JPH01202389A - Manufacture of steam turbine long blade - Google Patents

Manufacture of steam turbine long blade

Info

Publication number
JPH01202389A
JPH01202389A JP2368788A JP2368788A JPH01202389A JP H01202389 A JPH01202389 A JP H01202389A JP 2368788 A JP2368788 A JP 2368788A JP 2368788 A JP2368788 A JP 2368788A JP H01202389 A JPH01202389 A JP H01202389A
Authority
JP
Japan
Prior art keywords
blade
beta
alloy
temp
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2368788A
Other languages
Japanese (ja)
Inventor
Masao Shiga
志賀 正男
Hiroshi Fukui
寛 福井
Mitsuo Kuriyama
栗山 光男
Katsumi Iijima
飯島 活已
Ryoichi Kaneko
金子 了市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2368788A priority Critical patent/JPH01202389A/en
Publication of JPH01202389A publication Critical patent/JPH01202389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To have a high tensile strength and to improve toughness and fatigue strength as well by forcibly cooling a (alpha+beta) type titanium alloy after heating and holding it in (alpha+beta) zone after executing a hot treatment thereon and executing an aging treatment at specified temp. CONSTITUTION:The Ti-6A-6V-2Sn alloy of (alpha+beta) type is forcibly cooled after holding it by heating at the temp. of 10-60 deg.C lower than a beta transformation temp. after executing rough forging/stamp forging thereon. It is then subjected to machining in specified wing shape, a beta type Ti alloy plate is welded to the tip of the blade and the deformation caused by welding is subjected to a primary straightening at the temp. of 150-350 deg.C. Moreover secondary straightening, aging treatment and welding residual stress removing treatment are simultaneously executed at 500-650 deg.C by forcibly bundling it on the jig having specified wing profile shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸気タービン長翼の製造方法に係り、特に、4
8インチ以上の長翼を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a steam turbine long blade, and in particular, to a method for manufacturing a steam turbine long blade.
The present invention relates to a method for manufacturing long wings of 8 inches or more.

〔従来の技術〕[Conventional technology]

33.5“長翼には、12Crtilが用いられている
が、12Cr鋼では、さらに、長翼化すると遠心力が増
大するため限界にきている。そのため、軽量・高強度の
長翼材が必要になってきた。その長翼材にはチタン合金
が最も有望と考えられている。
12Crtil is used for 33.5" long blades, but 12Cr steel has reached its limit as centrifugal force increases as the blade becomes longer. Therefore, lightweight and high strength long blade material is used. Titanium alloys are considered the most promising material for long wings.

40インチ長翼までは引張強さ95kg/mnzクラス
のチタン合金で製造可能であるが、48インチ長翼にな
ると引張強さ115 kg/ +nm”クラスのチタン
合金が必要である。引張強さ115 k、H/+n2以
上の材料は、時効硬化性のβ型チタン合金がある。しか
し、このβ型チタン合金は靭性が低い欠点があるため、
翼全体をこの合金で製造するには問題がある。なお、こ
のクラスの(α+β)型チタン合金材料は、特開昭61
−284560号公報に開示されているが、48インチ
長長翼上は、さらに靭性の高い材料の開発が望まれてお
り改良が必要である。
Up to 40-inch long wings can be manufactured using titanium alloy with a tensile strength of 95 kg/mnz class, but for 48-inch long wings, a titanium alloy with a tensile strength of 115 kg/+nm" class is required. Tensile strength 115 Materials with k, H/+n2 or higher include age-hardening β-type titanium alloys.However, this β-type titanium alloy has the disadvantage of low toughness, so
There are problems with manufacturing the entire wing from this alloy. This class of (α+β) type titanium alloy materials is disclosed in Japanese Patent Application Laid-Open No. 61
Although it is disclosed in Japanese Patent No. 284560, it is desired to develop a material with even higher toughness for the 48-inch long blade, and improvement is necessary.

また、従来蒸気タービン翼には主に12Cr系ステンレ
ス鋼が用いられている。この場合には、蒸気中の水滴に
よる翼先端の二ローション防止のために、ステライト板
を溶接している。この溶接により変形するが、12Cr
鋼の場合には、変形を戻す方向に単に曲げや捩りを加え
ることにより、矯正が可能であった。
Furthermore, conventionally, 12Cr stainless steel has been mainly used for steam turbine blades. In this case, the stellite plate is welded to prevent the tip of the blade from getting wet due to water droplets in the steam. Although deformed by this welding, 12Cr
In the case of steel, it has been possible to correct the deformation by simply bending or twisting it in the direction that reverses the deformation.

一方、チタン合金翼の場合には、12Crllのような
曲げや捩りよる矯正では、翼が割れてしまうので、不可
能とされていた。
On the other hand, in the case of titanium alloy blades, it has been considered impossible to straighten the blade by bending or twisting as in 12Crll because the blade will break.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

翼長を48インチまで長くしようとすると、翼に作用す
る遠心力が著しく高くなるので、引張強さ115 kg
/ nuz以上の翼材が必要になる。
If you try to increase the wing span to 48 inches, the centrifugal force acting on the wing will increase significantly, so the tensile strength will be 115 kg.
/ nuz or higher wing material is required.

また、高い引張強さとともに、靭性及び疲労強度の高い
ことも重要である。靭性としてはVノツチシャルピー衝
撃値1.4kgm以上、−千万回疲労強度は55 kg
/ rrtnz以上が必要である。
In addition to high tensile strength, it is also important to have high toughness and fatigue strength. In terms of toughness, the V-notch Charpy impact value is 1.4 kgm or more, and the -10 million cycle fatigue strength is 55 kg.
/rrtnz or higher is required.

C課厘を解決するための手段〕 上記の目的は、(α+β)型チタン合金に熱間加工を施
した後、(α+β)領域に加熱・保持してから強制冷却
し、次いで500〜650℃で時効処理を施すことによ
り達成される。時効処理は、翼母材へのエロージョンシ
ールド板溶接後の、応力除去焼鈍と兼ねて行なう。
Means for solving Section C] The above purpose is to hot work an (α+β) type titanium alloy, heat it to the (α+β) region, hold it, forcefully cool it, and then heat it to a temperature of 500 to 650°C. This is achieved by subjecting it to an aging treatment. The aging treatment is also performed as stress relief annealing after welding the erosion shield plate to the blade base material.

また、溶接によって生じた変形は、150℃〜350℃
の温度で一次矯正を行なった後、所定の翼プロファイル
形状をもつ治具に強制拘束した状態で500〜600℃
で二次矯正を行なうことにより修正することができる。
In addition, the deformation caused by welding is 150℃~350℃
After primary straightening at a temperature of
It can be corrected by performing secondary correction.

この二次矯正は上述の時効処理を兼ねて行なう。This secondary correction is also performed as the above-mentioned aging treatment.

〔作用〕[Effect]

熱間鍛造後に、(α+β)領域に加熱・保持し強制冷却
することにより、α晶とα′フマルンサイトの二相組織
が微細化・均質化し、延性が向上する。
After hot forging, by heating and holding in the (α+β) region and forced cooling, the two-phase structure of α crystals and α′ fumarunsite becomes finer and more homogeneous, improving ductility.

続く500℃〜650℃の加熱により、時効硬化し高い
引張強さが得られる。
Subsequent heating at 500°C to 650°C results in age hardening and high tensile strength.

(α+β)域の溶体化温度はβ変態点より、10〜50
℃低い温度が良い。あまり、この温度を低くすると、α
晶が多い組織となり疲労強度が低くなってしまう。
The solution temperature in the (α+β) region is 10 to 50° below the β transformation point.
A lower temperature is better. If this temperature is lowered too much, α
This results in a structure with many crystals, resulting in low fatigue strength.

次に、時効処理(二次矯正)前の一次矯正について説明
する。
Next, primary correction before aging treatment (secondary correction) will be explained.

一次矯正の温度は、150℃より低い温度で行うと、材
料の変形抵抗が大きく、かつ、延性が小さいために、β
型合金のエロージョンシールド材にき裂がはいり易い。
If the temperature of the primary straightening is lower than 150°C, the deformation resistance of the material will be large and the ductility will be small, so β
Cracks easily form in the mold alloy erosion shield material.

また、350℃より高い温度では、β型合金の二ローシ
ョンシールド材にω相が析出し延性が低くなるために、
次の二次矯正の負荷の途中でエロージョンシールド材に
き裂が入り易い。従って、−次矯正は150〜350℃
の温度範囲で行なわなければならず200℃〜300℃
で行なうのが好ましい。
In addition, at temperatures higher than 350°C, the ω phase precipitates in the β-type alloy two-lotion shield material, resulting in lower ductility.
Cracks tend to occur in the erosion shield material during the loading of the next secondary correction. Therefore, -order correction is 150 to 350℃
Must be carried out in a temperature range of 200℃~300℃
It is preferable to do so.

〔実施例〕〔Example〕

〈実施例1〉 第1表に示す組成のTi−6Al−6V−2Sn系合金
素材を熱間鍛造後、第2表に示す熱処理を施した。
<Example 1> A Ti-6Al-6V-2Sn alloy material having a composition shown in Table 1 was hot forged and then subjected to heat treatment shown in Table 2.

第   1   表 この素材のβ変態温度は950 ℃であった。比較材(
1)はAMS規格の焼鈍処理を施したものであるが、引
張強さが低く、長翼材として必要な強度(T 、 S 
> 115 kg/ mm2)を得ることができない。
Table 1 The β-transformation temperature of this material was 950°C. Comparative material (
1) is annealed according to the AMS standard, but its tensile strength is low and the strength (T, S) required for a long wing material is low.
> 115 kg/mm2).

溶体化・時効処理を施しても、溶体化温度及び時効温度
が低い場合には、長翼材として要求される靭性(Vノツ
チシャルビ衝撃値> 1 、4 kg −m )が得ら
れない。
Even if solution treatment and aging treatment is performed, if the solution temperature and aging temperature are low, the toughness required for a long wing material (V-notch shock value > 1, 4 kg-m) cannot be obtained.

本発明材(1)及び(2)のように、適正な溶体化温度
、及び、時効温度により、溶体化・時効処理を施すこと
によって、48インチ長翼として必要な引張強さ、衝撃
値及び疲労強度(55kg/mm2以上)をもつ材料を
製造することができる。
As with the present invention materials (1) and (2), by applying solution and aging treatment at appropriate solution temperature and aging temperature, the tensile strength, impact value and Materials with fatigue strength (55 kg/mm2 or more) can be manufactured.

第1図に示すように1本発明以外の熱処理温度では、4
8インチ長翼として必要な機械的性質を得ることができ
ない。
As shown in FIG. 1, at heat treatment temperatures other than those of the present invention, 4
It is not possible to obtain the mechanical properties required for an 8-inch long wing.

〈実施例2〉 次に本発明によるチタン翼の製造例を説明する。<Example 2> Next, an example of manufacturing a titanium blade according to the present invention will be described.

第1図に示すように、まず、丸棒素材を荒鍛造後、95
0〜850℃(α−β温度域)で影付鍛造し、次いで9
20℃水焼入れ後所定の形状に機械加工した。
As shown in Figure 1, first, after rough forging the round bar material,
Shade forging at 0 to 850℃ (α-β temperature range), then 9
After water quenching at 20°C, it was machined into a predetermined shape.

翼の先端部には水蒸気中の水滴による二ローションを防
止するため、β型チタン合金(T i −15V −3
Cr −3A Q −38n合金)を電子ビーム溶接し
た。
The tips of the blades are made of β-type titanium alloy (Ti-15V-3) to prevent water droplets from forming in the water vapor.
Cr-3A Q-38n alloy) was electron beam welded.

溶接によって変形が生じるので、300℃で一次矯正を
行ない、おおざっばに変形を直した。次いで、所定の翼
プロファイル形状をもつ治具に強制拘束した状態で56
0℃で四時間加熱(二次矯正)を行なった。
Since deformation occurs due to welding, primary straightening was performed at 300°C to roughly correct the deformation. Next, 56 blades were forcibly restrained in a jig having a predetermined blade profile shape.
Heating was performed at 0° C. for 4 hours (secondary correction).

この二ローションシールド材は、Ti−15V−3Cr
−3Afl−38n合金製の板で、あらかじめ800″
cX20分の油焼入れを施した材料である。
This two lotion shield material is Ti-15V-3Cr
-3Afl-38n alloy plate, 80″ in advance
This is a material that has been oil quenched for cX20 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火力発電プラントの発電効率を高める
ことができ、省エネルギ及び発電コストの低減ができる
According to the present invention, the power generation efficiency of a thermal power plant can be increased, and energy savings and power generation costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 1、チタン合金製の長翼を製造する方法において、(α
+β)型のTi−6Al−6V−2Sn合金に荒鍛造・
形打鍛造を施した後、β変態温度より10〜60℃低い
温度に加熱保持してから強制冷却し、次いで、所定翼形
状に機械加工してから翼の先端にβ型のTi合金板を溶
接し、溶接によつて生じた変形を、150℃〜350℃
の温度で一次矯正を行ない、さらに、所定の翼プロファ
イル形状をもつ治具に強制拘束した状態で500〜65
0℃で二次矯正と時効処理、及び、溶接残留応力除却処
理を同時に行なうことを特徴とする蒸気タービン長翼の
製造方法。
1. In the method of manufacturing a titanium alloy long blade, (α
+β) type Ti-6Al-6V-2Sn alloy with rough forging and
After die forging, the blade is heated and maintained at a temperature 10 to 60 degrees Celsius lower than the β-transformation temperature, then forcedly cooled, then machined into a predetermined blade shape, and a β-type Ti alloy plate is placed at the tip of the blade. Weld and deformation caused by welding at 150℃ to 350℃
Primary straightening is carried out at a temperature of
A method for manufacturing a long steam turbine blade, characterized in that secondary straightening, aging treatment, and welding residual stress removal treatment are performed simultaneously at 0°C.
JP2368788A 1988-02-05 1988-02-05 Manufacture of steam turbine long blade Pending JPH01202389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2368788A JPH01202389A (en) 1988-02-05 1988-02-05 Manufacture of steam turbine long blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2368788A JPH01202389A (en) 1988-02-05 1988-02-05 Manufacture of steam turbine long blade

Publications (1)

Publication Number Publication Date
JPH01202389A true JPH01202389A (en) 1989-08-15

Family

ID=12117353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2368788A Pending JPH01202389A (en) 1988-02-05 1988-02-05 Manufacture of steam turbine long blade

Country Status (1)

Country Link
JP (1) JPH01202389A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299353A (en) * 1991-05-13 1994-04-05 Asea Brown Boveri Ltd. Turbine blade and process for producing this turbine blade
WO1997010066A1 (en) * 1995-09-13 1997-03-20 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
EP0780187A1 (en) * 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
EP0980961A1 (en) * 1998-08-07 2000-02-23 Hitachi, Ltd. Steam turbine blade, method of manufacturing the same, steam turbine power generating plant and low pressure steam turbine
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium
CN1301820C (en) * 2004-10-20 2007-02-28 南通金通灵风机有限公司 Method for welding impellers in high strength and eliminating stress of impellers
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
CN102266901A (en) * 2011-07-14 2011-12-07 西北工业大学 Forging method capable of reducing deformation resistance of TC4 titanium alloy blade
CN102319864A (en) * 2011-07-14 2012-01-18 西北工业大学 Forging method for reducing forging temperature of TC4 alloy blade
CN102319865A (en) * 2011-07-14 2012-01-18 西北工业大学 Forging method for improving mechanical property of TC4 alloy blade
CN103341580A (en) * 2013-07-18 2013-10-09 东方电气集团东方汽轮机有限公司 Free forging method for medium-pressure combined regulation valve stem workblank of supercritical turbine
JP2014173582A (en) * 2013-03-13 2014-09-22 Mitsubishi Heavy Ind Ltd Method for making steam turbine blade
CN104854314A (en) * 2012-12-19 2015-08-19 三菱日立电力系统株式会社 Method for manufacturing turbine rotor blade
CN108246963A (en) * 2017-12-07 2018-07-06 陕西宏远航空锻造有限责任公司 A kind of forging method of aluminum blades
CN114107858A (en) * 2021-11-30 2022-03-01 长安大学 Titanium alloy with good matching of strength and toughness and processing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299353A (en) * 1991-05-13 1994-04-05 Asea Brown Boveri Ltd. Turbine blade and process for producing this turbine blade
WO1997010066A1 (en) * 1995-09-13 1997-03-20 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
US6127044A (en) * 1995-09-13 2000-10-03 Kabushiki Kaisha Toshiba Method for producing titanium alloy turbine blades and titanium alloy turbine blades
EP0780187A1 (en) * 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
FR2742689A1 (en) * 1995-12-22 1997-06-27 Gec Alsthom Electromec PROCESS FOR MANUFACTURING A TITANIUM ALPHA BETA DARK COMPRISING A METASTABLE BETA TITANIUM INSERT, AND A DUST PRODUCED BY SUCH A PROCESS
EP0980961A1 (en) * 1998-08-07 2000-02-23 Hitachi, Ltd. Steam turbine blade, method of manufacturing the same, steam turbine power generating plant and low pressure steam turbine
US6206634B1 (en) 1998-08-07 2001-03-27 Hitachi, Ltd. Steam turbine blade, method of manufacturing the same, steam turbine power generating plant and low pressure steam turbine
US6493936B2 (en) 1998-08-07 2002-12-17 Hitachi, Ltd. Method of making steam turbine blade
CN1301820C (en) * 2004-10-20 2007-02-28 南通金通灵风机有限公司 Method for welding impellers in high strength and eliminating stress of impellers
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
CN102266901A (en) * 2011-07-14 2011-12-07 西北工业大学 Forging method capable of reducing deformation resistance of TC4 titanium alloy blade
CN102319864A (en) * 2011-07-14 2012-01-18 西北工业大学 Forging method for reducing forging temperature of TC4 alloy blade
CN102319865A (en) * 2011-07-14 2012-01-18 西北工业大学 Forging method for improving mechanical property of TC4 alloy blade
CN104854314A (en) * 2012-12-19 2015-08-19 三菱日立电力系统株式会社 Method for manufacturing turbine rotor blade
US9919392B2 (en) 2012-12-19 2018-03-20 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing turbine rotor blade
JP2014173582A (en) * 2013-03-13 2014-09-22 Mitsubishi Heavy Ind Ltd Method for making steam turbine blade
US10107113B2 (en) 2013-03-13 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine vane manufacturing method
CN103341580A (en) * 2013-07-18 2013-10-09 东方电气集团东方汽轮机有限公司 Free forging method for medium-pressure combined regulation valve stem workblank of supercritical turbine
CN103341580B (en) * 2013-07-18 2015-06-24 东方电气集团东方汽轮机有限公司 Free forging method for medium-pressure combined regulation valve stem workblank of supercritical turbine
CN108246963A (en) * 2017-12-07 2018-07-06 陕西宏远航空锻造有限责任公司 A kind of forging method of aluminum blades
CN114107858A (en) * 2021-11-30 2022-03-01 长安大学 Titanium alloy with good matching of strength and toughness and processing method thereof

Similar Documents

Publication Publication Date Title
JPH01202389A (en) Manufacture of steam turbine long blade
US6787740B2 (en) Integrally bladed rotor airfoil fabrication and repair techniques
JP4546318B2 (en) Ni-based alloy member and manufacturing method thereof, turbine engine component, welding material and manufacturing method thereof
EP0683242B1 (en) Method for making titanium alloy products
JP5409708B2 (en) Precipitation hardening type martensitic stainless steel and steam turbine long blades using the same
US20120279066A1 (en) WELDING Ti-6246 INTEGRALLY BLADED ROTOR AIRFOILS
CN107250416A (en) The manufacture method of Ni base superalloy
JPS58110661A (en) Heat resistant steel
US6814820B2 (en) Heat treatment of titanium-alloy article having martensitic structure
JP2000212709A (en) Thermal-mechanical method for producing superalloy improving strength and thermal stability
JPS6145699B2 (en)
CN112756769B (en) Titanium alloy friction welding joint optimization method based on thermal coupling condition
CN111763812B (en) Heat treatment method for improving impact toughness of titanium alloy linear friction welding joint
US20180209026A1 (en) Turbine Rotor Blade Manufacturing Method
JPWO2008072303A1 (en) Friction welding method, centrifugal gas turbine manufacturing method, and turbocharger manufacturing method
JPS5867854A (en) Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPH01127652A (en) Manufacture of titanium alloy blade
JPH01182505A (en) Manufacture of turbine blade
JPH10273733A (en) Heat treatment for recycling of equipment made of stainless steel for nuclear power use
JP2001107138A (en) Welded impeller having high fatigue strength
JP2849496B2 (en) Manufacturing method of high and low pressure integrated rotor
JP3036396B2 (en) Method for producing near β type titanium alloy
CN114921623A (en) Stainless steel stress removing and annealing method
RU2464142C1 (en) Method of machining part blanks made from refractory nickel alloys prior to jointing them by soldering-welding
JPS62113801A (en) Turbine blade