EP0574708A1 - Component for high temperatures, in particular turbine blade, and process for preparing this blade - Google Patents

Component for high temperatures, in particular turbine blade, and process for preparing this blade Download PDF

Info

Publication number
EP0574708A1
EP0574708A1 EP93107926A EP93107926A EP0574708A1 EP 0574708 A1 EP0574708 A1 EP 0574708A1 EP 93107926 A EP93107926 A EP 93107926A EP 93107926 A EP93107926 A EP 93107926A EP 0574708 A1 EP0574708 A1 EP 0574708A1
Authority
EP
European Patent Office
Prior art keywords
section
component
alloys
blade
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93107926A
Other languages
German (de)
French (fr)
Other versions
EP0574708B1 (en
Inventor
Joachim Dr. Rösler
Manfred Dr. Thumann
Christoph Tönnes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0574708A1 publication Critical patent/EP0574708A1/en
Application granted granted Critical
Publication of EP0574708B1 publication Critical patent/EP0574708B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • Y10T428/12174Mo or W containing

Definitions

  • the invention is based on a component for high temperatures, in particular a turbine blade, with a component body containing at least a first and a second section, in which the first section is formed from a ductile material and the second section is brittle compared to the ductile material Has material.
  • the invention is also based on a method for producing such a component.
  • the component described is designed as a turbine blade and is intended for use in a gas turbine. It has a blade body cast from a eutectic alloy and containing the blade root and blade blade.
  • the blade root is formed by a ductile cast body with a non-directional structure.
  • the airfoil consists of a matrix and parallel to each other and in Fibrous crystals aligned in the longitudinal direction of the blade, which are embedded in the matrix and which are formed by directional solidification from an inductively heated melt.
  • the blade is characterized by a significantly higher creep resistance with significantly reduced ductility. In particular when producing a large airfoil, however, it is difficult to achieve a temperature gradient which is sufficiently large for a directional solidification and thus the desired high creep resistance in the airfoil.
  • the invention is based on the object of specifying a component, in particular a turbine blade, of the type mentioned, which can be used in a device operated at medium and high temperatures, in particular a turbine , characterized by a long service life, and at the same time to point out a way that makes it possible to manufacture such a component in a simple and suitable for mass production.
  • the component according to the invention is distinguished from comparable components according to the prior art by a long service life. This is due, on the one hand, to the fact that sections of the component which are subjected to different loads, in particular which comprise a blade root or an airfoil, consist of differently specified alloys and are adapted to the different requirements. Since these alloys, which are matched to the graded graded properties of the component, such as the turbine blade in particular, contain a common base material, none occur in the border area of the sections chemical reaction products. The sections therefore merge into one another without a sharp transition, so that the component according to the invention can withstand the high thermal and mechanical loads that occur in graded fashion when a thermal machine, such as, in particular, a gas turbine or a compressor, are operated.
  • the process used to manufacture the components according to the invention is characterized in that even large components with high thermal and mechanical strength can be manufactured in a simple manner suitable for mass production by common process steps, such as in particular by hot isostatic pressing or by sintering.
  • FIGS. 1 and 2 and each designed as a turbine blade 1 each contain an elongate blade 2 and a blade root 3 formed on one end of the blade 2.
  • Reference number 4 denotes a press can.
  • this press can encloses the blade root 3 and has an opening 5 filled by the blade 2, which is preferably sealed gas-tight by welding or soldering the press can 4 to the blade 2.
  • the press can 4 encloses the entire turbine blade 1.
  • the turbine blade 1 shown in FIG. 1 is manufactured as follows: A cast body designed as an airfoil 2 is guided with its one end through the opening 5 into the press can 4.
  • the press can 4 preferably made of steel, is soldered or welded to the cast body in a gas-tight manner in the region of the opening 5.
  • a cavity of the press can 4 receiving the blade root of the turbine blade 1 is filled with alloy powder.
  • the press can 4 is then evacuated and sealed gas-tight.
  • the materials for the cast body and the powder each contain one of two alloys of different chemical based on a common base material Compositions which differ from one another by the presence and / or the amount of at least one dopant alloyed into the base material.
  • An intermetallic phase in particular a gamma titanium aluminide, is preferably used as the base material.
  • At least one of the two alloys containing gamma-titanium aluminide has a proportion of at least 0.2 and at most 8 atomic percent of dopant, such as one or more of the elements B, C, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd , Si, Ta, V, Y, W and Zr.
  • a typical alloy for the airfoil 2 has, for example, the following composition: In atom%: 48 Al - 3 Cr - remainder Ti and impurities; In% by weight: 33.2 Al - 3.9 Cr - impurities less than 0.5 - balance Ti.
  • the size of the powder particles is typically less than 500 ⁇ m.
  • Another typical alloy for the airfoil has the following composition in atomic%: 48 Al - 2 Cr - 2 Ta - balance Ti and impurities.
  • a typical alloy for the blade root 3 has, for example, the following composition: In atom%: 48 Al - 2 Cr - 2 Nb - balance Ti and impurities; In% by weight: 32.5 Al - 2.9 Cr - 5 Nb - impurities less than 0.5 - balance Ti.
  • the size of the powder particles is typically less than 200 ⁇ m, preferably less than 100 ⁇ m.
  • Another typical alloy for the blade root has the following composition in atomic%: 48 Al - 2 Cr - 2 Ta - 0.5 Si - balance Ti and impurities.
  • the sample completed by gas-tight closing of the press can 4 is brought into a press device and compressed hot isostatically at temperatures between 900 and 1200 ° C.
  • a typical pressing process at approx. 1070 ° C took approx. 3 hours at a pressure of approx. 250 MPa.
  • the two alloys were compacted pore-free with a gradual transition from the airfoil 2 to the airfoil 3, without chemical reaction products being formed in the border area.
  • This composite material already having the shape of the turbine blade, was then typically heat-treated at temperatures above 700 ° C. for about 4 hours after removal of the deformed press can 4. Subsequently, the turbine blade according to the invention was completed by slight material-removing processing, such as grinding, polishing and / or electrochemical treatment.
  • a press can 4 which was extended in the longitudinal direction and accommodates the entire turbine blade 1 was used.
  • the cast body forming the airfoil 2 was first introduced into this press can 4 and the alloy powder was subsequently introduced in accordance with the exemplary embodiment described above.
  • the press can 4 was then evacuated and sealed gas-tight.
  • the test specimen produced in this way was treated in accordance with the exemplary embodiment described above.
  • the alloys used had the same composition as in the previously described embodiment.
  • a body made of a hot-isostatically compressed powder can also be introduced into the press can 4.
  • a further alternative embodiment of the invention that was used to form the airfoil Alloy powder with 48 atomic percent Al, 3 atomic percent Cr, the rest of Ti and small amounts of impurities at a temperature of approx. 1070 ° C and a pressure of approx. 250 MPa compressed hot isostatically for approx. 3 hours.
  • the resulting body was then brought into the press can 4 shown in FIG.
  • an alloy powder of the previously specified chemical composition forming the airfoil 2 was filled into the press can 4.
  • An alloy powder forming the blade root 3 was then backfilled with the composition specified in the previously described exemplary embodiments.
  • the press can 4 was then evacuated and sealed gas-tight without shaking and without mixing the filled powders with one another.
  • hot isostatic pressing for approx. 3 hours at approx. 1070 ° C and a pressure of approx. 250 MPa, a non-porous material was produced, from which after removing the press jug 4, after two hours of heat treatment at approx. 1350 ° C and post-processing to remove the material a turbine blade was manufactured according to the invention.
  • a turbine blade designed in this way can also be taken from FIG. 2 in accordance with the previously mentioned embodiment variants.
  • the micrograph according to FIG. 3 shows the structure and microstructure of a part indicated by a frame in FIG. 2 a turbine blade according to the invention, produced exclusively from alloy powders, as described above. It can be seen from this that the alloy forming the airfoil 2 has a coarse-grained microstructure and the alloy forming the airfoil 3 has a fine-grained microstructure, and that no undesired reaction zone with chemical reaction products or with precipitates occurs at the transition zone between the two alloys. Both alloys gradually merge into one another by interlocking coarse and fine crystallites.
  • the alloy forming the airfoil 2 has a ductility of approximately 0.5% at room temperature, while the alloy forming the airfoil 3 has a ductility of 2.1%.
  • the airfoil 2 has a creep resistance which, when corrected for density, is considerably higher than the creep resistance of the nickel-base superalloys usually used in this temperature range.
  • the entire turbine blade 1 shows a ductility of 0.5% corresponding to the material of the blade 2. Their mechanical and thermal properties are not affected by the transition zone between the two alloys.
  • the turbine blade 1 according to the invention is therefore characterized by a blade root 3 with high ductility and an airfoil 2 which is brittle at room temperature but has a high creep resistance at high temperatures.
  • the strength in the transition area is sufficiently high due to the common base material of the two alloys and the lack of brittle reaction products to ensure a safe To ensure operation of the turbine blade 1 at high temperatures.
  • the invention is not limited to turbine blades. It also relates to other components that are subjected to high mechanical loads at high temperatures, such as one-piece turbine wheels of turbochargers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The component is intended for use at high temperatures and is designed especially as a turbine blade. It contains a component body comprising at least a first section (blade root 3) and a second section (blade leaf 2). The first section (3) is formed from a ductile material. However, the second section (2) is of a material which is brittle as compared with the ductile material. It is intended that this component is distinguished by a long service life. This is achieved in such a way that each of the two materials contains in each case one of two alloys based on a common principal material and of different chemical compositions, which differ from one another by the presence and/or the quantity of at least one doping substance alloyed with the principal material. <IMAGE>

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem Bauteil für hohe Temperaturen, insbesondere von einer Turbinenschaufel, mit einem zumindest einen ersten und einen zweiten Abschnitt enthaltenden Bauteilkörper, bei dem der erste Abschnitt von einem duktilen Werkstoff gebildet ist und der zweite Abschnitt einen gegenüber dem duktilen Werkstoff spröden Werkstoff aufweist. Die Erfindung geht ferner aus von einem Verfahren, um ein solches Bauteil herzustellen.The invention is based on a component for high temperatures, in particular a turbine blade, with a component body containing at least a first and a second section, in which the first section is formed from a ductile material and the second section is brittle compared to the ductile material Has material. The invention is also based on a method for producing such a component.

STAND DER TECHNIKSTATE OF THE ART

Ein solches Bauteil und ein Verfahren zur Herstellung eines solchen Bauteils sind in FR-A1-2.136.170 beschrieben. Das beschriebene Bauteil ist als Turbinenschaufel ausgebildet und ist zur Verwendung in einer Gasturbine vorgesehen. Es weist einen aus einer eutektischen Legierung gegossenen, Schaufelfuss und Schaufelblatt enthaltenden Schaufelkörper auf. Der Schaufelfuss ist von einem duktilen Gusskörper mit nichtgerichteter Struktur gebildet. Das Schaufelblatt besteht aus einer Matrix und aus parallel zueinander und in Längsrichtung der Schaufel ausgerichteten, faserförmigen Kristallen, welche in die Matrix eingebettet sind und welche durch gerichtetes Erstarren aus einer induktiv aufgeheizten Schmelze gebildet sind. Gegenüber dem Schaufelfuss zeichnet sich das Schaufelblatt bei erheblich verringerter Duktilität durch eine wesentlich grössere Kriechfestigkeit aus. Insbesondere bei der Herstellung eines grossen Schaufelblattes ist es jedoch schwierig, einen für eine gerichtete Erstarrung ausreichend grossen Temperaturgradienten und damit die erwünscht hohe Kriechfestigkeit im Schaufelblatt zu erreichen.Such a component and a method for producing such a component are described in FR-A1-2.136.170. The component described is designed as a turbine blade and is intended for use in a gas turbine. It has a blade body cast from a eutectic alloy and containing the blade root and blade blade. The blade root is formed by a ductile cast body with a non-directional structure. The airfoil consists of a matrix and parallel to each other and in Fibrous crystals aligned in the longitudinal direction of the blade, which are embedded in the matrix and which are formed by directional solidification from an inductively heated melt. Compared to the blade root, the blade is characterized by a significantly higher creep resistance with significantly reduced ductility. In particular when producing a large airfoil, however, it is difficult to achieve a temperature gradient which is sufficiently large for a directional solidification and thus the desired high creep resistance in the airfoil.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Der Erfindung, wie sie in den Patentansprüchen 1 und 7 angegeben ist, liegt die Aufgabe zugrunde, ein Bauteil, insbesondere eine Turbinenschaufel, der eingangs genannten Art anzugeben, welches sich bei Einsatz in einer bei mittleren und hohen Temperaturen betriebenen Vorrichtung, wie insbesondere einer Turbine, durch eine hohe Lebensdauer auszeichnet, und gleichzeitig einen Weg zu weisen, der es ermöglicht, ein solches Bauteil in einfacher und für eine Massenfertigung geeigneten Weise herzustellen.The invention, as specified in claims 1 and 7, is based on the object of specifying a component, in particular a turbine blade, of the type mentioned, which can be used in a device operated at medium and high temperatures, in particular a turbine , characterized by a long service life, and at the same time to point out a way that makes it possible to manufacture such a component in a simple and suitable for mass production.

Das Bauteil nach der Erfindung zeichnet sich gegenüber vergleichbaren Bauteilen nach dem Stand der Technik durch eine hohe Lebensdauer aus. Dies ist zum einen dadurch bedingt, dass unterschiedlich beanspruchte, insbesondere Schaufelfuss oder Schaufelblatt umfassende, Abschnitte des Bauteils aus unterschiedlich spezifizierten und an die unterschiedlichen Anforderungen angepassten Legierungen bestehen. Da diese an die gradiert abgestuften Eigenschaften des Bauteils, wie insbesondere der Turbinenschaufel, angepassten Legierungen einen gemeinsamen Basiswerkstoff enthalten, treten im Grenzbereich der Abschnitte keine chemische Reaktionsprodukte auf. Die Abschnitte gehen daher ohne scharfen Übergang ineinander über, so dass das Bauteil nach der Erfindung die bei Betrieb einer thermischen Maschine, wie insbesondere einer Gasturbine oder eines Verdichters, gradiert auftretenden hohen thermischen und mechanischen Belastungen völlig problemlos aufnehmen kann. Das zur Herstellung der erfindungsgemässen Bauteile verwendete Verfahren zeichnet sich dadurch aus, dass selbst grosse Bauteile mit hoher thermischer und mechanischer Belastbarkeit durch geläufige Verfahrensschritte, wie insbesondere durch heiss-isostatisches Pressen oder durch Sintern, in einfacher und für eine Massenfertigung geeigneten Weise hergestellt werden können.The component according to the invention is distinguished from comparable components according to the prior art by a long service life. This is due, on the one hand, to the fact that sections of the component which are subjected to different loads, in particular which comprise a blade root or an airfoil, consist of differently specified alloys and are adapted to the different requirements. Since these alloys, which are matched to the graded graded properties of the component, such as the turbine blade in particular, contain a common base material, none occur in the border area of the sections chemical reaction products. The sections therefore merge into one another without a sharp transition, so that the component according to the invention can withstand the high thermal and mechanical loads that occur in graded fashion when a thermal machine, such as, in particular, a gas turbine or a compressor, are operated. The process used to manufacture the components according to the invention is characterized in that even large components with high thermal and mechanical strength can be manufactured in a simple manner suitable for mass production by common process steps, such as in particular by hot isostatic pressing or by sintering.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:

Fig.1
eine Aufsicht auf einen in Längsrichtung geführten Schnitt durch eine erste Variante eines als Turbinenschaufel ausgeführten erfindungsgemässen Bauteils nach Beendigung eines beim Herstellverfahren ausgeführten heiss-isostatischen Pressvorganges,
Fig.2
eine Aufsicht auf einen in Längsrichtung geführten Schnitt durch eine zweite Variante eines als Turbinenschaufel ausgeführten erfindungsgemässen Bauteils nach Beendigung eines beim Herstellen ausgeführten heiss-isostatischen Pressvorganges, und
Fig.3
ein Schliffbild des umrandet angegebenen Bereichs der zweiten Variante des erfindungsgemässen Bauteils.
Preferred exemplary embodiments of the invention and the advantages which can be achieved thereby are explained in more detail below with reference to drawings. Here shows:
Fig. 1
1 shows a top view of a longitudinal section through a first variant of a component according to the invention designed as a turbine blade after completion of a hot-isostatic pressing process carried out in the manufacturing process,
Fig. 2
a top view of a longitudinal section through a second variant of a component according to the invention designed as a turbine blade after completion of a hot isostatic pressing process carried out during manufacture, and
Fig. 3
a micrograph of the outlined area of the second variant of the component according to the invention.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die in den Figuren 1 und 2 dargestellten und jeweils als Turbinenschaufel 1 ausgeführten Bauteile enthalten jeweils ein langgestrecktes Schaufelblatt 2 und einen an einem Ende des Schaufelblattes 2 angeformten Schaufelfuss 3. Mit dem Bezugszeichen 4 ist eine Presskanne bezeichnet. Diese Presskanne umschliesst bei der Ausführungsform gemäss Fig.1 den Schaufelfuss 3 und weist eine vom Schaufelblatt 2 ausgefüllte Öffnung 5 auf, welche vorzugsweise durch Anschweissen oder Anlöten der Presskanne 4 an das Schaufelblatt 2 gasdicht abgeschlossen ist. Bei der Ausführungsform gemäss Fig.2 umschliesst die Presskanne 4 die gesamte Turbinenschaufel 1.The components shown in FIGS. 1 and 2 and each designed as a turbine blade 1 each contain an elongate blade 2 and a blade root 3 formed on one end of the blade 2. Reference number 4 denotes a press can. In the embodiment according to FIG. 1, this press can encloses the blade root 3 and has an opening 5 filled by the blade 2, which is preferably sealed gas-tight by welding or soldering the press can 4 to the blade 2. In the embodiment according to FIG. 2, the press can 4 encloses the entire turbine blade 1.

Die in Fig.1 dargestellte Turbinenschaufel 1 wird wie folgt hergestellt:
Ein als Schaufelblatt 2 ausgeführter Gusskörper wird mit seinem einen Ende durch die Öffnung 5 in die Presskanne 4 geführt. Die vorzugsweise aus Stahl bestehende Presskanne 4 wird im Bereich der Öffnung 5 gasdicht an den Gusskörper angelötet oder angeschweisst. Durch eine nicht dargestellte weitere Öffnung der Presskanne 4 wird ein den Schaufelfuss der Turbinenschaufel 1 aufnehmender Hohlraum der Presskanne 4 mit Legierungspulver aufgefüllt. Die Presskanne 4 wird sodann evakuiert und gasdicht verschlossen.
The turbine blade 1 shown in FIG. 1 is manufactured as follows:
A cast body designed as an airfoil 2 is guided with its one end through the opening 5 into the press can 4. The press can 4, preferably made of steel, is soldered or welded to the cast body in a gas-tight manner in the region of the opening 5. Through a further opening of the press can 4, which is not shown, a cavity of the press can 4 receiving the blade root of the turbine blade 1 is filled with alloy powder. The press can 4 is then evacuated and sealed gas-tight.

Die Werkstoffe für den Gusskörper und das Pulver enthalten jeweils eine von zwei auf einem gemeinsamen Basiswerkstoff beruhende Legierungen unterschiedlicher chemischer Zusammensetzungen, welche sich voneinander durch das Vorhandensein und/oder die Menge mindestens eines dem Basiswerkstoff zulegierten Dotierstoffes unterscheiden. Vorzugsweise wird als Basiswerkstoff eine intermetallische Phase, wie insbesondere ein gamma-Titanaluminid, verwendet. Mindestens eine der beiden gamma-Titanaluminid enthaltenden Legierungen weist einen Anteil von mindestens 0,2 und höchstens 8 Atomprozent an Dotierstoff, wie beispielsweise eines oder mehrere der Elemente B, C, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W sowie Zr auf.The materials for the cast body and the powder each contain one of two alloys of different chemical based on a common base material Compositions which differ from one another by the presence and / or the amount of at least one dopant alloyed into the base material. An intermetallic phase, in particular a gamma titanium aluminide, is preferably used as the base material. At least one of the two alloys containing gamma-titanium aluminide has a proportion of at least 0.2 and at most 8 atomic percent of dopant, such as one or more of the elements B, C, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd , Si, Ta, V, Y, W and Zr.

Eine typische Legierung für das Schaufelblatt 2 weist beispielsweise folgende Zusammensetzung auf:
In Atom%: 48 Al - 3 Cr - Rest Ti und Verunreinigungen;
In Gew.%: 33,2 Al - 3,9 Cr - Verunreinigungen kleiner 0,5 - Rest Ti.
Die Grösse der Pulverteilchen ist typischerweise kleiner 500µm.
Eine weitere typische Legierung für das Schaufelblatt weist folgende Zusammemsetzung in Atom% auf:
48 Al - 2 Cr - 2 Ta - Rest Ti und Verunreinigungen.
A typical alloy for the airfoil 2 has, for example, the following composition:
In atom%: 48 Al - 3 Cr - remainder Ti and impurities;
In% by weight: 33.2 Al - 3.9 Cr - impurities less than 0.5 - balance Ti.
The size of the powder particles is typically less than 500 µm.
Another typical alloy for the airfoil has the following composition in atomic%:
48 Al - 2 Cr - 2 Ta - balance Ti and impurities.

Eine typische Legierung für den Schaufelfuss 3 weist beispielsweise folgende Zusammensetzung auf:
In Atom%: 48 Al - 2 Cr - 2 Nb - Rest Ti und Verunreinigungen;
In Gew.%: 32,5 Al - 2,9 Cr - 5 Nb - Verunreinigungen kleiner 0,5 - Rest Ti.
Die Grösse der Pulverteilchen ist typischerweise kleiner 200µm, vorzugsweise kleiner 100µm.
Eine weitere typische Legierung für den Schaufelfuss weist folgende Zusammensetzung in Atom% auf:
48 Al - 2 Cr - 2 Ta - 0,5 Si - Rest Ti und Verunreinigungen.
A typical alloy for the blade root 3 has, for example, the following composition:
In atom%: 48 Al - 2 Cr - 2 Nb - balance Ti and impurities;
In% by weight: 32.5 Al - 2.9 Cr - 5 Nb - impurities less than 0.5 - balance Ti.
The size of the powder particles is typically less than 200 µm, preferably less than 100 µm.
Another typical alloy for the blade root has the following composition in atomic%:
48 Al - 2 Cr - 2 Ta - 0.5 Si - balance Ti and impurities.

Die durch gasdichtes Verschliessen der Presskanne 4 fertiggestellte Probe wird in eine Pressvorrichtung gebracht und bei Temperaturen zwischen 900 und 1200°C heissisostatisch verdichtet. Ein typischer Pressvorgang bei ca. 1070°C dauerte bei einem Druck von ca. 250 MPa ca. 3 Stunden. Hierbei wurden die beiden Legierungen, ohne dass im Grenzbereich chemische Reaktionsprodukte gebildet wurden, porenfrei mit einem graduellen Übergang vom Schaufelblatt 2 zum Schaufelfuss 3 verdichtet.The sample completed by gas-tight closing of the press can 4 is brought into a press device and compressed hot isostatically at temperatures between 900 and 1200 ° C. A typical pressing process at approx. 1070 ° C took approx. 3 hours at a pressure of approx. 250 MPa. Here, the two alloys were compacted pore-free with a gradual transition from the airfoil 2 to the airfoil 3, without chemical reaction products being formed in the border area.

Dieser bereits die Form der Turbinenschaufel aufweisende Verbundwerkstoff wurde nach Entfernen der deformierten presskanne 4 sodann bei Temperaturen oberhalb 700°C typischerweise ca. 4 Stunden lang wärmebehandelt. Nachfolgend wurde durch geringfügige materialabhebende Bearbeitung, wie Schleifen, Polieren und/oder elektrochemisches Behandeln, die Turbinenschaufel nach der Erfindung fertiggestellt.This composite material, already having the shape of the turbine blade, was then typically heat-treated at temperatures above 700 ° C. for about 4 hours after removal of the deformed press can 4. Subsequently, the turbine blade according to the invention was completed by slight material-removing processing, such as grinding, polishing and / or electrochemical treatment.

Bei der Herstellung der aus Fig.2 ersichtlichen Turbinenschaufel 1 wurde eine in Längsrichtung erweiterte und die gesamte Turbinenschaufel 1 aufnehmende Presskanne 4 verwendet. In diese Presskanne 4 wurde zunächst der das Schaufelblatt 2 bildende Gusskörper eingegeben und nachfolgend entsprechend dem zuvor beschriebenen Ausführungsbeispiel das Legierungspulver eingefüllt. Die Presskanne 4 wurde sodann evakuiert und gasdicht verschlossen. Der so hergestellte Probekörper wurde entsprechend dem zuvor beschriebenen Ausführungsbeispiel behandelt. Die verwendeten Legierungen wiesen die gleiche Zusammensetzung auf wie beim zuvor beschriebenen Ausführungsbeispiel.In the manufacture of the turbine blade 1 shown in FIG. 2, a press can 4 which was extended in the longitudinal direction and accommodates the entire turbine blade 1 was used. The cast body forming the airfoil 2 was first introduced into this press can 4 and the alloy powder was subsequently introduced in accordance with the exemplary embodiment described above. The press can 4 was then evacuated and sealed gas-tight. The test specimen produced in this way was treated in accordance with the exemplary embodiment described above. The alloys used had the same composition as in the previously described embodiment.

Anstelle eines das Schaufelblatt 2 bildenden Gusskörpers kann in die Presskanne 4 auch ein Körper aus einem heiss-isostatisch verdichteten Pulver eingeführt werden. In einer weiteren alternativen Ausführungsform der Erfindung wurde das zur Bildung des schaufelblattes verwendete Legierungspulver mit 48 Atomprozent Al, 3 Atomprozent Cr, Rest Ti und geringen Mengen an Verunreinigungen bei einer Temperatur von ca. 1070°C und einem Druck von ca. 250 MPa während ca. 3 Stunden heiss-isostatisch verdichtet. Der resultierende Körper wurde sodann in die in Fig.2 dargestellte Presskanne 4 gebracht und bei den dort beschriebenen Bedingungen zusammen mit dem den Schaufelfuss 3 bildenden Legierungspulver mit 48 Atomprozent Al, 2 Atomprozent Cr, 2 Atomprozent Nb, Rest Ti und geringen Mengen an Verunreinigungen heiss-isostatisch verdichtet. Der verdichtete Körper wurde sodann noch entsprechend dem zuvor beschriebenen Ausführungsbeispiel wärmebehandelt und nachbearbeitet.Instead of a cast body forming the airfoil 2, a body made of a hot-isostatically compressed powder can also be introduced into the press can 4. In a further alternative embodiment of the invention that was used to form the airfoil Alloy powder with 48 atomic percent Al, 3 atomic percent Cr, the rest of Ti and small amounts of impurities at a temperature of approx. 1070 ° C and a pressure of approx. 250 MPa compressed hot isostatically for approx. 3 hours. The resulting body was then brought into the press can 4 shown in FIG. 2 and hot under the conditions described there together with the alloy powder forming the blade root 3 with 48 atom percent Al, 2 atom percent Cr, 2 atom percent Nb, rest Ti and small amounts of impurities -Isostatically compressed. The compacted body was then heat-treated and reworked in accordance with the previously described embodiment.

In weiteren Varianten der Erfindung wurden anstelle des Gusskörpers bzw. des aus heissverdichtetem Pulver gebildeten Körpers jeweils ein das Schaufelblatt 2 bildendes Legierungspulver der zuvor angegebenen chemischen Zusammensetzung in die Presskanne 4 eingefüllt. Danach wurde ein den Schaufelfuss 3 bildendes Legierungspulver mit der bei den zuvor beschriebenen Ausführungsbeispielen angegebenen Zusammensetzung hinterfüllt. Die Presskanne 4 wurde sodann, ohne zu schütteln und ohne die eingefüllten Pulver miteinander zu vermischen, evakuiert und gasdicht verschlossen. Durch heiss-isostatisches Pressen während ca. 3 Stunden bei ca. 1070°C und einem Druck von ca. 250 MPa wurde ein porenfreier Werkstoff hergestellt, aus dem nach Entfernen der Presskanne 4, nach zweistündiger Wärmebehandlung bei ca. 1350°C und materialentfernender Nachbearbeitung eine Turbinenschaufel nach der Erfindung hergestellt wurde. Eine derartig ausgeführte Turbinenschaufel ist entsprechend den zuvor erwähnten Ausführungsvarianten ebenfalls Fig.2 entnehmbar.In further variants of the invention, instead of the cast body or the body formed from hot-compressed powder, an alloy powder of the previously specified chemical composition forming the airfoil 2 was filled into the press can 4. An alloy powder forming the blade root 3 was then backfilled with the composition specified in the previously described exemplary embodiments. The press can 4 was then evacuated and sealed gas-tight without shaking and without mixing the filled powders with one another. By hot isostatic pressing for approx. 3 hours at approx. 1070 ° C and a pressure of approx. 250 MPa, a non-porous material was produced, from which after removing the press jug 4, after two hours of heat treatment at approx. 1350 ° C and post-processing to remove the material a turbine blade was manufactured according to the invention. A turbine blade designed in this way can also be taken from FIG. 2 in accordance with the previously mentioned embodiment variants.

Aus dem Schliffbild gemäss Fig.3 sind der Aufbau und die Gefügestruktur eines in Fig.2 umrandet angegebenen Teils einer - wie zuvor beschrieben - ausschliesslich aus Legierungspulvern hergestellten Turbinenschaufel nach der Erfindung zu entnehmen. Hieraus ist ersichtlich, dass die das Schaufelblatt 2 bildende Legierung eine grobkörnige und die den Schaufelfuss 3 bildende Legierung eine feinkörnige Mikrostruktur aufweist, und dass an der Übergangszone zwischen beiden Legierungen keine unerwünschte Reaktionszone mit chemischen Reaktionsprodukten oder mit Ausscheidungen auftritt. Beide Legierungen gehen unter Verzahnung grober und feiner Kristallite graduell ineinander über.The micrograph according to FIG. 3 shows the structure and microstructure of a part indicated by a frame in FIG. 2 a turbine blade according to the invention, produced exclusively from alloy powders, as described above. It can be seen from this that the alloy forming the airfoil 2 has a coarse-grained microstructure and the alloy forming the airfoil 3 has a fine-grained microstructure, and that no undesired reaction zone with chemical reaction products or with precipitates occurs at the transition zone between the two alloys. Both alloys gradually merge into one another by interlocking coarse and fine crystallites.

Werkstoffuntersuchungen haben für den der erfindungsgemässen Turbinenschaufel 1 zugrundeliegenden Werkstoff folgende Eigenschaften ergeben:
Die das Schaufelblatt 2 bildende Legierung weist bei Raumtemperatur eine Duktilität von ca. 0,5% auf, die den Schaufelfuss 3 bildende Legierung hingegen eine solche von 2,1 %. Bei einer Temperatur von ca. 700°C besitzt das Schaufelblatt 2 eine Kriechfestigkeit, welche dichtekorrigiert erheblich über der Kriechfestigkeit der üblicherweise in diesem Temperaturbereich verwendeten Nickelbasis-Superlegierungen liegt. Die gesamte Turbinenschaufel 1 zeigt eine dem Werkstoff des Schaufelblattes 2 entsprechende Duktilität von 0.5%. Ihre mechanischen und thermischen Eigenschaften sind durch die Übergangszone zwischen beiden Legierungen nicht beeinträchtigt. Die Turbinenschaufel 1 nach der Erfindung zeichnet sich demnach durch einen Schaufelfuss 3 mit hoher Duktilität und ein bei Raumtemperatur zwar sprödes, bei hohen Temperaturen jedoch eine grosse Kriechfestigkeit aufweisendes Schaufelblatt 2 aus. Die Festigkeit im Übergangsbereich ist wegen des beiden Legierungen gemeinsamen Basiswerkstoffs und des Fehlens spröder Reaktionsprodukte ausreichend gross, um einen sicheren Betrieb der Turbinenschaufel 1 bei hohen Temperaturen zu gewährleisten.
Material tests have shown the following properties for the material on which the turbine blade 1 according to the invention is based:
The alloy forming the airfoil 2 has a ductility of approximately 0.5% at room temperature, while the alloy forming the airfoil 3 has a ductility of 2.1%. At a temperature of approx. 700 ° C., the airfoil 2 has a creep resistance which, when corrected for density, is considerably higher than the creep resistance of the nickel-base superalloys usually used in this temperature range. The entire turbine blade 1 shows a ductility of 0.5% corresponding to the material of the blade 2. Their mechanical and thermal properties are not affected by the transition zone between the two alloys. The turbine blade 1 according to the invention is therefore characterized by a blade root 3 with high ductility and an airfoil 2 which is brittle at room temperature but has a high creep resistance at high temperatures. The strength in the transition area is sufficiently high due to the common base material of the two alloys and the lack of brittle reaction products to ensure a safe To ensure operation of the turbine blade 1 at high temperatures.

In einer weiteren Variante der Erfindung ist es möglich, an Stelle einer Presskanne 4 als Form zur Aufnahme der Legierungen eine Sinterform zu verwenden, und das Verdichten zur Turbinenschaufel in einem Sinterverfahren zu erreichen.In a further variant of the invention, it is possible to use a sintered mold instead of a press can 4 as the mold for holding the alloys, and to achieve the compression to the turbine blade in a sintering process.

Die Erfindung ist nicht auf Turbinenschaufeln beschränkt. Sie bezieht sich auch auf andere bei hohen Temperaturen mechanisch stark belastete Bauteile, wie etwa einstückig ausgebildete Turbinenräder von Turboladern.The invention is not limited to turbine blades. It also relates to other components that are subjected to high mechanical loads at high temperatures, such as one-piece turbine wheels of turbochargers.

BEZEICHNUNGSLISTELIST OF DESIGNATIONS

11
TurbinenschaufelTurbine blade
22nd
SchaufelblattAirfoil
33rd
SchaufelfussBlade root
44th
PresskannePress jug
55
Öffnungopening

Claims (12)

Bauteil für hohe Temperaturen, insbesondere Turbinenschaufel (1), mit einem zumindest einen ersten (Schaufelfuss 3) und einen zweiten Abschnitt (Schaufelblatt 2) enthaltenden Bauteilkörper, bei dem der erste Abschnitt (3) von einem duktilen Werkstoff gebildet ist und der zweite Abschnitt (2) einen gegenüber dem duktilen Werkstoff spröden Werkstoff aufweist, dadurch gekennzeichnet, dass jeder der beiden Werkstoffe jeweils eine von zwei auf einem gemeinsamen Basiswerkstoff beruhende Legierungen unterschiedlicher chemischer Zusammensetzungen enthält, welche sich voneinander durch das Vorhandensein und/oder die Menge mindestens eines dem Basiswerkstoff zulegierten Dotierstoffes unterscheiden.Component for high temperatures, in particular turbine blade (1), with a component body containing at least a first (blade root 3) and a second section (blade leaf 2), in which the first section (3) is formed by a ductile material and the second section ( 2) has a brittle material compared to the ductile material, characterized in that each of the two materials contains in each case one of two alloys of different chemical compositions based on a common base material, which alloyed from one another due to the presence and / or the amount of at least one of the base material Distinguish dopant. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass der erste (3) und der zweite Abschnitt (2) ohne das Auftreten eines eine Grenzschicht bildenden chemischen Reaktionsproduktes ineinander übergehen.Component according to claim 1, characterized in that the first (3) and the second section (2) merge into one another without the occurrence of a chemical reaction product forming an interface. Bauteil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Basiswerkstoff gamma-Titanaluminid ist.Component according to one of claims 1 or 2, characterized in that the base material is gamma titanium aluminide. Bauteil nach Anspruch 3, dadurch gekennzeichnet, dass der Anteil an Dotierstoff in mindestens einer der beiden Legierungen mindestens 0,2 und höchstens 8 Atomprozent beträgt.Component according to claim 3, characterized in that the proportion of dopant in at least one of the two alloys is at least 0.2 and at most 8 atomic percent. Bauteil nach Anspruch 4, dadurch gekennzeichnet, dass als Dotierstoff mindestens eines oder mehrere der Elemente B, C, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W sowie Zr enthalten sind.Component according to claim 4, characterized in that at least one or more of the elements B, C, Co, Cr, Ge, Hf, Mn, Mo, Nb, Pd, Si, Ta, V, Y, W and Zr are contained as dopant . Bauteil nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass eine den ersten Abschnitt (3) bildende erste der beiden Legierungen einen die Einstellung eines feinkristallinen Gefüges fördernden Dotierstoff, wie insbesondere eines oder mehrere der Elemente Cr, Mn, V, Si, und eine den zweiten Abschnitt (2) bildende zweite der beiden Legierungen einen die Einstellung eines grobkristallinen Gefüges fördernden und die Kriechfestigkeit erhöhenden Dotierstoff, wie insbesondere eines oder mehrere der Elemente Nb, Ta, W, enthält.Component according to one of Claims 3 to 5, characterized in that a first of the two alloys forming the first section (3) comprises a dopant which promotes the setting of a fine crystalline structure, such as in particular one or more of the elements Cr, Mn, V, Si, and a second of the two alloys forming the second section (2) contains a dopant which promotes the setting of a coarsely crystalline structure and increases the creep resistance, such as in particular one or more of the elements Nb, Ta, W. Verfahren zur Herstellung des Bauteils nach Patentanspruch 1, dadurch gekennzeichnet, dass die beiden Legierungen zum Bauteilkörper heissverdichtet werden, und dass vor dem Heissverdichten eine den ersten Abschnitt (3) bildende erste der beiden Legierungen als Pulver in eine Form eingefüllt wird.Method for producing the component according to claim 1, characterized in that the two alloys are hot-compressed to form the component body, and that before hot-compression a first of the two alloys forming the first section (3) is poured into a mold as a powder. Verfahren nach Patentanspruch 7, dadurch gekennzeichnet, dass eine den zweiten Abschnitt (2) bildende zweite der beiden Legierungen in Form eines Gusskörper oder eines aus heissverdichtetem Pulver gebildeten Körpers verwendet wird, und dass dieser Gusskörper oder der aus dem heissverdichteten Pulver gebildete Körper zumindest mit einem Ende in die als Presskanne (4) ausgebildete Form geführt und in der Presskanne (4) mit dem Pulver in Berührung gebracht wird.Method according to claim 7, characterized in that a second of the two alloys forming the second section (2) is used in the form of a cast body or a body formed from hot-compacted powder, and that this cast body or the body formed from the hot-compacted powder has at least one End in the form designed as a press can (4) and brought into contact with the powder in the press can (4). Verfahren nach Patentanspruch 8, dadurch gekennzeichnet, dass die Presskanne (4) eine vom eingeführten Körper ausgefüllte Öffnung (5) aufweist, welche vorzugsweise durch Anschweissen oder Anlöten der Presskanne (4) an den Körper abgeschlossen wird.A method according to claim 8, characterized in that the press can (4) has an opening (5) filled by the inserted body, which is preferably closed by welding or soldering the press can (4) to the body. Verfahren nach Patentanspruch 7, dadurch gekennzeichnet, dass vor dem Heissverdichten eine den zweiten Abschnitt (2) bildende zweite der beiden Legierungen als Pulver in die Form eingefüllt wird.A method according to claim 7, characterized in that a second of the two alloys forming the second section (2) is filled into the mold as a powder before hot compression. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Heissverdichten bei Temperaturen zwischen 900 und 1200°C durchgeführt wird.Method according to one of claims 7 to 10, characterized in that the hot compression is carried out at temperatures between 900 and 1200 ° C. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass der durch Heissverdichten entstandene Werkstoff bei Temperaturen grösser 700°C wärmebehandelt wird.Method according to one of claims 8 to 11, characterized in that the material formed by hot compression is heat-treated at temperatures greater than 700 ° C.
EP93107926A 1992-06-13 1993-05-14 Component for high temperatures, in particular turbine blade, and process for preparing this blade Expired - Lifetime EP0574708B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4219470 1992-06-13
DE4219470A DE4219470A1 (en) 1992-06-13 1992-06-13 Component for high temperatures, in particular turbine blade, and method for producing this component

Publications (2)

Publication Number Publication Date
EP0574708A1 true EP0574708A1 (en) 1993-12-22
EP0574708B1 EP0574708B1 (en) 1998-09-16

Family

ID=6461002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107926A Expired - Lifetime EP0574708B1 (en) 1992-06-13 1993-05-14 Component for high temperatures, in particular turbine blade, and process for preparing this blade

Country Status (3)

Country Link
US (1) US5409781A (en)
EP (1) EP0574708B1 (en)
DE (2) DE4219470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790640A (en) * 2014-02-19 2014-05-14 中国航空动力机械研究所 Blade capable of preventing wheel dish from being cracked

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839493B2 (en) * 1992-11-09 2006-11-01 日本発条株式会社 Method for producing member made of Ti-Al intermetallic compound
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
US6051084A (en) * 1994-10-25 2000-04-18 Mitsubishi Jukogyo Kabushiki Kaisha TiAl intermetallic compound-based alloys and methods for preparing same
DE19756354B4 (en) * 1997-12-18 2007-03-01 Alstom Shovel and method of making the blade
DE19847222C2 (en) * 1998-10-13 2001-09-20 Asea Brown Boveri Turbine blade for high mechanical and thermal loads
US6699245B2 (en) 2001-02-05 2004-03-02 A-Med Systems, Inc. Anastomosis system and related methods
US20080066288A1 (en) * 2006-09-08 2008-03-20 General Electric Company Method for applying a high temperature anti-fretting wear coating
US9228445B2 (en) 2010-12-23 2016-01-05 General Electric Company Turbine airfoil components containing ceramic-based materials and processes therefor
US8721290B2 (en) * 2010-12-23 2014-05-13 General Electric Company Processes for producing components containing ceramic-based and metallic materials
US9938831B2 (en) 2011-10-28 2018-04-10 United Technologies Corporation Spoked rotor for a gas turbine engine
US8944762B2 (en) 2011-10-28 2015-02-03 United Technologies Corporation Spoked spacer for a gas turbine engine
GB201200360D0 (en) 2012-01-11 2012-02-22 Rolls Royce Plc Component production method
EP2931458B1 (en) 2012-12-14 2019-02-06 United Technologies Corporation Multi-shot casting
EP2931459B1 (en) 2012-12-14 2019-02-06 United Technologies Corporation Method of casting hybrid turbine blade for improved engine performance or architecture
US11066952B2 (en) * 2017-05-22 2021-07-20 Raytheon Technologies Corporation Green repair of oxidation and corrosion resistant coatings
US20190040749A1 (en) * 2017-08-01 2019-02-07 United Technologies Corporation Method of fabricating a turbine blade

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1052893A (en) * 1951-02-07 1954-01-28 Plansee Metallwerk Turbine blade with high resistance to heat and to ignition usable in particular in gas turbines, and method of manufacture thereof
FR2317502A1 (en) * 1975-06-27 1977-02-04 Special Metals Corp COMPOSITE BLADDER WHEELS, ESPECIALLY INTENDED FOR GAS TURBINES, AND THEIR MANUFACTURING PROCESS
EP0073651A1 (en) * 1981-08-27 1983-03-09 ASEA Stal Aktiebolag Method of manufacturing bladed elements for rotary fluid machines
US4529452A (en) * 1984-07-30 1985-07-16 United Technologies Corporation Process for fabricating multi-alloy components
US4787821A (en) * 1987-04-10 1988-11-29 Allied Signal Inc. Dual alloy rotor
US4825522A (en) * 1987-08-12 1989-05-02 Director General Of The Agency Of Industrial Science And Technology Method of making heat resistant heavy-duty components of a turbine by superplasticity forging wherein different alloys are junctioned
US5098484A (en) * 1991-01-30 1992-03-24 The United States Of America As Represented By The Secretary Of The Air Force Method for producing very fine microstructures in titanium aluminide alloy powder compacts
EP0513407A1 (en) * 1991-05-13 1992-11-19 Asea Brown Boveri Ag Method of manufacture of a turbine blade

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431660A (en) * 1944-12-01 1947-11-25 Bbc Brown Boveri & Cie Turbine blade
GB608766A (en) * 1944-12-01 1948-09-21 Bbc Brown Boveri & Cie Improvements in turbine blades
US2946680A (en) * 1955-08-10 1960-07-26 Thompson Ramo Wooldridge Inc Powder metallurgy
CH544217A (en) * 1971-04-08 1973-11-15 Bbc Sulzer Turbomaschinen Gas turbine blade
FR2149990A5 (en) * 1971-08-09 1973-03-30 Imp Metal Ind Kynoch Ltd Metal parts prodn from several elements - eg for aircraft using process which reduces fatigue
US3940268A (en) * 1973-04-12 1976-02-24 Crucible Inc. Method for producing rotor discs
CH602237A5 (en) * 1974-12-23 1978-07-31 Bbc Brown Boveri & Cie
US3992200A (en) * 1975-04-07 1976-11-16 Crucible Inc. Method of hot pressing using a getter
US4097276A (en) * 1975-07-17 1978-06-27 The Garrett Corporation Low cost, high temperature turbine wheel and method of making the same
GB1582651A (en) * 1977-04-01 1981-01-14 Rolls Royce Products formed by powder metallurgy and a method therefore
DE2737248C2 (en) * 1977-08-18 1985-09-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München High strength component with a complex geometric shape and process for its manufacture
DE2834222C3 (en) * 1978-08-04 1981-08-27 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Method for producing the blade-disk connection of a turbo-rotor
US4294615A (en) * 1979-07-25 1981-10-13 United Technologies Corporation Titanium alloys of the TiAl type
US4323394A (en) * 1979-08-06 1982-04-06 Motoren-Und Turbinen-Union Munchen Gmbh Method for manufacturing turborotors such as gas turbine rotor wheels, and wheel produced thereby
DE3010299C2 (en) * 1980-03-18 1981-07-30 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Hot isostatic pressing capsule and hot isostatic pressing method using the capsule
US4663241A (en) * 1980-09-08 1987-05-05 United Technologies Corporation Powder metal disk with selective fatigue strengthening
GB2117799B (en) * 1982-03-05 1985-11-27 Rolls Royce Composite ceramic metal components
US4526747A (en) * 1982-03-18 1985-07-02 Williams International Corporation Process for fabricating parts such as gas turbine compressors
DE3241926A1 (en) * 1982-11-12 1984-05-17 MTU Motoren- und Turbinen-Union München GmbH, 8000 München CONNECTION OF A CERAMIC ROTATION COMPONENT TO A METAL ROTATION COMPONENT FOR FLOW MACHINES, IN PARTICULAR GAS TURBINE ENGINES
US4680160A (en) * 1985-12-11 1987-07-14 Trw Inc. Method of forming a rotor
DE3543831A1 (en) * 1985-12-12 1987-07-02 Aluminium Walzwerke Singen COMPOSITE PROFILE, IN PARTICULAR COMPOSITE RAIL
US4900635A (en) * 1987-07-27 1990-02-13 Williams International Corporation Multi-alloy turbine rotor disk
US4851190A (en) * 1987-07-27 1989-07-25 Williams International Corporation Method of making a multi-alloy turbine rotor disk
US4808249A (en) * 1988-05-06 1989-02-28 The United States Of America As Represented By The Secretary Of The Air Force Method for making an integral titanium alloy article having at least two distinct microstructural regions
US4828793A (en) * 1988-05-06 1989-05-09 United States Of America As Represented By The Secretary Of The Air Force Method to produce titanium alloy articles with high fatigue and fracture resistance
US4897127A (en) * 1988-10-03 1990-01-30 General Electric Company Rapidly solidified and heat-treated manganese and niobium-modified titanium aluminum alloys
US4904546A (en) * 1989-04-03 1990-02-27 General Electric Company Material system for high temperature jet engine operation
US4916028A (en) * 1989-07-28 1990-04-10 General Electric Company Gamma titanium aluminum alloys modified by carbon, chromium and niobium
CA2025272A1 (en) * 1989-12-04 1991-06-05 Shyh-Chin Huang High-niobium titanium aluminide alloys
US5098653A (en) * 1990-07-02 1992-03-24 General Electric Company Tantalum and chromium containing titanium aluminide rendered castable by boron inoculation
US5080860A (en) * 1990-07-02 1992-01-14 General Electric Company Niobium and chromium containing titanium aluminide rendered castable by boron inoculations
EP0464366B1 (en) * 1990-07-04 1994-11-30 Asea Brown Boveri Ag Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
US5226985A (en) * 1992-01-22 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1052893A (en) * 1951-02-07 1954-01-28 Plansee Metallwerk Turbine blade with high resistance to heat and to ignition usable in particular in gas turbines, and method of manufacture thereof
FR2317502A1 (en) * 1975-06-27 1977-02-04 Special Metals Corp COMPOSITE BLADDER WHEELS, ESPECIALLY INTENDED FOR GAS TURBINES, AND THEIR MANUFACTURING PROCESS
EP0073651A1 (en) * 1981-08-27 1983-03-09 ASEA Stal Aktiebolag Method of manufacturing bladed elements for rotary fluid machines
US4529452A (en) * 1984-07-30 1985-07-16 United Technologies Corporation Process for fabricating multi-alloy components
US4787821A (en) * 1987-04-10 1988-11-29 Allied Signal Inc. Dual alloy rotor
US4825522A (en) * 1987-08-12 1989-05-02 Director General Of The Agency Of Industrial Science And Technology Method of making heat resistant heavy-duty components of a turbine by superplasticity forging wherein different alloys are junctioned
US5098484A (en) * 1991-01-30 1992-03-24 The United States Of America As Represented By The Secretary Of The Air Force Method for producing very fine microstructures in titanium aluminide alloy powder compacts
EP0513407A1 (en) * 1991-05-13 1992-11-19 Asea Brown Boveri Ag Method of manufacture of a turbine blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 8433, Derwent Publications Ltd., London, GB; Class M27, AN 84-203979 & JP-A-59 116 360 (HITACHI) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790640A (en) * 2014-02-19 2014-05-14 中国航空动力机械研究所 Blade capable of preventing wheel dish from being cracked
CN103790640B (en) * 2014-02-19 2015-10-28 中国航空动力机械研究所 Anti-wheel disc explosion blade

Also Published As

Publication number Publication date
DE59308980D1 (en) 1998-10-22
EP0574708B1 (en) 1998-09-16
US5409781A (en) 1995-04-25
DE4219470A1 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
EP0574708B1 (en) Component for high temperatures, in particular turbine blade, and process for preparing this blade
EP0574727B1 (en) Method for the production of a high temperature-resistant element from two different materials
EP0513407B1 (en) Method of manufacture of a turbine blade
DE2845792C2 (en)
DE4440229C2 (en) Process for making cracked high strength superalloy articles
DE2927079C2 (en)
DE2503165C2 (en) Process for the production of a sintered body with locally different material properties and application of the process
DE2845834C2 (en)
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
EP2990141B1 (en) Method for producing TiAl components
DE2445462B2 (en) Use of a nickel alloy
EP3802898B1 (en) Density-optimized molybdenum alloy
DE2326284A1 (en) WORKPIECE MADE OF A COMPRESSED SUPER ALLOY ON NI BASIS
DE2853575B2 (en) Process for the powder-metallurgical production of alloy bodies from hydrogenated metal powder batches
DE4434515C2 (en) Oxide dispersion strengthened alloy and components of gas turbines made from it
AT392432B (en) METHOD FOR THE PRODUCTION OF WARM-CRAWL-RESISTANT SEMI-FINISHED PRODUCTS OR MOLDED PARTS FROM HIGH-MELTING METALS
DE2200670B2 (en)
DE1558805C3 (en) Process for the production of deformed workpieces from dispersion-reinforced metals or alloys
DE2522636A1 (en) Process for the production of a coarse-grained body from a superalloy and a body produced by the process
EP3015199A2 (en) Method for producing a target alloy that is resistant to high temperatures, a device, an alloy and a corresponding component
DE4019305A1 (en) POWDER AND PRODUCTS OF TANTAL, NIOB AND THEIR ALLOYS
DE3027287A1 (en) MERCURY RELEASING COMPOSITION AND THEIR USE
DE19845376C5 (en) Hard metal or cermet body
AT413544B (en) HIGH-HARD NICKEL BASE ALLOY FOR WEAR-RESISTANT HIGH-TEMPERATURE TOOLS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940513

17Q First examination report despatched

Effective date: 19970515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59308980

Country of ref document: DE

Date of ref document: 19981022

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981117

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990413

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990420

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000514

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050514