JPH01127652A - Manufacture of titanium alloy blade - Google Patents

Manufacture of titanium alloy blade

Info

Publication number
JPH01127652A
JPH01127652A JP28330087A JP28330087A JPH01127652A JP H01127652 A JPH01127652 A JP H01127652A JP 28330087 A JP28330087 A JP 28330087A JP 28330087 A JP28330087 A JP 28330087A JP H01127652 A JPH01127652 A JP H01127652A
Authority
JP
Japan
Prior art keywords
titanium alloy
blade
shield material
deformation
erosion shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28330087A
Other languages
Japanese (ja)
Other versions
JP2550112B2 (en
Inventor
Masao Shiga
志賀 正男
Hiroshi Nakayama
洋 中山
Takeshi Onoda
武志 小野田
Hiroshi Fukui
寛 福井
Mitsuo Kuriyama
栗山 光男
Masao Takeda
武田 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62283300A priority Critical patent/JP2550112B2/en
Publication of JPH01127652A publication Critical patent/JPH01127652A/en
Application granted granted Critical
Publication of JP2550112B2 publication Critical patent/JP2550112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To manufacture a titanium alloy blade having the prescribed profile without any defect by welding an erosion shield material at tip part of the titanium alloy-made turbine blade and executing an aging treatment and secondary straightening by forcedly restricting to a jig after primary straightening. CONSTITUTION:At the tip part of alpha+beta type titanium alloy blade 1, beta-type titanium alloy-made erosion shield material 1a is welded. After that, the primary straightening is executed to the deformation developed by this welding at the temp. lower than the aging temp. of the above erosion shield material 1a, particularly about 150-350 deg.C. By this method, the titanium alloy blade 1 having almost the same shape before welding is forcedly restricted on a base 3 with a profile fixed jig 4 having the prescribed blade profile shape and a holding metal 2. Under this prescribed profile shape, the aging treatment and the secondary straightening for the erosion shield material 1a are executed at the same time. By this method, the deformation developed at the time of welding is straightened without defect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン合金製の製作方法に関するもので、と
くに、チタン合金製の製作中に生ずる変形をクリープ変
形させて矯正する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing titanium alloys, and in particular to a method for correcting deformation that occurs during the manufacturing of titanium alloys by creep deformation. be.

〔従来の技術〕[Conventional technology]

従来、蒸気タービン用のタービン翼は、主に12Cr系
の材料であり、この材料の場合でも切削加工時の応力や
蒸気中の水分による翼の蒸気入口側の二ローション防止
のためにステライト板を溶接する際の熱応力により翼に
変形が生じ、その変形を矯正するための処置が施されて
いるが、12Cr系材料の場合には、変形を戻す方向に
単に曲げや捩りを加えることにより、矯正が可能であっ
た。
Conventionally, turbine blades for steam turbines are mainly made of 12Cr material, and even in the case of this material, a stellite plate is used on the steam inlet side of the blade to prevent stress during cutting and moisture in the steam from forming on the steam inlet side of the blade. Thermal stress during welding causes deformation in the blade, and measures are taken to correct the deformation, but in the case of 12Cr-based materials, simply bending or twisting in the direction to restore the deformation, Correction was possible.

一方、チタン合金製の場合は、前記12Cr系材料のよ
うな曲げや捩りによる矯正では、翼が割れてしまうので
、不可能とされていた。
On the other hand, in the case of a titanium alloy, it has been considered impossible to straighten the blade by bending or twisting as in the case of the 12Cr-based material because the blade will break.

そこで、チタン合金製の最近の変形矯正方法については
、精密鍛造メーカーなどで実施されているが、その方法
は、翼を500℃〜600’Cに加熱し、同温度に加熱
した金型を用い、プレスで圧力を加えて保持する方法で
ある。しかし、チタン合金は、変形を与えても1時間の
経過で元に戻るというスプリングバックの性質が強く、
金型も正規の寸法よりスプリングバック分を考慮して多
めに曲げる方法をとっている。
Therefore, the latest deformation correction method for titanium alloys is being carried out by precision forging manufacturers, etc., but this method involves heating the blade to 500°C to 600'C and using a mold heated to the same temperature. This is a method of holding by applying pressure with a press. However, titanium alloys have a strong springback property, meaning that even if they are deformed, they will return to their original state within an hour.
The mold is also bent a little more than the standard dimensions to account for springback.

特公昭60−39744号公報にはチタン合金を矯正治
具に固定し、時効熱処理することにより矯正と時効とを
同時に行う方法が示されている。しかし、この方法でも
、スプリングバックが大きく、所定形状への矯正ができ
ない。
Japanese Patent Publication No. 60-39744 discloses a method of simultaneously performing straightening and aging by fixing a titanium alloy to a straightening jig and subjecting it to aging heat treatment. However, even with this method, springback is large and correction to a predetermined shape cannot be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

チタン合金翼のとくに、α+β系の合金では、結晶構造
が稠密六方晶であることやヤング率が鋼の半分であるこ
とや伸びが小さいなど、通常では塑性変形しにくい材料
であるため、前記従来の技術の中で述べた12Cr鋼の
場合のように室温で曲げや捩りを与えて矯正する方法で
は、矯正途中で突然破断または亀裂が入ってしまうとい
う問題点があった。また蒸気中に含まれる水滴によるエ
ロージョンを防止するためにチタン合金翼の蒸気入口側
にβ系チタン合金をエロージヨンシールド材として溶接
した場合など、α+β型とβ型チタン合金でスプリング
バック量が異なる等、前述のように500℃〜600℃
に加熱し、スプリングバック量を見込んで正規寸法より
過剰に曲げもしくは捩りを加えることにより変形を矯正
することは、非常にむずかしい。またチタン合金の性質
上、加熱することにより、曲げや捩りを室温よりは加え
やすくなるために、−時的に変形を矯正することができ
るが、そのままでは、時間の経過とともに、変形を矯正
する前の状態に戻ってしまい、しかも、α+β型とβ型
チタン合金の溶接部は、それぞれの戻り量に違いがでる
ため、欠陥や残留応力となってタービン翼として不適当
なものとなるという問題点がある。
Titanium alloy blades, especially α+β alloys, have a close-packed hexagonal crystal structure, have a Young's modulus that is half that of steel, and have low elongation, making them difficult to deform plastically. In the method of straightening the steel by bending or twisting it at room temperature, as in the case of 12Cr steel described in the above technique, there was a problem in that the steel suddenly broke or cracked during the straightening process. In addition, the amount of springback differs between α+β type and β type titanium alloy, such as when a β-based titanium alloy is welded as an erosion shield material to the steam inlet side of a titanium alloy blade to prevent erosion due to water droplets contained in steam. etc., 500℃~600℃ as mentioned above
It is extremely difficult to correct the deformation by heating the material to a certain temperature and then bending or twisting it in excess of the normal dimensions to account for the amount of springback. Also, due to the nature of titanium alloys, heating makes it easier to bend or twist than at room temperature, so deformation can be corrected over time; The problem is that the welded parts of the α+β type and β-type titanium alloys return to their previous state, and there is a difference in the amount of return of each weld, resulting in defects and residual stress, making the blade unsuitable for use as a turbine blade. There is a point.

本発明は、このような問題点を解決しようとするもので
ある。すなわち、本発明は、α+β型のチタン合金翼に
エロージヨンシールド材としてβ型チタン合金例えばT
i−15%M o −5%Zr’。
The present invention attempts to solve these problems. That is, the present invention uses a β-type titanium alloy, for example, T, as an erosion shield material for an α+β-type titanium alloy blade.
i-15%Mo-5%Zr'.

Ti−15%MO−5%Zr−3%AQを溶接したチタ
ン合金翼においても、その溶接時の変形を、翼本体、エ
ロージヨンシールド材、溶接部などに、欠陥を生じさせ
ることなく、適正な変形の矯正方法を提供することを目
的とするものである。
Even in titanium alloy blades welded with Ti-15%MO-5%Zr-3%AQ, deformation during welding can be properly controlled without causing defects in the blade body, erosion shield material, welded parts, etc. The purpose of this invention is to provide a method for correcting deformity.

〔問題点を解決するための手段〕[Means for solving problems]

上記のチタン合金製タービン翼にエロージョンシールド
材を溶接する工程で発生した変形は、シールド材の時効
温度より低い温度、特に150℃〜350℃の温度で一
次矯正を行ないほぼもとの溶接前の形状にした後、所定
の翼プロファイル形状を有する治具に強制拘束し、所定
のプロファイルに固定した状態で、シールド材の時効温
度、特に450℃〜550℃で時効処理と同時に二次矯
正を行うことにより所定のプロファイルに修正すること
ができる。また二次矯正中には、β型チタン合金のエロ
ージヨンシールド材の時効作用もあり、水滴によるエロ
ージョン防止のために必要な十分に高い硬さを有するエ
ロージヨンシールド部が得られる。
The deformation that occurred during the process of welding the erosion shield material to the titanium alloy turbine blade mentioned above can be reduced to almost the original state before welding by performing primary straightening at a temperature lower than the aging temperature of the shield material, especially at a temperature of 150°C to 350°C. After forming the shape, it is forcibly restrained in a jig having a predetermined blade profile shape, and while it is fixed to the predetermined profile, secondary straightening is performed at the aging temperature of the shield material, particularly 450°C to 550°C, at the same time as aging treatment. This allows modification to a predetermined profile. Furthermore, during the secondary straightening, there is also an aging effect on the erosion shield material made of β-type titanium alloy, and an erosion shield portion having sufficiently high hardness necessary to prevent erosion by water droplets is obtained.

〔作用〕[Effect]

チタン合金は高温状態で荷重を加えると永久変形する性
質を有するから、チタン合金翼を高温で矯正するととも
に、治具で強制拘束して熱処理を行なうことにより、欠
陥の生じない適正に矯正されたチタン合金翼が得られる
Titanium alloys have the property of being permanently deformed when a load is applied at high temperatures, so by straightening the titanium alloy blades at high temperatures and heat-treating them while forcibly restraining them with a jig, it is possible to properly straighten them without causing defects. A titanium alloy blade is obtained.

すなわち、チタン合金は通常の鋼よりかなり低い温度で
クリープ変形を生ずる。第4図はTi−6AQ−4Vの
チタン合金のクリープ変形の特性を示す図であり、負荷
応力=耐力×0.7 の荷重をかけた場合の時間に対す
るクリープ変形量の関係を示したものである。常温では
、100時間でも変形量が0.01 以下であるが、4
00 ’C〜500℃の場合は10時間で5%に達して
いる。
That is, titanium alloys undergo creep deformation at significantly lower temperatures than normal steel. Figure 4 shows the creep deformation characteristics of Ti-6AQ-4V titanium alloy, and shows the relationship between the amount of creep deformation and time when a load of load stress = proof stress x 0.7 is applied. be. At room temperature, the amount of deformation is less than 0.01 even after 100 hours, but 4
In the case of 00'C to 500C, it reached 5% in 10 hours.

また第5図は前記チタン合金の負荷除去後100時間経
過したときの作用応力とスプリングバック量の関係を示
す。つまり、常温で負荷をかけただけのものは、50%
以上元の状態に戻ってしまうが、熱間(150℃〜35
0℃)で負荷を加え、変形を矯正し、治具に締付けて熱
処理(450℃〜550℃で1〜15時間保持)したも
のについては、スプリングバック量が10%以下まで下
がった。しかし、熱間でも負荷の量が少ない、すなわち
、変形の矯正が不充分だと、スプリングバック量も多く
なっている。この理由は、第6図に示すように、チタン
合金の変形の場合、変形領域の中に塑性変形域と弾性変
形域があり、負荷を加え続けると、時間とともに塑性変
形域が広がって永久変形となり、弾性変形域として残っ
た部分はスプリングバックして元に戻るわけである。つ
まり、第7図に示すように、時間とともに増える塑性変
形域は、同じであるから、初期において、−次矯正を行
ない、塑性変形域を増やしておけば、最終的に残る弾性
変形域は少なくなり、その分だけ、スプリングバック量
は少なくなる。また−次矯正に一次矯正の温度は、15
0℃より低い温度で行うと、材料の変形抵抗が大きく、
かつ延性が小さいために、β型合金のエロージヨンシー
ルド材にき裂がはいり易い。また350℃より高い温度
では、β型合金のエロージョンシールド材にW相が析出
し延性が低くなるために、次に二次矯正の負荷途中でエ
ロージョンシールド材にき裂が入り易い。したがって、
−次矯正は150〜350℃の温度範囲で行なうのが好
ましい。特に、200℃〜300℃で行なうのが好まし
い。
Further, FIG. 5 shows the relationship between the applied stress and the amount of springback 100 hours after the load was removed from the titanium alloy. In other words, if the load is only applied at room temperature, 50%
It will return to its original state, but after heating (150℃~35℃)
When a load was applied at 0°C), the deformation was corrected, and the material was tightened to a jig and heat treated (maintained at 450°C to 550°C for 1 to 15 hours), the amount of springback decreased to 10% or less. However, even in hot conditions, if the amount of load is small, that is, the correction of deformation is insufficient, the amount of springback will also be large. The reason for this is that, as shown in Figure 6, in the case of titanium alloy deformation, there is a plastic deformation region and an elastic deformation region within the deformation region, and if the load continues to be applied, the plastic deformation region will expand over time and cause permanent deformation. The remaining elastically deformed area springs back and returns to its original state. In other words, as shown in Figure 7, the plastic deformation area that increases over time is the same, so if you increase the plastic deformation area by performing -order correction at the initial stage, the elastic deformation area that will ultimately remain will be smaller. Therefore, the amount of springback decreases by that amount. In addition, the temperature of the primary straightening is 15
If it is carried out at a temperature lower than 0℃, the deformation resistance of the material will be large,
In addition, due to its low ductility, cracks easily form in the β-type alloy erosion shield material. Furthermore, at temperatures higher than 350° C., the W phase precipitates in the β-type alloy erosion shield material and the ductility decreases, so that cracks are likely to occur in the erosion shield material during the course of loading during secondary straightening. therefore,
The second straightening is preferably carried out at a temperature in the range of 150 to 350°C. In particular, it is preferable to conduct the reaction at a temperature of 200°C to 300°C.

(実施例〕 第1図は本発明の方法を実施する装置の一例を示してい
る。この装置は、チタン合金翼1の翼植込み部を押える
押え金具2と、全体を支えるベース3と、翼プロファイ
ル部を固定する所定のプロファイルを形成するプロフィ
ル固定治具4とから構成された変形矯正治具である。
(Example) Fig. 1 shows an example of a device for carrying out the method of the present invention. This deformation correction jig is composed of a profile fixing jig 4 that forms a predetermined profile for fixing a profile portion.

β系のチタン合金として、重量でTi−15%M o 
−5%Zr−3%AQをエロージョンシールド材1aと
して溶接されたα+β系チタン合金翼1(重量t’Ti
−6%AQ−4%V合金)は溶接時に発生した熱応力に
より変形する。チタン合金翼は、700〜730℃で固
溶化処理した後、第3図に示す変形矯正フローチャート
のように、その先端のリーデング部にエロージヨンシー
ルド材を電子ビーム又はTIG溶接した後、まず、20
0℃〜300’Cの熱間で溶接による変形を一次矯正し
、その後に、第1図の変形矯正治具に翼植込み部および
プロフィル固定治具4に締付は所定のプロファイルにな
るまでゲージにて測定しながら矯正され、固定される。
As a β-based titanium alloy, Ti-15% Mo by weight
α+β titanium alloy blade 1 (weight t'Ti
-6%AQ-4%V alloy) is deformed due to thermal stress generated during welding. After the titanium alloy blade is solution treated at 700 to 730°C, an erosion shielding material is welded to the leading part of the tip by an electron beam or TIG, as shown in the deformation correction flowchart shown in Figure 3.
The deformation caused by welding is first corrected at a temperature of 0°C to 300'C, and then the blade implant and profile fixing jig 4 are tightened using a gauge until the desired profile is achieved. It is corrected and fixed while being measured.

その状態でチタン合金の酸化防止のため、アルゴンガス
雰囲気中において、500″Cに加熱してシールド材の
時効処理をかねて10時間保持した。その結果、翼は所
定のプロファイルとなりスプリングバックもほとんど生
せず、変形が矯正された。
In this state, in order to prevent oxidation of the titanium alloy, the shield material was aged at 500"C in an argon gas atmosphere for 10 hours. As a result, the blade had a predetermined profile and almost no springback. The deformity was corrected.

この実施例によれば、エロージヨンシールド材1aの時
効処理および残留応力の除去の効果も同時に達成される
According to this embodiment, the effects of aging treatment of the erosion shield material 1a and removal of residual stress are simultaneously achieved.

〔発明の効果〕〔Effect of the invention〕

本発明は、チタン合金翼の製作中に生ずる変形を矯正す
る方法において、その翼を治具で強制拘束して熱処理を
行なう方法であるから、チタン合金翼の製作途中で発生
した変形を無欠陥で矯正することが可能である。
The present invention is a method for correcting deformation that occurs during the manufacturing of titanium alloy blades, and the blade is forcibly restrained with a jig and heat treated. It is possible to correct it with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例を示した正
面図、第2図は第1図の切断線A−Aに沿う断面図、第
3図は本発明の方法の変形矯正工程の一例の説明図、第
4図はチタン合金のクリープ変形量の説明図、第5図は
同じくスプリングバック量の説明図、第6図は同じく変
形領域の推移の説明図、第7図は同じく変形領域の推移
のもう1つの説明図である。 率1図 も2図 第3図 亭4−図 案S図 、j’、1’1m出艮力/酊力 阜6図 鳥]図 PPr貨
FIG. 1 is a front view showing an example of an apparatus for carrying out the method of the present invention, FIG. 2 is a sectional view taken along cutting line A-A in FIG. 1, and FIG. 3 is a deformation correction process of the method of the present invention. An explanatory diagram of an example, Fig. 4 is an explanatory diagram of the creep deformation amount of titanium alloy, Fig. 5 is an explanatory diagram of the springback amount, Fig. 6 is an explanatory diagram of the transition of the deformation area, and Fig. 7 is the same FIG. 7 is another explanatory diagram of the transition of the deformation area. Rate 1 Figure 2 Figure 3 Pavilion 4-Design S Figure, j', 1'1m Output Power/Drunk Power 6 Figure Bird] Figure PPr Coin

Claims (1)

【特許請求の範囲】[Claims] 1、チタン合金製タービン翼先端にβ型チタン合金製エ
ロージヨンシールド材を溶接する工程、該溶接によつて
生じた変形を、前記エロージヨンシールド材の時効温度
より低い温度で一次矯正を行なつた後、所定の翼プロフ
ァイル形状を有する治具に強制拘束し前記所定プロファ
イル形状にした状態でエロージヨンシールド材の時効処
理と同時に前記プロファイル形状に矯正することを特徴
とするチタン合金翼の製作方法。
1. A step of welding a β-type titanium alloy erosion shield material to the tip of a titanium alloy turbine blade, and performing primary correction of the deformation caused by the welding at a temperature lower than the aging temperature of the erosion shield material. After that, the titanium alloy blade is forcibly restrained in a jig having a predetermined blade profile shape to form the predetermined profile shape, and the erosion shield material is aged and simultaneously corrected to the profile shape. .
JP62283300A 1987-11-11 1987-11-11 Titanium alloy blade manufacturing method Expired - Lifetime JP2550112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283300A JP2550112B2 (en) 1987-11-11 1987-11-11 Titanium alloy blade manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283300A JP2550112B2 (en) 1987-11-11 1987-11-11 Titanium alloy blade manufacturing method

Publications (2)

Publication Number Publication Date
JPH01127652A true JPH01127652A (en) 1989-05-19
JP2550112B2 JP2550112B2 (en) 1996-11-06

Family

ID=17663666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283300A Expired - Lifetime JP2550112B2 (en) 1987-11-11 1987-11-11 Titanium alloy blade manufacturing method

Country Status (1)

Country Link
JP (1) JP2550112B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780187A1 (en) * 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium
JP2006124830A (en) * 2004-09-30 2006-05-18 General Electric Co <Ge> Erosion and wear resistant protective structure for turbine component
CN103722108A (en) * 2013-12-06 2014-04-16 陕西宏远航空锻造有限责任公司 Titanium alloy blade forging method
CN104826895A (en) * 2015-05-14 2015-08-12 辽宁福鞍重工股份有限公司 Blank blade correction method
JP2016183612A (en) * 2015-03-26 2016-10-20 日立金属株式会社 Method and apparatus for correcting shape of turbine blade raw material and method of producing turbine blade raw material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780187A1 (en) * 1995-12-22 1997-06-25 Gec Alsthom Electromecanique Sa Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
FR2742689A1 (en) * 1995-12-22 1997-06-27 Gec Alsthom Electromec PROCESS FOR MANUFACTURING A TITANIUM ALPHA BETA DARK COMPRISING A METASTABLE BETA TITANIUM INSERT, AND A DUST PRODUCED BY SUCH A PROCESS
JP2006124830A (en) * 2004-09-30 2006-05-18 General Electric Co <Ge> Erosion and wear resistant protective structure for turbine component
EP1649970A1 (en) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Method of manufacturing a turbine blade made of titanium
CN103722108A (en) * 2013-12-06 2014-04-16 陕西宏远航空锻造有限责任公司 Titanium alloy blade forging method
JP2016183612A (en) * 2015-03-26 2016-10-20 日立金属株式会社 Method and apparatus for correcting shape of turbine blade raw material and method of producing turbine blade raw material
CN104826895A (en) * 2015-05-14 2015-08-12 辽宁福鞍重工股份有限公司 Blank blade correction method

Also Published As

Publication number Publication date
JP2550112B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
EP0812928B1 (en) Shape memory alloy treatment
AU2018201475B2 (en) Thermo-mechanical processing of nickel-base alloys
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
JP6058535B2 (en) Distortion correction by hot rolling of high strength titanium with α / β treatment
US20020185200A1 (en) Process for the improved ductility of nitinol
EP2944402A1 (en) Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
EP3950984A1 (en) Ni-based super-heat-resistant alloy and method for manufacturing ni-based super-heat-resistant alloy
US3642543A (en) Thermomechanical strengthening of the superalloys
JP2003041903A (en) Method for manufacturing blade-integrated rotor
US5102333A (en) Orthodontic process for straightening teeth
WO2015151318A1 (en) METHOD FOR PRODUCING Fe-Ni-BASED SUPER HEAT-RESISTANT ALLOY
JP2000212709A (en) Thermal-mechanical method for producing superalloy improving strength and thermal stability
JPS6039744B2 (en) Straightening aging treatment method for age-hardening titanium alloy members
JPH01202389A (en) Manufacture of steam turbine long blade
JPH01127652A (en) Manufacture of titanium alloy blade
JPH09192880A (en) Manufacture of alpha beta type titanium-made blade provided with metastable beta type titanium insert and blade made thereby
US3677830A (en) Processing of the precipitation hardening nickel-base superalloys
BR0202579B1 (en) METHOD FOR THERMAL TREATMENT OF TITANIUM ALLOY PRODUCT THAT HAS MARTENSITIVE STRUCTOR.
CN115287427B (en) Preparation method of Fe-Ni-Co-based superalloy GH907 alloy bar
JP6299344B2 (en) Method for forging disc-shaped products
JP3555353B2 (en) Straightening method for metal tubular parts
RU2133784C1 (en) Method of heat treatment of nickel-base superalloy
JPH0364435A (en) Method for forging ni base superalloy
JPS62180048A (en) Manufacture of ti alloy turbine blade
JPH01182505A (en) Manufacture of turbine blade

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12