit auszuschliessen sind.A turbine blade of the type mentioned at the beginning is known from G. Sauthoff, "Intermetallic phases", materials between metal and ceramic, magazine new materials 1/89, pp. 15-19. The material of this turbine blade has one comparatively high heat resistance, but the ductility of this material at room temperature is comparatively low, so that damage to parts of the turbine blade that are subjected to bending stresses cannot be excluded with certainty.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Der Erfindung, wie sie in den Patentansprüchen 1 und 4 angegeben ist, liegt die Aufgabe zugrunde, eine Turbinenschaufel der eingangs genannten Art anzugeben, welche sich bei Einsatz in einer bei mittleren und hohen Temperaturen betriebenen Turbine durch eine hohe Lebensdauer auszeichnet, und gleichzeitig einen Weg zu weisen, der es ermöglicht, eine solche Turbinenschaufel in einfacher und für eine Massenfertigung geeigneten Weise herzustellen.The invention, as specified in claims 1 and 4, is based on the object of specifying a turbine blade of the type mentioned which is distinguished by a long service life when used in a turbine operated at medium and high temperatures, and at the same time a way to point, which makes it possible to manufacture such a turbine blade in a simple and suitable for mass production.

Die Turbinenschaufel nach der Erfindung zeichnet sich gegenüber vergleichbaren Turbinenschaufeln nach dem Stand der Technik selbst bei hoher, insbesondere auf Biegung erfolgender, Beanspruchung durch eine hohe Lebensdauer aus. Dies ist dadurch ermöglicht, dass die unterschiedlich beanspruchten Teilen der Turbinenschaufel unterschiedlich spezifizierte Modifikationen des als Werkstoff verwendeten gamma-Titanaluminids aufweisen. Hierbei erweist es sich fertigungstechnisch von besonderem Vorteil, dass die Turbinenschaufel lediglich aus einem preisgünstig herzustellenden, einstückigen Gusskörper herausgeformt wird. Zudem kann dieses Verfahren durch den Einsatz gängiger Mittel, wie Giessformen, Öfen, Pressen und mechanische und elektrochemische Bearbeitungsvorrichtungen, in einfacher Weise für eine Massenfertigung ausgebildet werden.The turbine blade according to the invention is distinguished from comparable turbine blades according to the prior art by a long service life even when subjected to high stress, in particular on bending. This is made possible by the fact that the differently stressed parts of the turbine blade have differently specified modifications of the gamma titanium aluminide used as the material. It proves to be particularly advantageous from a manufacturing point of view that the turbine blade is merely molded out of an inexpensive, one-piece cast body. In addition, this method can be easily implemented for mass production through the use of common means, such as casting molds, ovens, presses and mechanical and electrochemical processing devices.

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren Vorteile werden nachfolgend anhand einer Zeichnung näher erläutert.Preferred exemplary embodiments of the invention and the advantages which can be achieved thereby are explained in more detail below with reference to a drawing.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

In der einzigen Figur ist ein geglühter, heiss-isostatisch gepresster, warmverformter und wärmebehandelter Gusskörper dargestellt, aus dem durch materialabhebende Bearbeitung die Turbinenschaufel nach der Erfindung hergestellt wird.In the single figure, an annealed, hot-isostatically pressed, thermoformed and heat-treated cast body is shown, from which the turbine blade according to the invention is produced by material-removing processing.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Der in der Figur dargestellte geglühte, heiss-isostatisch gepresste, warmverformte und wärmebehandelte Gusskörper weist die wesentlichen Material-und Formeigenschaften der Turbinenschaufel nach der Erfindung auf. Er enthält ein langgestrecktes Schaufelblatt 1, einen am einen Ende des Schaufelblattes 1 angeformten Schaufelfuss 2 sowie ein am entgegengesetzten Ende des Schaufelblattes angeformtes Schaufeldeckband 3. Aus diesem Gusskörper wird durch geringfügige materialabhebende Bearbeitung die Turbinenschaufel nach der Erfindung hergestellt. Die materialabhebende Bearbeitung besteht im wesentlichen in einer Anpassung der Abmessungen des Gusskörpers an die erwünschten Abmessungen der Turbinenschaufel. Beim Schaufelfuss 2 und beim Schaufeldeckband 3 erfolgt dies mit Vorteil durch Schleifen und Polieren. Hierbei können zugleich auch die in der Figur gestrichelt dargestellten tannenbaumartig angeordneten Befestigungsnuten 4 des Schaufelfusses 2 gebildet werden. Das Schaufelblatt wird vorzugsweise durch elektrochemische Bearbeitung an die erwünschte Schaufelblattform angepasst.The annealed, hot-isostatically pressed, thermoformed and heat-treated cast body shown in the figure has the essential material and shape properties of the turbine blade according to the invention. It contains an elongated airfoil 1, a blade root 2 formed on one end of the airfoil 1 and a blade cover band 3 formed on the opposite end of the airfoil. The turbine blade according to the invention is produced from this cast body by slight machining. The material-lifting processing essentially consists in adapting the dimensions of the cast body to the desired dimensions of the turbine blade. In the case of the blade root 2 and the blade cover band 3, this is advantageously done by grinding and polishing. At the same time, the fastening grooves 4 of the blade root 2, which are shown in dashed lines in the figure, can also be formed. The airfoil is preferably adapted to the desired airfoil shape by electrochemical processing.

Der in der Figur dargestellte Gusskörper besteht im wesentlichen aus einer Legierung auf der Basis eines dotierstoffhaltigen gamma-Titanaluminids. Zumindest in Teilen des Schaufelblattes 1 liegt diese Legierung in Form eines Werkstoffs mit grobkörniger Struktur und mit einem zu hoher Zug- und Zeitstandfestigkeit führendem Gefüge vor. Zumindest in Teilen des Schaufelfusses 2 und des Schaufeldeckbandes 3 liegt die Legierung in Form eines Werkstoffs mit feinkörniger Struktur und mit einer gegenüber dem im Schaufelblatt 1 befindlichen Werkstoff erhöhten Duktilität vor. Hierdurch wird eine hohe Lebensdauer des Schaufelblattes erreicht. Dies ist zum einen dadurch bedingt, dass das bei Betrieb der Turbine auf hohen Temperaturen befindliche Schaufelblatt aufgrund seiner grobkörnigen Struktur und seines Gefüges eine gute Zug- und Zeitstandfestigkeit aufweist, wohingegen seine bei tiefen Temperaturen vorhandene geringe Duktilität ohne Bedeutung ist. Zum anderen ist dies auch dadurch bedingt, dass sich bei Betrieb der Turbine der Schaufelfuss und das Schaufeldeckband auf vergleichsweise tiefen Temperaturen befinden und dann aufgrund ihrer feinkörnigen Struktur und ihres Gefüges eine verglichen mit dem im Schaufelblatt vorgesehenen Material eine hohe Duktilität aufweisen. Vom Schaufelfuss und vom Schaufeldeckband können so über einen grossen Zeitraum vergleichsweise grosse Torsions- und Biegekräfte aufgenommen werden, ohne dass Spannungsrisse gebildet werden.The cast body shown in the figure consists essentially of an alloy based on a dopant-containing gamma-titanium aluminide. At least in Parts of the airfoil 1, this alloy is in the form of a material with a coarse-grained structure and with a structure that leads to high tensile and creep strength. At least in parts of the blade root 2 and the blade shroud 3, the alloy is in the form of a material with a fine-grained structure and with a higher ductility than the material in the blade 1. This ensures a long service life for the airfoil. On the one hand, this is due to the fact that the blade, which is in operation at high temperatures, has good tensile and creep resistance due to its coarse-grained structure and structure, whereas its low ductility, which is present at low temperatures, is of no importance. On the other hand, this is also due to the fact that when the turbine is in operation, the blade root and the blade shroud are at comparatively low temperatures and then, owing to their fine-grained structure and structure, have a high ductility compared to the material provided in the blade. Comparatively large torsional and bending forces can be absorbed by the blade root and the blade shroud over a long period of time without stress cracks being formed.

Die Turbinenschaufel nach der Erfindung lässt sich mit Vorteil bei mittleren und hohen Temperaturen, d. h. bei Temperaturen zwischen 200 und 1000°C, insbesondere in Gasturbinen und in Verdichtern, einsetzen. Je nach Ausführungsform der Gasturbine oder des Verdichters kann hierbei das Schaufeldeckblatt 3 vorhanden sein oder entfallen.The turbine blade according to the invention can be used advantageously at medium and high temperatures, i. H. Use at temperatures between 200 and 1000 ° C, especially in gas turbines and in compressors. Depending on the embodiment of the gas turbine or the compressor, the blade cover sheet 3 may be present or omitted.

Der Gusskörper gemäss der Figur wird wie folgt hergestellt: Unter Schutzgas, wie etwa Argon, oder unter Vakuum wird in einem Induktionsofen folgende Legierung auf der Basis eines gamma-Titanaluminids mit Chrom als Dotierstoff erschmolzen:
Al = 48 At.-%
Cr = 3 At.-%
Ti = Rest.
The cast body according to the figure is produced as follows: In protective gas, such as argon, or under vacuum, in the following alloy was melted in an induction furnace on the basis of a gamma titanium aluminide with chromium as dopant:
Al = 48 at .-%
Cr = 3 at .-%
Ti = rest.

Andere geeignete Legierungen sind gamma-Titanaluminide in denen als Dotierstoff mindestens eines oder mehrere der Elemente B, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W sowie Zr enthalten sind. Die Menge an zugesetztem Dotierstoff beträgt vorzugsweise 0,5 bis 8 Atomprozent.Other suitable alloys are gamma titanium aluminides in which at least one or more of the elements B, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W and Zr are contained as dopant. The amount of dopant added is preferably 0.5 to 8 atomic percent.

Die Schmelze wird in einer der herzustellenden Turbinenschaufel entsprechenden Gussform abgegossen. Der gebildete Gusskörper kann hierauf mit Vorteil zu Zwecken seiner Homogenisierung bei ca. 1100°C während beispielsweise 10h in Argonatmosphäre geglüht und auf Raumtemperatur abgekühlt werden. Sodann werden Gusshaut und Zunderschicht entfernt, indem beispielsweise eine Oberflächenschicht von ca. 1 mm Dicke auf mechanischem oder chemischem Wege abgetragen wird. Der entzunderte Gusskörper wird in eine passende Kapsel aus weichem Kohlenstoffstahl eingeschoben und letztere gasdicht verschweisst. Der eingekapselte Gusskörper wird nun bei einer Temperatur von 1260°C während 3 h unter einem Druck von 120 MPa heiss-isostatisch gepresst und abgekühlt.The melt is poured into a mold corresponding to the turbine blade to be manufactured. The cast body formed can then advantageously be annealed at approximately 1100 ° C. for 10 hours in an argon atmosphere, for example, and cooled to room temperature. The cast skin and scale layer are then removed by, for example, removing a surface layer approximately 1 mm thick by mechanical or chemical means. The descaled cast body is inserted into a suitable capsule made of soft carbon steel and the latter welded gas-tight. The encapsulated cast body is then hot isostatically pressed and cooled at a temperature of 1260 ° C. for 3 hours under a pressure of 120 MPa.

Das Glühen der Legierung sollte je nach Zusammensetzung bei Temperaturen zwischen 1000 und 1100 °C während mindestens einer halben und während höchstens dreissig Stunden durchgeführt werden. Entsprechendes gilt für das heiss-isostatische Pressen, welches mit Vorteil bei Temperaturen zwischen 1200 und 1300°C und einem Druck zwischen 100 und 150 MPa mindestens eine und höchstens fünf Stunden lang durchgeführt werden sollte.Depending on the composition, the annealing of the alloy should be carried out at temperatures between 1000 and 1100 ° C for at least half and for a maximum of thirty hours. The same applies to hot isostatic pressing, which should advantageously be carried out at temperatures between 1200 and 1300 ° C and a pressure between 100 and 150 MPa for at least one and at most five hours.

Anschliessend erfolgt ein ein- bis mehrmaliges isothermes Warmverformen des dem Schaufelfuss 2 und/oder dem Schaufeldeckband 3 entsprechenden Teils des geglühten und heiss-isostatisch gepressten Gusskörpers unter Bildung des Werkstoffs mit feinkörniger Struktur und eine Wärmebehandlung zumindest des dem Schaufelblatt 1 entsprechenden Teils des geglühten und heiss-isostatisch gepressten Gusskörpers vor oder nach dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur.This is followed by one or more isothermal thermoforming of the part of the annealed and hot-isostatically pressed cast body corresponding to the blade root 2 and / or the blade shroud 3, forming the material with a fine-grained structure, and heat treating at least the part of the annealed and hot corresponding to the airfoil 1 -isostatically pressed cast body before or after the isothermal thermoforming to form the material with a coarse-grained structure.

Hierbei können mit Vorteil zwei Wege beschritten werden. Beim Beschreiten des ersten Weges wird der geglühte und heiss-isostatisch gepresste Gusskörper vor dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur wärmebehandelt, wohingegen beim Beschreiten des zweiten Weges der das Schaufelblatt umfassende Teil des geglühten und heiss-isostatisch gepressten Gusskörpers nach dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur wärmebehandelt wird.Es hat sich als zweckmässig erwiesen, vor dem isothermen Warmverformen den geglühten und heiss-isostatisch gepressten Gusskörper mit einer Geschwindigkeit zwischen 10 und 50°C/min auf die zum Warmverformen benötigte Temperatur zu erwärmen.There are two ways to do this. When the first route is followed, the annealed and hot-isostatically pressed cast body is heat-treated prior to the isothermal thermoforming to form the material with a coarse-grained structure, whereas when the second route is followed, the part of the annealed and hot-isostatically pressed cast body after the isothermal hot-working is heat-treated to form the material with a coarse-grained structure. It has proven to be expedient to heat the annealed and hot-isostatically pressed cast body to the temperature required for the hot forming at a rate of between 10 and 50 ° C./min before the isothermal thermoforming.

Beim Beschreiten des ersten Weges wird der Gusskörper auf eine Temperatur von 1200 bis 1400°C aufgeheizt und je nach Aufheiztemperatur und Legierungszusammensetzung zwischen 0,5 und 25h wärmebehandelt. Beim Abkühlen kann eine weitere 1 bis 5h dauernde Wärmebehandlung durchgeführt werden. Nach der Wärmebehandlung weist der Gusskörper grobkörnige Struktur und ein zu hoher Zug- und Zeitstandfestigkeit führendes Gefüge auf. Der wärmebehandelte Gusskörper wird auf 1100°C erwärmt und auf dieser Temperatur gehalten. Sodann werden der Schaufelfuss 2 und/oder das Schaufeldeckband 3 bei 1100°C isotherm geschmiedet. Das verwendete Werkzeug ist vorzugsweise eine Schmiedepresse, bestehend etwa aus einer Molybdänlegierung mit dem Handelsnamen TZM mit folgender Zusammensetzung:
Ti = 0,5 Gew.-%
Zr = 0,1 Gew.-%
C = 0,02 Gew.-%
Mo = Rest
Die Fliessgrenze des zu schmiedenden Werkstoffs beträgt ca. 260 MPa bei 1100°C . Die Umformung wird durch Stauchen bis zu einer Verformung ε = 1,3 erreicht, wobei

Figure imgb0001

ho =
ursprüngliche Höhe des Werkstücks und
h =
Höhe des Werkstücks nach Umformung
bedeuten. Die lineare Verformungsgeschwindigkeit (Stempelgeschwindigkeit der Schmiedepresse) beträgt bei Beginn des Schmiedeprozesses 0,1 mm/s. Der Anfangsdruck der Schmiedepresse liegt bei ca. 300 MPa.When the first route is followed, the cast body is heated to a temperature of 1200 to 1400 ° C and, depending on the heating temperature and alloy composition, heat-treated for between 0.5 and 25 hours. When cooling, another 1 to 5 h heat treatment can be carried out. After the heat treatment, the cast body has a coarse-grained structure and a structure that leads to high tensile and creep strength. The heat-treated cast body is heated to 1100 ° C. and kept at this temperature. Then the blade root 2 and / or that Blade cover band 3 isothermally forged at 1100 ° C. The tool used is preferably a forging press, consisting for example of a molybdenum alloy with the trade name TZM with the following composition:
Ti = 0.5% by weight
Zr = 0.1% by weight
C = 0.02% by weight
Mo = rest
The yield point of the material to be forged is approx. 260 MPa at 1100 ° C. The deformation is achieved by upsetting up to a deformation ε = 1.3, whereby
Figure imgb0001
h o =
original height of the workpiece and
h =
Workpiece height after forming
mean. The linear deformation speed (stamping speed of the forging press) is 0.1 mm / s at the start of the forging process. The initial pressure of the forging press is approximately 300 MPa.

In Abhängigkeit von der Legierungszusammemsetzung kann die Warmverformung bei Temperaturen zwischen zwischen 1050 und 1200°C mit einer zwischen 5 · 10⁻⁵s⁻¹ und 10⁻²s⁻¹ gelegenen Verformungsgeschwindigkeit bis zu einer Verformung ε = 1,6 durchgeführt werden. Hierbei können mit Vorteil die warmzuverformenden Teile, wie der Schaufelfuss 2 und gegebenenfalls auch das Schaufeldeckband 3, in der Schmiedepresse durch Stauchen in mindestens zwei quer zur Längsachse der Turbinenschaufel verlaufenden Richtungen zunächst geknetet und dann zur Endform fertiggepresst werden. Die fertiggepressten Teile weisen feinkörnige Struktur mit einer gegenüber dem im Schaufelblatt befindlichen Werkstoff erhöhten Duktilität auf. Bei der wie vorstehend beschrieben hergestellten Turbinenschaufel liegen die Zugfestigkeit bzw. die Duktilität des Werkstoffs im Schaufelblatt 1 bei 390 MPa bzw. bei 0,3% und im Schaufelfuss 2 sowie im Schaufeldeckband 3 bei 370 MPa bzw. 1,3%.Depending on the alloy composition, the hot deformation can be carried out at temperatures between 1050 and 1200 ° C with a deformation rate between 5 · 10⁻⁵s⁻¹ and 10⁻²s⁻¹ up to a deformation ε = 1.6. Advantageously, the parts to be thermoformed, such as the blade root 2 and possibly also the blade cover band 3, can first be kneaded in the forging press by upsetting in at least two directions transverse to the longitudinal axis of the turbine blade and then pressed to the final shape. The finished pressed parts have a fine-grained structure with one compared to that in the airfoil located material on increased ductility. In the turbine blade manufactured as described above, the tensile strength or the ductility of the material in the airfoil 1 is 390 MPa or 0.3% and in the blade root 2 and in the blade cover band 3 is 370 MPa or 1.3%.

Beim Beschreiten des zweiten Weges wird der Gusskörper beispielsweise mit einer Aufheizgeschwindigkeit von 10 bis 50°C/min auf 1100°C erwärmt und auf dieser Temperatur gehalten. Sodann werden der Schaufelfuss 2 und/oder das Schaufeldeckband 3 bei 1100°C entsprechend dem zuvor beschriebenen Verfahren isotherm geschmiedet. Die fertiggeschmiedeten Teile weisen ebenfalls feinkörnige Struktur mit einer gegenüber dem im Schaufelblatt 1 befindlichen Werkstoff erhöhten Duktilität auf.When the second path is followed, the cast body is heated to 1100 ° C., for example, at a heating rate of 10 to 50 ° C./min and is kept at this temperature. Then the blade root 2 and / or the blade shroud 3 are forged at 1100 ° C. in accordance with the previously described method. The forged parts also have a fine-grained structure with a higher ductility than the material in the airfoil 1.

Mittels einer um das Schaufelblatt 1 angebrachten Induktionsspule wird das Schaufelblatt sodann auf eine Temperatur von 12oo bis 1400°C aufgeheizt und je nach Aufheiztemperatur und Legierungszusammensetzung zwischen 0,5 und 25h wärmebehandelt. Beim Abkühlen kann eine weitere 1 bis 5h dauernde Wärmebehandlung durchgeführt werden. Nach der Wärmebehandlung weist das Schaufelblatt überwiegend grobkörnige Struktur und ein zu hoher Zug- und Zeitstandfestigkeit führendes Gefüge auf. Bei einer solchermassen hergestellten Turbinenschaufel weisen Zugfestigkeit und Duktilität des Werkstoffs im Schaufelblatt 1 bzw. im Schaufelfuss 2 sowie im Schaufeldeckband 3 nahezu die gleichen Werte auf wie bei der nach dem zuvor beschriebenen Verfahren hergestellten Turbinenschaufel.By means of an induction coil fitted around the airfoil 1, the airfoil is then heated to a temperature of 1200 to 1400 ° C. and, depending on the heating temperature and alloy composition, heat-treated for between 0.5 and 25 hours. When cooling, another 1 to 5 h heat treatment can be carried out. After the heat treatment, the airfoil predominantly has a coarse-grained structure and a structure that leads to high tensile and creep resistance. In such a turbine blade manufactured in this way, the tensile strength and ductility of the material in the airfoil 1 or in the blade root 2 and in the blade shroud 3 have almost the same values as in the turbine blade produced by the previously described method.

Claims (15)

Turbinenschaufel, enthaltend einen Schaufelblatt (1), Schaufelfuss (2) und gegebenenfalls Schaufeldeckband (3) aufweisenden Gusskörper aus einer Legierung auf der Basis eines dotierstoffhaltigen gamma-Titanaluminids, dadurch gekennzeichnet, dass die Legierung zumindest in Teilen des Schaufelblattes (1) in Form eines Werkstoff mit grobkörniger Struktur und mit einem zu hoher Zug- und Zeitstandfestigkeit führendem Gefüge vorliegt und zumindest in Teilen des Schaufelfusses (2) und/oder des gegebenenfalls vorgesehenen Schaufeldeckbandes (3) in Form eines Werkstoffs mit feinkörniger Struktur und mit einer gegenüber dem im Schaufelblatt (1) befindlichen Werkstoff erhöhten Duktilität.Turbine blade containing a blade (1), blade root (2) and optionally blade cover band (3) having a cast body made of an alloy based on a dopant-containing gamma-titanium aluminide, characterized in that the alloy is in the form of at least part of the blade (1) Material with a coarse-grained structure and with a structure that leads to a high tensile and creep resistance and is present at least in parts of the blade root (2) and / or the blade shroud (3) that may be provided in the form of a material with a fine-grained structure and with one compared to that in the blade ( 1) located material increased ductility. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass als Dotierstoff mindestens eines oder mehrere der Elemente B, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W sowie Zr in der Legierung enthalten sind.Turbine blade according to claim 1, characterized in that contain at least one or more of the elements B, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W and Zr as dopant in the alloy are. Turbinenschaufel nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung mindestens 0,5 und höchstens 8 Atomprozent Dotierstoff aufweist.Turbine blade according to claim 2, characterized in that the alloy has at least 0.5 and at most 8 atomic percent dopant. Verfahren zur Herstellung der Turbinenschaufel nach Patentanspruch 1, dadurch gekennzeichnet, dass folgende Verfahrensschritten durchgeführt werden: - Erschmelzen der Legierung, - Vergiessen der Schmelze zu einem Gusskörper von der Form der Turbinenschaufel, - Heiss-isostatisches Fressen des Gusskörpers, - Ein- bis mehrmaliges isothermes Warmverformen des dem Schaufelfuss (2) und/oder dem Schaufeldeckband (3) entsprechenden Teils des heiss-isostatisch gepressten Gusskörpers unter Bildung des Werkstoffs mit feinkörniger Struktur, - Wärmebehandeln zumindest des dem Schaufelblatt (1) entsprechenden Teils des heiss-isostatisch gepressten Gusskörpers vor oder nach dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur, und - Materialabhebendes Bearbeiten des heiss-isostatisch gepressten, warmverformten und wärmebehandelten Gusskörpers zur Turbinenschaufel. A method for producing the turbine blade according to claim 1, characterized in that the following method steps are carried out: Melting the alloy, Pouring the melt into a cast body in the shape of the turbine blade, - hot isostatic seizure of the cast body, - One or more isothermal hot forming of the part of the hot-isostatically pressed cast body corresponding to the blade root (2) and / or the blade shroud (3), forming the material with a fine-grained structure, - Heat treatment of at least that part of the hot-isostatically pressed cast body corresponding to the airfoil (1) before or after the isothermal thermoforming to form the material with a coarse-grained structure, and - Material-lifting processing of the hot-isostatically pressed, thermoformed and heat-treated cast body for the turbine blade. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der heiss-isostatisch gepresste Gusskörper vor dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur wärmebehandelt wird.A method according to claim 4, characterized in that the hot-isostatically pressed cast body is heat-treated before the isothermal thermoforming to form the material with a coarse-grained structure. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der das Schaufelblatt (1) umfassende Teil des heiss-isostatisch gepressten Gusskörpers nach dem isothermen Warmverformen unter Bildung des Werkstoffs mit grobkörniger Struktur wärmebehandelt wird.Method according to claim 4, characterized in that the part of the hot-isostatically pressed cast body comprising the airfoil (1) is heat-treated after the isothermal thermoforming to form the material with a coarse-grained structure. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Wärmebehandlung mit einer Induktionsspule ausgeführt wird.A method according to claim 6, characterized in that the heat treatment is carried out with an induction coil. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Wärmebehandlung zwischen 1200 und 1400°C durchgeführt wird.Method according to one of claims 4 to 7, characterized in that the heat treatment is carried out between 1200 and 1400 ° C. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nachfolgend eine weitere Wärmebehandlung zwischen 800 und 1000°C durchgeführt wird.A method according to claim 8, characterized in that a further heat treatment between 800 and 1000 ° C is carried out subsequently. Verfahren nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass das Warmverformen zwischen 1050 und 1200°C mit einer zwischen 5 · 10⁻⁵s⁻¹ und 10⁻²s⁻¹ gelegenen Verformungsgeschwindigkeit bis zu einer Verformung ε = 1,6 durchgeführt wird, wobei
Figure imgb0002
ho =   ursprüngliche Höhe des Werkstücks und h =   Höhe des Werkstücks nach Umformung bedeuten.
Method according to one of claims 4 to 9, characterized in that the hot forming between 1050 and 1200 ° C is carried out with a deformation rate between 5 · 10⁻⁵s⁻¹ and 10⁻²s⁻¹ up to a deformation ε = 1.6 , in which
Figure imgb0002
h o = original height of the workpiece and h = height of the workpiece after forming.
Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Warmverformen in einer Schmiedepresse durchgeführt wird.A method according to claim 10, characterized in that the hot forming is carried out in a forging press. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die warmzuverformenden Teile in der Schmiedepresse durch Stauchen in mindestens zwei quer zur Längsachse der Turbinenschaufel verlaufenden Richtungen zunächst geknetet und dann zur Endform fertiggepresst werden.A method according to claim 11, characterized in that the parts to be thermoformed are first kneaded in the forging press by upsetting in at least two directions transverse to the longitudinal axis of the turbine blade and then pressed to the final shape. Verfahren nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass der heiss-isostatisch gepresste Gusskörper vor dem isothermen Warmverformen auf Raumtemperatur abgekühlt und nachfolgend mit einer Geschwindigkeit zwischen 10 und 50°C/min auf die beim Warmverformen eingestellte Temperatur erwärmt wird.Method according to one of claims 4 to 12, characterized in that the hot-isostatically pressed cast body is cooled to room temperature before the isothermal thermoforming and is subsequently heated to the temperature set during thermoforming at a speed between 10 and 50 ° C / min. Verfahren nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass der Gusskörper vor dem Warmverformen und dem Wärmebehandeln bei Temperaturen zwischen 1000 und 1100°C homogenisiert wird.Method according to one of claims 4 to 13, characterized in that the cast body is homogenized at temperatures between 1000 and 1100 ° C before the thermoforming and the heat treatment. Verfahren nach einem der Ansprüche 4 bis 14, dadurch gekennzeichnet, dass das heiss-isostatische Pressen bei Temperaturen zwischen 1200 und 1300°C und einem Druck zwischen 100 und 150 MPa durchgeführt wird.Method according to one of claims 4 to 14, characterized in that the hot isostatic pressing is carried out at temperatures between 1200 and 1300 ° C and a pressure between 100 and 150 MPa.
EP91107707A 1991-05-13 1991-05-13 Method of manufacture of a turbine blade Expired - Lifetime EP0513407B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP91107707A EP0513407B1 (en) 1991-05-13 1991-05-13 Method of manufacture of a turbine blade
DE59106047T DE59106047D1 (en) 1991-05-13 1991-05-13 Process for manufacturing a turbine blade.
CA002068504A CA2068504A1 (en) 1991-05-13 1992-05-08 Turbine blade and process for producing this turbine blade
US07/880,036 US5299353A (en) 1991-05-13 1992-05-08 Turbine blade and process for producing this turbine blade
JP4116420A JPH07166802A (en) 1991-05-13 1992-05-08 Turbine blade and manufacture of turbine blade thereof
PL92294502A PL168950B1 (en) 1991-05-13 1992-05-11 Turbine blade and method of making same
SU925011799A RU2066253C1 (en) 1991-05-13 1992-05-12 Method of making turbine blades
KR1019920008009A KR920021236A (en) 1991-05-13 1992-05-12 Turbine Blades and Manufacturing Method Thereof
CN92103469A CN1025358C (en) 1991-05-13 1992-05-12 Turbine blades and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP91107707A EP0513407B1 (en) 1991-05-13 1991-05-13 Method of manufacture of a turbine blade

Publications (2)

Publication Number Publication Date
EP0513407A1 true EP0513407A1 (en) 1992-11-19
EP0513407B1 EP0513407B1 (en) 1995-07-19

Family

ID=8206718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91107707A Expired - Lifetime EP0513407B1 (en) 1991-05-13 1991-05-13 Method of manufacture of a turbine blade

Country Status (9)

Country Link
US (1) US5299353A (en)
EP (1) EP0513407B1 (en)
JP (1) JPH07166802A (en)
KR (1) KR920021236A (en)
CN (1) CN1025358C (en)
CA (1) CA2068504A1 (en)
DE (1) DE59106047D1 (en)
PL (1) PL168950B1 (en)
RU (1) RU2066253C1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574727A1 (en) * 1992-06-13 1993-12-22 Asea Brown Boveri Ag Method for the production of a high temperature-resistant element from two different materials
EP0574708A1 (en) * 1992-06-13 1993-12-22 Asea Brown Boveri Ag Component for high temperatures, in particular turbine blade, and process for preparing this blade
EP0636701A2 (en) * 1993-07-19 1995-02-01 Howmet Corporation Creep resistant titanium aluminide alloy
US6521059B1 (en) 1997-12-18 2003-02-18 Alstom Blade and method for producing the blade
US7094035B2 (en) 2003-02-13 2006-08-22 Alstom Technology Ltd. Hybrid blade for thermal turbomachines
EP1734227A1 (en) * 2005-06-13 2006-12-20 General Electric Company V-shaped blade tip shroud and method of fabricating same
DE102010009811A1 (en) * 2010-03-02 2011-09-08 Mtu Aero Engines Gmbh Bending apparatus for bending blade of blade cascade ring utilized for aircraft turbine, has holder for releasable fixation of blade ring, where ring and die are pivotable relative to each other around axis of pivoting unit of holder
DE102010042889A1 (en) * 2010-10-25 2012-04-26 Manfred Renkel Turbocharger component prepared from an intermetallic titanium aluminide-alloy, useful e.g. for manufacturing turbine components, comprises e.g. aluminum, rare earth metal, niobium, tungsten, tantalum or rhenium, oxygen, and titanium
WO2013048670A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
CN103736904A (en) * 2013-05-13 2014-04-23 沈阳黎明航空发动机(集团)有限责任公司 Titanium alloy double-mounting-plate stator blade precision forging and forming method
DE102015115683A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
DE102018209881A1 (en) * 2018-06-19 2019-12-19 MTU Aero Engines AG Process for producing a forged component from a TiAl alloy
EP3623100A1 (en) * 2018-09-14 2020-03-18 United Technologies Corporation Wrought root blade manufacture methods
DE102009061055B4 (en) * 2009-05-13 2020-09-17 Manfred Renkel Intermetallic titanium aluminide alloy

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4301880A1 (en) * 1993-01-25 1994-07-28 Abb Research Ltd Process for the production of a material based on a doped intermetallic compound
GB9413631D0 (en) * 1994-07-06 1994-09-14 Inco Engineered Prod Ltd Manufacture of forged components
GB9419712D0 (en) * 1994-09-30 1994-11-16 Rolls Royce Plc A turbomachine aerofoil and a method of production
JP3531677B2 (en) * 1995-09-13 2004-05-31 株式会社東芝 Method of manufacturing turbine blade made of titanium alloy and turbine blade made of titanium alloy
US6551064B1 (en) * 1996-07-24 2003-04-22 General Electric Company Laser shock peened gas turbine engine intermetallic parts
US5873703A (en) * 1997-01-22 1999-02-23 General Electric Company Repair of gamma titanium aluminide articles
US6158961A (en) * 1998-10-13 2000-12-12 General Electric Compnay Truncated chamfer turbine blade
US6115917A (en) * 1998-10-20 2000-09-12 General Electric Company Single position turbine rotor repair method
RU2164180C2 (en) * 1999-06-17 2001-03-20 Институт проблем сверхпластичности металлов РАН PROCESS FOR ROLLING BILLETS OF HYPEREUTECTOID γ+α2-ALLOYS AND METHOD FOR MAKING BILLETS FOR SUCH PROCESS
RU2164263C2 (en) * 1999-06-17 2001-03-20 Институт проблем сверхпластичности металлов РАН METHOD OF PROCESSING THE BLANKS FROM γ+α2 HYPEREUTECTOID ALLOYS
KR100340806B1 (en) * 1999-10-27 2002-06-20 윤행순 Method for extending lifetime of gas turbine hot parts by hot isostatic pressing
DE10255346A1 (en) * 2002-11-28 2004-06-09 Alstom Technology Ltd Method of making a turbine blade
US6910859B2 (en) * 2003-03-12 2005-06-28 Pcc Structurals, Inc. Double-walled annular articles and apparatus and method for sizing the same
DE10313490A1 (en) * 2003-03-26 2004-10-14 Alstom Technology Ltd Thermal turbomachine with axial flow
DE10313489A1 (en) * 2003-03-26 2004-10-14 Alstom Technology Ltd Thermal turbomachine with axial flow
FR2867095B1 (en) * 2004-03-03 2007-04-20 Snecma Moteurs METHOD FOR MANUFACTURING A HOLLOW DAWN FOR TURBOMACHINE
DE102004062174A1 (en) * 2004-12-17 2006-06-22 Rolls-Royce Deutschland Ltd & Co Kg Process for producing high strength components by precision forging
DE102005045839A1 (en) * 2005-09-24 2007-04-12 Mtu Aero Engines Gmbh Method for cleaning cavities on gas turbine components
GB0601662D0 (en) * 2006-01-27 2006-03-08 Rolls Royce Plc A method for heat treating titanium aluminide
DE102007051838A1 (en) * 2007-10-30 2009-05-07 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine blade root comprises two surfaces, which is auxiliary to bearing of gas turbine blade root, which is conjoined in right angle, and transient area of surfaces is formed with tapered and even edge
CN101618499B (en) * 2008-07-04 2010-12-29 沈阳黎明航空发动机(集团)有限责任公司 Method for eliminating seaming coarse grains of rolling vane
JP2010196583A (en) * 2009-02-25 2010-09-09 Ihi Corp Fabrication method for nozzle vane
AT508323B1 (en) * 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A FORGING PIECE FROM A GAMMA TITANIUM ALUMINUM BASE ALLOY
DE102009030398A1 (en) 2009-06-25 2010-12-30 Mtu Aero Engines Gmbh Method for producing and / or repairing a blade for a turbomachine
FR2947197B1 (en) * 2009-06-26 2011-07-15 Snecma METHOD FOR MANUFACTURING A FORGED PART WITH ADAPTIVE POLISHING
CN102052342B (en) * 2009-10-29 2013-02-13 北京有色金属研究总院 Titanium alloy integral bladed disc and manufacturing method thereof
CN101988393A (en) * 2010-08-24 2011-03-23 无锡透平叶片有限公司 Extra block-free structure of blade forging
US8784066B2 (en) * 2010-11-05 2014-07-22 United Technologies Corporation Die casting to produce a hybrid component
CN102649219A (en) * 2011-02-25 2012-08-29 温永林 Processing process of profiling movable knife rest
ES2583756T3 (en) * 2011-04-01 2016-09-22 MTU Aero Engines AG Blade arrangement for a turbomachine
US8734107B2 (en) * 2011-05-31 2014-05-27 General Electric Company Ceramic-based tip cap for a turbine bucket
GB201200360D0 (en) * 2012-01-11 2012-02-22 Rolls Royce Plc Component production method
FR2997884B3 (en) * 2012-11-09 2015-06-26 Mecachrome France METHOD AND DEVICE FOR MANUFACTURING TURBINE BLADES
WO2014078467A2 (en) * 2012-11-19 2014-05-22 United Technologies Corporation Geared turbofan with fan blades designed to achieve laminar flow
WO2014137463A1 (en) * 2013-03-07 2014-09-12 United Technologies Corporation Lightweight and corrosion resistant abradable coating
RU2520250C1 (en) * 2013-03-14 2014-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Gamma titanium aluminide-based alloy
WO2014158598A1 (en) * 2013-03-14 2014-10-02 United Technologies Corporation Transient liquid phase bonded turbine rotor assembly
FR3003494B1 (en) 2013-03-19 2015-06-19 Snecma GROSS FOUNDRY FOR THE PRODUCTION OF A TURBOMACHINE ROTOR BLADE AND ROTOR BLADE MADE FROM THIS BRUT
US9849533B2 (en) 2013-05-30 2017-12-26 General Electric Company Hybrid diffusion-brazing process and hybrid diffusion-brazed article
US20150345310A1 (en) * 2014-05-29 2015-12-03 General Electric Company Turbine bucket assembly and turbine system
RU2589965C2 (en) * 2014-08-12 2016-07-10 Акционерное общество "ОДК - Пермские моторы" Method of producing article from billet made of hard-to-deform metal or alloy
DE102014226805A1 (en) * 2014-12-22 2016-06-23 Robert Bosch Gmbh Turbine wheel and method for its production
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
ES2698523T3 (en) * 2015-03-17 2019-02-05 MTU Aero Engines AG Procedure to produce a construction element from a composite material with a metallic matrix and intermetallic phases incorporated
FR3036640B1 (en) * 2015-05-26 2017-05-12 Snecma METHOD FOR MANUFACTURING A TURBOMACHINE TANK
CN106521235B (en) * 2015-09-11 2019-01-04 和昌精密股份有限公司 Titanium alloy substrate
EP3168204B1 (en) * 2015-11-12 2019-02-27 Ansaldo Energia IP UK Limited Method for manufacturing a gas turbine part
RU2640692C1 (en) * 2016-07-04 2018-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Method of producing of hollow blade for gas turbine engine
CN107497098A (en) * 2017-09-30 2017-12-22 徐州九鼎机电总厂 A kind of dumbbell processing technology
DE102018209315A1 (en) * 2018-06-12 2019-12-12 MTU Aero Engines AG Process for producing a component from gamma - TiAl and corresponding manufactured component
CN109136646A (en) * 2018-10-06 2019-01-04 广州宇智科技有限公司 A kind of corrosion-resistant biphase titanium alloy of novel high-strength low-density and its technique
FR3106851B1 (en) * 2020-01-31 2022-03-25 Safran Aircraft Engines Hot isostatic compression heat treatment of titanium aluminide alloy bars for turbomachinery low pressure turbine blades
RU2744005C1 (en) * 2020-05-09 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования. "Юго-Западный государственный университет" (ЮЗГУ) Method of electrospark alloying of titanium alloy blades of steam turbines of thermal power plants and nuclear power plants
CN114160728A (en) * 2021-11-18 2022-03-11 王江明 Machining process of aviation part turbine fan blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696715A (en) * 1951-02-07 1953-09-09 Metro Cutanit Ltd Improvements in blades for gas turbines and method of manufacture thereof
FR2136170A5 (en) * 1971-04-08 1972-12-22 Bbc Sulzer Turbomaschinen
US4746374A (en) * 1987-02-12 1988-05-24 The United States Of America As Represented By The Secretary Of The Air Force Method of producing titanium aluminide metal matrix composite articles
US4820360A (en) * 1987-12-04 1989-04-11 The United States Of America As Represented By The Secretary Of The Air Force Method for developing ultrafine microstructures in titanium alloy castings

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997640A (en) * 1975-01-28 1976-12-14 Ford Motor Company Method of forming a silicon nitride article
JPS5857005A (en) * 1981-09-30 1983-04-05 Hitachi Ltd Gas contact blade
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
EP0275391B1 (en) * 1986-11-12 1992-08-26 Kawasaki Jukogyo Kabushiki Kaisha Titanium-aluminium alloy
JPH01202389A (en) * 1988-02-05 1989-08-15 Hitachi Ltd Manufacture of steam turbine long blade
JPH0726629B2 (en) * 1989-04-28 1995-03-29 住友電気工業株式会社 Iron-based sintered blades for compressors
US5076858A (en) * 1989-05-22 1991-12-31 General Electric Company Method of processing titanium aluminum alloys modified by chromium and niobium
US5028491A (en) * 1989-07-03 1991-07-02 General Electric Company Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
JPH03171862A (en) * 1989-11-29 1991-07-25 Sharp Corp Facsimile equipment
EP0464366B1 (en) * 1990-07-04 1994-11-30 Asea Brown Boveri Ag Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
US5082506A (en) * 1990-09-26 1992-01-21 General Electric Company Process of forming niobium and boron containing titanium aluminide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB696715A (en) * 1951-02-07 1953-09-09 Metro Cutanit Ltd Improvements in blades for gas turbines and method of manufacture thereof
FR2136170A5 (en) * 1971-04-08 1972-12-22 Bbc Sulzer Turbomaschinen
US4746374A (en) * 1987-02-12 1988-05-24 The United States Of America As Represented By The Secretary Of The Air Force Method of producing titanium aluminide metal matrix composite articles
US4820360A (en) * 1987-12-04 1989-04-11 The United States Of America As Represented By The Secretary Of The Air Force Method for developing ultrafine microstructures in titanium alloy castings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 7, no. 145 (M-224)(1290) 24. Juni 1983 & JP-A-58 057 005 ( HITACHI ) 5. April 1983 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574727A1 (en) * 1992-06-13 1993-12-22 Asea Brown Boveri Ag Method for the production of a high temperature-resistant element from two different materials
EP0574708A1 (en) * 1992-06-13 1993-12-22 Asea Brown Boveri Ag Component for high temperatures, in particular turbine blade, and process for preparing this blade
EP0636701A2 (en) * 1993-07-19 1995-02-01 Howmet Corporation Creep resistant titanium aluminide alloy
EP0636701A3 (en) * 1993-07-19 1995-03-29 Howmet Corp Creep resistant titanium aluminide alloy.
US6521059B1 (en) 1997-12-18 2003-02-18 Alstom Blade and method for producing the blade
US7094035B2 (en) 2003-02-13 2006-08-22 Alstom Technology Ltd. Hybrid blade for thermal turbomachines
EP1734227A1 (en) * 2005-06-13 2006-12-20 General Electric Company V-shaped blade tip shroud and method of fabricating same
DE102009061055B4 (en) * 2009-05-13 2020-09-17 Manfred Renkel Intermetallic titanium aluminide alloy
DE102010009811B4 (en) * 2010-03-02 2013-05-16 Mtu Aero Engines Gmbh Bending device for bending a blade of a blade ring
DE102010009811A1 (en) * 2010-03-02 2011-09-08 Mtu Aero Engines Gmbh Bending apparatus for bending blade of blade cascade ring utilized for aircraft turbine, has holder for releasable fixation of blade ring, where ring and die are pivotable relative to each other around axis of pivoting unit of holder
DE102010042889A1 (en) * 2010-10-25 2012-04-26 Manfred Renkel Turbocharger component prepared from an intermetallic titanium aluminide-alloy, useful e.g. for manufacturing turbine components, comprises e.g. aluminum, rare earth metal, niobium, tungsten, tantalum or rhenium, oxygen, and titanium
WO2013048670A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
CN103826799A (en) * 2011-09-30 2014-05-28 通用电气公司 Titanium aluminide articles with improved surface finish and methods for their manufacture
CN103826799B (en) * 2011-09-30 2019-03-22 通用电气公司 Calorize titanium article and preparation method thereof with improved surface modification
CN103736904A (en) * 2013-05-13 2014-04-23 沈阳黎明航空发动机(集团)有限责任公司 Titanium alloy double-mounting-plate stator blade precision forging and forming method
CN103736904B (en) * 2013-05-13 2016-01-27 沈阳黎明航空发动机(集团)有限责任公司 The two installing plate stator blade precision forging forming method of a kind of titanium alloy
DE102015115683A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
DE102018209881A1 (en) * 2018-06-19 2019-12-19 MTU Aero Engines AG Process for producing a forged component from a TiAl alloy
EP3623100A1 (en) * 2018-09-14 2020-03-18 United Technologies Corporation Wrought root blade manufacture methods
US11306595B2 (en) 2018-09-14 2022-04-19 Raytheon Technologies Corporation Wrought root blade manufacture methods
US11773724B2 (en) 2018-09-14 2023-10-03 Rtx Corporation Wrought root blade manufacture methods

Also Published As

Publication number Publication date
RU2066253C1 (en) 1996-09-10
US5299353A (en) 1994-04-05
JPH07166802A (en) 1995-06-27
PL294502A1 (en) 1992-11-30
KR920021236A (en) 1992-12-18
CN1066706A (en) 1992-12-02
DE59106047D1 (en) 1995-08-24
PL168950B1 (en) 1996-05-31
CA2068504A1 (en) 1992-11-14
CN1025358C (en) 1994-07-06
EP0513407B1 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
EP0513407B1 (en) Method of manufacture of a turbine blade
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
DE3445767C2 (en)
DE60110294T2 (en) TiAl-based alloy, process for its production and rotor blade thereof
DE3445768C2 (en)
DE69935891T2 (en) Method for producing an engine lift valve
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP3372700B1 (en) Method for making forged tial components
DE19756354B4 (en) Shovel and method of making the blade
EP0574727B1 (en) Method for the production of a high temperature-resistant element from two different materials
DE69908063T2 (en) Process for the production of a titanium alloy reinforced by particles
DE60008116T2 (en) Superalloy with optimized high-temperature performance in high-pressure turbine disks
EP0574708B1 (en) Component for high temperatures, in particular turbine blade, and process for preparing this blade
DE2427704A1 (en) HEAT-RESISTANT NICKEL ALLOY FOR THE MANUFACTURE OF CASTINGS WITH ALIGNED SOLIDIZING STRUCTURE
EP3269838A1 (en) High temperature resistant tial alloy and method for production thereof, and component from a corresponding tial alloy
EP0035601A1 (en) Process for making a memory alloy
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
EP0115092A2 (en) Structural element with a high corrosion and oxidation resistance made from a dispersion-hardened superalloy, and process for its manufacture
DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
DE2522636A1 (en) Process for the production of a coarse-grained body from a superalloy and a body produced by the process
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
EP0274631A1 (en) Process for increasing the room temperature ductility of an oxide dispersion hardened nickel base superalloy article having a coarse columnar grain structure directionally oriented along the length
EP1341945B1 (en) Method for producing components with a high load capacity from tial alloys
EP0398121B1 (en) Process for producing coarse columnar grains directionally oriented along their length in an oxide dispersion hardened nickel base superalloy
EP0045984B1 (en) Process for manufacturing an article from a heat-resisting alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930429

17Q First examination report despatched

Effective date: 19940502

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 59106047

Country of ref document: DE

Date of ref document: 19950824

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970428

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010412

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010503

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010507

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010509

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020513

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050513