EP0045984B1 - Process for manufacturing an article from a heat-resisting alloy - Google Patents

Process for manufacturing an article from a heat-resisting alloy Download PDF

Info

Publication number
EP0045984B1
EP0045984B1 EP81200670A EP81200670A EP0045984B1 EP 0045984 B1 EP0045984 B1 EP 0045984B1 EP 81200670 A EP81200670 A EP 81200670A EP 81200670 A EP81200670 A EP 81200670A EP 0045984 B1 EP0045984 B1 EP 0045984B1
Authority
EP
European Patent Office
Prior art keywords
deformation
intermediate material
case
final
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81200670A
Other languages
German (de)
French (fr)
Other versions
EP0045984A1 (en
Inventor
Gernot Dr. Dipl.-Ing. Gessinger
Robert Dr. Dipl.-Ing. Singer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT81200670T priority Critical patent/ATE6674T1/en
Publication of EP0045984A1 publication Critical patent/EP0045984A1/en
Application granted granted Critical
Publication of EP0045984B1 publication Critical patent/EP0045984B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof

Definitions

  • the invention relates to a method for producing a workpiece according to the preamble of claim 1.
  • Oxide dispersion-hardened alloys in particular those of the nickel-based type, are generally produced by powder metallurgical methods, the technology of mechanical alloying of the powder particles being used to a large extent. In order to achieve the highest possible creep resistance at high temperatures, such alloys must have a coarse-grained structure in the ready-to-use workpiece.
  • the methods of mechanical alloying and the question of the associated further processing of the oxide dispersion-hardened materials are known (e.g. BJP Morse and JS Benjamin, "Mechanical Alloying", New Trends in Materials Processing, pp. 165-199, in particular pp. 177-185, American Society for Metals, seminar October 19/20, 1974).
  • the primary material obtained in a first compaction step (powder compaction) must be subjected to further shaping operations. Since both the material and the machining costs of such alloys are very high, this shaping can only be carried out economically by forming. At the end of all processes there is always a heat treatment which serves to convert the finished workpiece into the coarse-grained structure which is best suited for high-temperature operation.
  • the setting options for the coarse grain are known to depend on the available driving forces, the number of bacteria and other physical parameters. It is not indifferent in which way the primary material was created. The latter can be done, for example, by extrusion at high or low temperature or by hot isostatic pressing of the mechanically alloyed, encapsulated powder.
  • the mechanical alloying usually causes a state of the highest possible deformation, that is to say strain hardening driven to the saturation limit, which is more or less broken down in the subsequent thermomechanical deformation steps.
  • Practice shows that there is an optimal deformation state of the primary material for the subsequent formation of coarse grains ("normal”). If, on the other hand, the primary material is insufficiently deformed ("underworked”), i.e.
  • the invention is based on the object of specifying a production method for oxide-hardened, heat-resistant workpieces which, regardless of the selected compression step and the resulting state of deformation of the structure of the starting material produced in this way, guarantees a coarse-grained end product that is usable for operation.
  • Fig. 1 the flow diagram of the basic method is shown in block form. It is generally assumed that metallic powders, which may be in the form of elements and / or master alloys, and metal oxide powders as dispersoids.
  • the powders are very fine-grained, the particle size fluctuates between a few ⁇ m and about 60 ⁇ m, and the metal oxide powders are usually even finer (below 1 ⁇ m).
  • the mixing and mechanical alloying of the powders is generally carried out in a protective gas atmosphere in the attritor. The powder particles are alloyed to homogeneity and mixed with the dispersoid. At the same time, the cold working is driven to the saturation limit, which is reflected in the high hardness, which can reach up to 700 Vickers units.
  • the mechanically alloyed powder is filled into a ductile metal container, usually soft steel, under vacuum and encapsulated (sealed, sealed can or capsule on all sides).
  • the encapsulated powder is thermally compressed to 100% of the theoretical density.
  • the product is an easily deformable, ultra-fine-grained raw material, which forms the starting material for the further shaping of the workpiece.
  • the other parameter, the degree of deformation is expediently determined by the absolute value of the natural logarithm of the cross-sectional ratio of the workpiece. Of course, you can also start from the change in length and then convert it to the cross-sectional ratio.
  • FIG. 2 shows the flow diagram of the process steps for insufficiently deformed starting material.
  • a powder mix was mechanically alloyed and encapsulated in a soft steel can.
  • the Endlegiqrunig had the following composition:
  • the subsequent hot compression step consisted of extrusion at a temperature of 1075 ° C.
  • the fine-grained primary material produced in this way had an average particle size of 0.3 ⁇ m.
  • the workpiece was subjected to coarse grain annealing at a temperature of 1220 ° C for 1 h. An average grain size of over 100 ⁇ m was found. In general, given these conditions, coarse grain can be understood to mean that grain size which means a coarsening by at least a factor of 100 compared to the fine-grained starting material.
  • FIG. 3 shows the flow diagram of the process steps for optimally deformed starting material.
  • the starting position corresponded to the exemplary embodiment explained in FIG. 2.
  • the same alloy was used and the same first process steps were used.
  • the extrusion was carried out under similar conditions, but at a temperature of 960 ° C.
  • the reduction ratio likewise gave an e of 3.
  • the fine-grained starting material had a sub-grain size of 0.2 ⁇ m. In accordance with the breakdown of work hardening, this material was in the optimal state of deformation ("normal").
  • the average sub-grain size of these materials generally ranges from 0.15 ⁇ m to 0.25 ⁇ m.
  • FIG. 4 shows the flow diagram of the process steps for excessively deformed starting material.
  • a powder mixture was mechanically alloyed and encapsulated in a soft steel can.
  • the final alloy had the following composition:
  • thermoforming step to compress the encapsulated powder to 100% of the theoretical density consisted of hot isostatic pressing at a temperature of 950 ° C. for 4 hours under a pressure of 135 MPa.
  • the height of the original cylindrical body of 200 mm was reduced to 150 mm.
  • the corresponding ⁇ was 0.3.
  • the fine-grained primary material produced in this way had an average sub-grain size of 0.14 ⁇ m. Due to the lower breakdown of the work hardening of the powder, this material was considered to be excessively deformed ("overworked").
  • the subgrain size of such materials is usually ⁇ 0.15 ⁇ m.
  • the workpiece was subjected to coarse grain annealing at a temperature of 1220 ° C for 1 h. An average grain size of over 60 ⁇ m was determined, which clearly means coarse grain in this case.
  • FIG. 5 shows a diagram of the experimentally determined deformation conditions in order to achieve coarse grain for the finished workpiece in the event that insufficiently deformed starting material (“underworked”) is assumed.
  • the deformation conditions are shown as pairs of values for the deformation speed and the degree of deformation.
  • Each intersection of an abscissa value with an ordinate value represents a specific state that characterizes the deformation condition, but not a functional relationship between the deformation speed and the degree of deformation. If the intersection falls within the hatched area, the conditions for the success of subsequent coarse grain annealing on the finished workpiece are met. If the intersection falls outside the hatched area, coarse grain formation can no longer be expected. Either the recrystallization is then at least partially absent, or a fine-grained structure that is undesirable for operation is formed.
  • the rate of deformation must be kept within fairly narrow limits in order to achieve coarse grain, that an optimum value exists regardless of the degree of deformation and that the latter must not fall below a certain minimum.
  • the value for should be between 16.5 and 20, optimally around 18 (dash-dotted horizontal), while should be.
  • the favorable area in the diagram is open parallel to the abscissa, which means that there is no upper limit to the degree of deformation.
  • Fig. I is a diagram of the experimentally determined deformation conditions to achieve coarseness for the finished workpiece in the event that optimally deformed starting material ("normal") is assumed.
  • the hatched area again represents the totality of the intersection points of an abscissa and ordinate value, for which the coarse grain formation is guaranteed on the occasion of the subsequent annealing.
  • Has z. B a raw material according to the characteristics explained in Fig. 3, but with a deformation rate accordingly until deformed, no coarse grain was obtained after subsequent annealing at 1220 ° C / lh. The same material accordingly until deformed, clearly gave coarse grain.
  • the diagram shows that whenever larger deformations of the workpiece corresponding to ⁇ > 1.0 are necessary, the deformation speed has to be kept within narrow limits, which is the value for between 15.5 and 20, optimally around 18.
  • the value for s is not limited, so it can be as small as desired, in the limit case it can also be zero (no further transformation possible or desirable in practice).
  • Correspondingly in the area of low degrees of deformation for the final shaping is the range for the rate of deformation expanded and reached for Values that are between approximately 10 and 22. In practice, this means that in the case of small deformations (e.g. re-pressing to achieve higher accuracy and surface quality of the workpiece), the deformation speed for previously optimally deformed primary material is not as critical as for higher degrees of deformation.
  • FIG. 7 shows a diagram of the experimentally determined deformation conditions in order to achieve coarseness for the finished workpiece in the event that excessively deformed starting material ("overworked") is assumed.
  • the hatched area defined above approaches the ordinate, but does not quite reach it.
  • the permissible value for approximately between 14 and 18, for higher degrees of deformation accordingly between 16 and 20, optimal again at around 18. Otherwise there is a correspondingly lower deformation range for example a linear relationship with the mean of the logarithm of the rate of deformation.
  • the degree of deformation s must reach at least 0.1.
  • deformation conditions apply both to a single deformation step and to a complicated forming process consisting of partial steps. In any case, during the implementation of the last step the conditions mentioned above are met. From the above it is clear that ultimately the structural and work hardening condition of the primary material (i.e. the initial conditions) is largely irrelevant. It is always possible to achieve a coarse grain after the final annealing. Forming to the finished workpiece can be done by forging, rolling, pressing, hammering or hot drawing or any combination of these processes.
  • the starting material can be produced in a conventional manner by hot isostatic pressing or by extrusion.
  • the method is generally applicable to the alloy type specified in the examples and related dispersion-hardened austenitic superalloys which are suitable for precipitation hardening.
  • the working conditions to be observed for the further shaping of a workpiece from a dispersion-hardened nickel alloy were defined as pairs of values of deformation rate / degree of deformation in order to again achieve a coarse-grained structure which is optimal for operation at high temperatures and clearly represented in diagrams.
  • the process ensures, regardless of the ultra-fine-grained raw material and its degree of work hardening, that coarse grain is obtained in the end product.

Abstract

1. Process for manufacturing a workpiece from a creep-resistant, precipitation-hardenable austenitic alloy having a high nickel content and containing a metal oxide as the hardening idspersoid, this process being in accordance with the methods employed in powder metallurgy and in which a metal powder is mixed with a metal oxide powder, is mechanically alloyed, is encased in a metal container, and is densified, by hot-compaction, to 100% of the theoretical density, in a manner such that an easily deformable intermediate material is produced, which has a very fine grain size and is suitable for further processing, terminating in an annealing treatment for developing a coarse grain size, characterised in that the abovementioned intermediate material is converted to the finished workpiece by means of a purpose-designed working operation which embodies the final shaping step, the deformation rate and the degree of deformation being determined in accordance with the intermediate material, which can exhibit deformation which is insufficient, optimum, or excessive, in a manner such that the logarithm of the temperature-compensated deformation rate, expressed as log (.~epsilon DNi--1 m**2 ), where ._epsilon = d[¦In (Ao /Af )¦]/dt, and Ao and Af respectively denote the cross-sectional areas of the workpiece before and after the working operation, while DNi denotes the diffusion coefficient of nickel, which is a function of temperature, lies between the values 16.5 and 20 in case a) - insufficient deformation of the intermediate material, lies between the values 10 and 22 in case b) - optimum deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0 =< epsilon < 0.3, where epsilon denotes ¦In (Ao /Af )¦ and lies, in the range of comparatively high degrees of deformation for the final-shaping step, described by epsilon > 1.0, between the values 15.5 and 20, lies between the values 14 and 18 in case c) - excessive deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0.1 < ¦epsilon¦ < 0.2, and lies, in the range of comparatively high degrees of deformation for the final-shaping step, described by ¦epsilon¦ > 0.8, between 16 and 20, and in that the degree of deformation for the final-shaping step, described by epsilon, reaches a value of not less than 0.5 in case a) - insufficient deformation of the intermediate material, is as small as desired, and can thus also be nil, in case b) - optimum deformation of the intermediate material, increases linearly with the deformation rate, but reaches a value of not less than 0.1, in case c) - excessive deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0.1 < ¦epsilon¦ < 0.6, the above being subject to the restriction that in case a), the values must lie within the shaded region in Figure 5, in case b), the values must lie within the shaded region in Figure 6, and in case c), the values must lie within the shaded region in Figure 7.

Description

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Werkstückes nach der Gattung des Anspruchs 1.The invention relates to a method for producing a workpiece according to the preamble of claim 1.

Oxyddispersionsgehärtete Legierungen, insbesondere solche des Nickelbasis-Typs, werden allgemein nach pulvermetallurgischen Methoden hergestellt, wobei die Technologie des mechanischen Legierens der Pulverpartikel weitgehend zur Anwendung kommt. Um eine möglichst hohe Kriechfestigkeit bei hohen Temperaturen zu erzielen, müssen derartige Legierungen im gebrauchsfertigen Werkstück ein grobkörniges Gefüge aufweisen. Die Verfahren des mechanischen Legierens sowie die Frage der damit zusammenhängenden Weiterverarbeitung der oxyddispersionsgehärteten Werkstoffe sind bekannt (z. B. J. P. Morse und J. S. Benjamin, »Mechanical Alloying«, New Trends in Materials Processing, S. 165-199, insbesondere S. 177 -185, American Society for Metals, Seminar 19./20. Oktober 1974). Um ein fertiges Werkstück zu erhalten, muß das in einem ersten Verdichtungsschritt (Pulver-Kompaktierung) erhaltene Vormaterial weiteren Formgebungsoperationen unterworfen werden. Da sowohl die Material- als auch die Zerspanungskosten derartiger Legierungen sehr hoch sind, ist diese Formgebung nur durch Umformen wirtschaftlich durchführbar. Am Ende aller Verfahren steht immer eine Wärmebehandlung, welche dazu dient, das fertig geformte Werkstück in den für den Hochtemperaturbetrieb bestgeeigneten grobkörnigen Gefügezustand überzuführen.Oxide dispersion-hardened alloys, in particular those of the nickel-based type, are generally produced by powder metallurgical methods, the technology of mechanical alloying of the powder particles being used to a large extent. In order to achieve the highest possible creep resistance at high temperatures, such alloys must have a coarse-grained structure in the ready-to-use workpiece. The methods of mechanical alloying and the question of the associated further processing of the oxide dispersion-hardened materials are known (e.g. BJP Morse and JS Benjamin, "Mechanical Alloying", New Trends in Materials Processing, pp. 165-199, in particular pp. 177-185, American Society for Metals, seminar October 19/20, 1974). In order to obtain a finished workpiece, the primary material obtained in a first compaction step (powder compaction) must be subjected to further shaping operations. Since both the material and the machining costs of such alloys are very high, this shaping can only be carried out economically by forming. At the end of all processes there is always a heat treatment which serves to convert the finished workpiece into the coarse-grained structure which is best suited for high-temperature operation.

Nun hängt der Erfolg einer derartigen Grobkornglühung aber von der gesamten Vorgeschichte des Materials ab. Beim ersten Warmverdichtungsschritt des durch das mechanische Legieren kaltverformten Pulvers wird ein 100% dichtes, ultrafeinkörniges Vormaterial erhalten, welches sich im mittleren bis hohen Temperaturbereich leicht verformen läßt, d. h. sozusagen quasi-superplastische Eigenschaften besitzt. Durch thermomechanische Umformung läßt sich daher das Vormaterial verhältnismäßig leicht in die Endform des fertigen Werkstückes überführen. Die Frage ist nur die, ob sich am fertigen Endprodukt ohne weiteres das notwendige Grobkorn durch eine zusätzliche Glühung einstellen läßt. Die herkömmliche Praxis zeigt nun, daß dies keineswegs in allen Fällen gewährleistet ist. Es müssen im Gegenteil in der Regel sehr enge, für die Fertigung lästige Bedingungen eingehalten werden. Die Einstellungsmöglichkeit für das Grobkorn hängt bekanntlich von den zur Verfügung stehenden Triebkräften, von der Keimzahl und anderen physikalischen Parametern ab. Es ist durchaus nicht gleichgültig, auf welche Art und Weise das Vormaterial erzeugt wurde. Letzteres kann beispielsweise durch Strangpressen bei hoher oder tiefer Temperatur oder durch heiß-isostatisches Pressen des mechanisch legierten, eingekapselten Pulvers erfolgen. Durch das mechanische Legieren wird in der Regel eir, Zustand höchstmöglicher Verformung, also bis zur Sättigungsgrenze getriebener Kaltverfestigung, hervorgerufen, welcher in den nachfolgenden thermomechanischen Verformungsschritten mehr oder weniger abgebaut wird. Die Praxis zeigt, daß es einen für die nachträgliche Grobkornbildung optimalen Verformungszustand des Vormaterials (»normal«) gibt. Ist das Vormaterial dagegen ungenügend verformt (»underworked«), weist es also zu wenig Kaltverfestigung und somit zu wenig Energie für die nachfolgende Rekristallisation auf, so ist letztere unvollständig (Mischung von nicht rekristallisiertem Feinkorn mit wenig Grobkorn) oder bleibt völlig aus. Ist jedoch das Vormaterial übermäßig verformt (»overworked«), besitzt es also einen Überschuß an Energie für die spätere Rekristallisation, so erfolgt diese vollständig, führt jedoch zufolge zu hoher Anzahl an Kristallisationskeimen nur zu einem relativ feinkörnigen Gefüge. Letzteres läßt sich durch keine zusätzliche Wärmebehandlung in Grobkorn überführen.However, the success of such a coarse-grain annealing depends on the entire history of the material. In the first hot compression step of the powder, which is cold-formed by the mechanical alloying, a 100% dense, ultra-fine-grained starting material is obtained, which can be easily deformed in the medium to high temperature range, i. H. has quasi-superplastic properties, so to speak. The primary material can therefore be converted relatively easily into the final shape of the finished workpiece by thermomechanical forming. The only question is whether the required coarse grain can be easily adjusted by additional annealing on the finished end product. Conventional practice now shows that this is by no means guaranteed in all cases. On the contrary, very tight conditions, which are annoying for production, generally have to be observed. The setting options for the coarse grain are known to depend on the available driving forces, the number of bacteria and other physical parameters. It is not indifferent in which way the primary material was created. The latter can be done, for example, by extrusion at high or low temperature or by hot isostatic pressing of the mechanically alloyed, encapsulated powder. The mechanical alloying usually causes a state of the highest possible deformation, that is to say strain hardening driven to the saturation limit, which is more or less broken down in the subsequent thermomechanical deformation steps. Practice shows that there is an optimal deformation state of the primary material for the subsequent formation of coarse grains ("normal"). If, on the other hand, the primary material is insufficiently deformed ("underworked"), i.e. if it has too little work hardening and therefore too little energy for the subsequent recrystallization, the latter is incomplete (mixture of non-recrystallized fine grain with little coarse grain) or is completely absent. However, if the primary material is excessively deformed ("overworked"), ie if it has an excess of energy for later recrystallization, this takes place completely, but, due to the high number of crystallization nuclei, only leads to a relatively fine-grained structure. The latter cannot be converted into coarse grain by any additional heat treatment.

Es besteht daher das Bedürfnis, diese in der Praxis beobachteten Beengungen im Fabrikationsablauf zu durchbrechen und nach Methoden zu suchen, welche die Fertigung brauchbarer Werkstücke in einem weiten Bereich ermöglichen.There is therefore a need to break through the constrictions observed in practice in the manufacturing process and to look for methods which enable the production of usable workpieces in a wide range.

Der Erfindung liegt die Aufgabe zugrunde, ein Herstellungsverfahren für oxyddispersionsgehärtete, warmfeste Werkstücke anzugeben, welches unabhängig vom gewählten Verdichtungsschritt und dem dadurch bedingten Verformungszustand des Gefüges des auf diese Weise erzeugten Vormaterials in jedem Fall ein für den Betrieb brauchbares grobkörniges Endprodukt gewährleistet.The invention is based on the object of specifying a production method for oxide-hardened, heat-resistant workpieces which, regardless of the selected compression step and the resulting state of deformation of the structure of the starting material produced in this way, guarantees a coarse-grained end product that is usable for operation.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved by the features of claim 1.

Die Erfindung wird anhand der nachfolgenden, durch Figuren erläuterten Ausführungsbeispiele beschrieben. Dabei zeigt

  • Fig. 1 das Fließbild (Blockdarstellung) der grundsätzlichen Verfahrensschritte,
  • Fig. 2 das Fließbild der Verfahrensschritte für ungenügend verformtes Vormaterial,
  • Fig. 3 das Fließbild der Verfahrensschritte für optimal verformtes Vormaterial,
  • Fig. 4 das Fließbild der Verfahrensschritte für übermäßig verformtes Vormaterial,
  • Fig. 5 ein Diagramm der Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück, ausgehend von ungenügend verformtem Vormaterial,
  • Fig. 6 ein Diagramm der Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück, ausgehend von optimal verformtem Vormaterial,
  • Fig. 7 ein Diagramm der Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück, ausgehend von übermäßig verformtem Vormaterial.
The invention is described on the basis of the following exemplary embodiments explained by figures. It shows
  • 1 shows the flow diagram (block diagram) of the basic method steps,
  • 2 shows the flow diagram of the process steps for insufficiently deformed starting material,
  • 3 shows the flow diagram of the process steps for optimally deformed starting material,
  • 4 shows the flow diagram of the process steps for excessively deformed starting material,
  • 5 shows a diagram of the deformation conditions for achieving coarse grain for the finished workpiece, starting from insufficiently deformed starting material,
  • 6 shows a diagram of the deformation conditions for achieving coarse grain for the finished workpiece, starting from optimally deformed primary material,
  • 7 shows a diagram of the deformation condition to achieve coarse grain for the finished workpiece, starting from excessively deformed raw material.

In Fig. 1 ist das Fließbild des grundsätzlichen Verfahrens in Blockdarstellung wiedergegeben. Es wird in der Regel von metallischen Pulvern, welche in Form von Elementen und/oder Vorlegierungen vorliegen können, sowie von Metalloxydpulvern als Dispersoiden ausgegangen. Die Pulver sind sehr feinkörnig, die Partikelgröße schwankt zwischen wenigen µm und etwa 60 µm, die Metalloxydpulver meist noch feiner (unterhalb 1 µm). Das Mischen und mechanische Legieren der Pulver wird im allgemeinen unter Schutzgasatmosphäre im Attritor durchgeführt. Dabei werden die Pulverpartikel bis zur Homogenität legiert und mit dem Dispersoid vermengt. Gleichzeitig wird die Kaltverformung bis zur Sättigungsgrenze getrieben, was sich unter anderem an der hohen Härte, welche größenordnungsmäßig bis gegen 700 Vickerseinheiten erreichen kann, bemerkbar macht. Dieser hohe, durch kein anderes Mittel erzielbare Kaltverformungsgrad ist die Voraussetzung für das Vorhandensein genügender Triebkraft für die schlußendlich am fertigen Werkstück gewünschte Grobkörnigkeit des Gefüges. Das mechanisch legierte Pulver wird in einen duktilen Metallbehälter, meist weicher Stahl, unter Vakuum eingefüllt und eingekapselt (allseitig dichte, verschweißte Dose oder Kapsel). In einem darauffolgenden Verfahrensschritt wird das eingekapselte Pulver auf 100% der theoretischen Dichte warmverdichtet. Das Erzeugnis ist ein leicht verformbares, ultra-feinkörniges Vormaterial, welches das Ausgangsmaterial für die weitere Formgebung des Werkstükkes bildet. Je nach der Art und Weise des durchgeführten Warmverformungsschrittes entsteht ein Vormaterial, welches in bezug auf die spätere Rekristallisation ungenügend optimal oder übermäßig verformt ist (»underworked«, »normal«, »overworked«). Die Weiterverarbeitung zum fertigen Werkstück (gezielte Umformung=Endformgebung) erfolgt unter Bedingungen, welche auf den Verformungszustand des Vormaterials Rücksicht nehmen. Maßgebende Parameter sind dabei Temperatur, Verformungsgeschwindigkeit und die im letzten Umforungsschritt zu erzielende bzw. noch notwendige Verformung, welche beispielsweise als Querschnittsveränderung ausgedrückt werden kann. Es entsteht in jedem Fall ein fertig geformtes Werkstück, welches sich durch eine Grobkornglühung in das betriebsgerechte Endprodukt überführen läßt.In Fig. 1, the flow diagram of the basic method is shown in block form. It is generally assumed that metallic powders, which may be in the form of elements and / or master alloys, and metal oxide powders as dispersoids. The powders are very fine-grained, the particle size fluctuates between a few µm and about 60 µm, and the metal oxide powders are usually even finer (below 1 µm). The mixing and mechanical alloying of the powders is generally carried out in a protective gas atmosphere in the attritor. The powder particles are alloyed to homogeneity and mixed with the dispersoid. At the same time, the cold working is driven to the saturation limit, which is reflected in the high hardness, which can reach up to 700 Vickers units. This high degree of cold deformation, which cannot be achieved by any other means, is the prerequisite for the existence of sufficient driving force for the coarseness of the structure that is ultimately desired on the finished workpiece. The mechanically alloyed powder is filled into a ductile metal container, usually soft steel, under vacuum and encapsulated (sealed, sealed can or capsule on all sides). In a subsequent process step, the encapsulated powder is thermally compressed to 100% of the theoretical density. The product is an easily deformable, ultra-fine-grained raw material, which forms the starting material for the further shaping of the workpiece. Depending on the way the performed Warmverformungsschri tes t results in a primary material, which is deformed insufficiently optimal or excessive in relation to the subsequent recrystallization ( "underworked,""normal,""overworked"). The further processing to the finished workpiece (targeted forming = final shaping) takes place under conditions that take into account the state of deformation of the primary material. The decisive parameters here are temperature, deformation speed and the deformation to be achieved or still necessary in the last forging step, which can be expressed, for example, as a change in cross-section. In any case, a finished workpiece is created, which can be converted into the operational end product by coarse grain annealing.

Für jeden Verformungszustand des Vormaterials lassen sich Wertepaare der für die nachträgliche Umformung in das fertige Werkstück notwendigen beiden Parameter angeben, welche die Voraussetzung zur nachfolgenden Grobkornbildung erfüllen. Dabei wählt man zweckmäßig als den einen Parameter den Logarithmus der temperaturkompensierten Verformungsgeschwindigkeit:

Figure imgb0001
wobei
Figure imgb0002
die Ableitung des Absolutwertes des natürlichen Logarithmus des Querschnittsverhältnisses (Ao=Querschnittsfläche des Werkstückes vor, Af=Querschnittsfläche nach der Umformung) des Werkstückes nach der Zeit, sowie DNi der temperaturabhängige Diffusionskoeffizient von Nickel bedeutet. Der andere Parameter, der Verformungsgrad, wird zweckmäßigerweise durch
Figure imgb0003
den Absolutwert des natürlichen Logarithmus des Querschnittsverhältnisses des Werkstückes, ausgedrückt. Selbstverständlich kann man auch von der Längenänderung ausgehen und diese dann auf das Querschnittsverhältnis umrechnen.For each state of deformation of the primary material, pairs of values can be specified for the two parameters necessary for subsequent forming into the finished workpiece, which meet the requirements for subsequent coarse grain formation. It is useful to choose the logarithm of the temperature-compensated rate of deformation as the one parameter:
Figure imgb0001
in which
Figure imgb0002
the derivation of the absolute value of the natural logarithm of the cross-sectional ratio (A o = cross-sectional area of the workpiece before, A f = cross-sectional area after the forming) of the workpiece after time, and D Ni means the temperature-dependent diffusion coefficient of nickel. The other parameter, the degree of deformation, is expediently determined by
Figure imgb0003
the absolute value of the natural logarithm of the cross-sectional ratio of the workpiece. Of course, you can also start from the change in length and then convert it to the cross-sectional ratio.

Fig. 2 zeigt das Fließbild der Verfahrensschritte für ungenügend verformtes Vormaterial. Eine Pulvermischpng wurde mechanisch legiert und in eine Dose aus weichem Stahl eingekapselt. Die Endlegiqrunig hatte folgende Zusammensetzung:

Figure imgb0004
2 shows the flow diagram of the process steps for insufficiently deformed starting material. A powder mix was mechanically alloyed and encapsulated in a soft steel can. The Endlegiqrunig had the following composition:
Figure imgb0004

Der anschließende Warmverdichtungsschritt bestand in einem Strangpressen bei einer Temperatur von 1075°C. Entsprechend dem Zylinderdurchmesser der Strangpresse von 229 mm und dem Strangdurchmesser von 51 mm ergab sich ein Querschnittsreduktionsverhältnis von 20,25 : 1, was einem ε=3 entspricht. Das auf diese Weise erzeugte feinkörnige Vormaterial hatte eine $ubkorngröße von durchschnittlich 0,3 µm.The subsequent hot compression step consisted of extrusion at a temperature of 1075 ° C. Corresponding to the cylinder diameter of the extrusion press of 229 mm and the extrusion diameter of 51 mm, a cross-sectional reduction ratio of 20.25: 1 resulted, which corresponds to a ε = 3. The fine-grained primary material produced in this way had an average particle size of 0.3 µm.

Entsprechend dem Abbau der ursprünglich eingebrachten Kaltverformung galt es als ungenügend verformt (»underworked«). Im allgemeinen weisen diese Materialien eine durchschnittliche Subkorngröße von 0,25 µm bis 0,35 µm auf. Vom erhaltenen Stangen-Vormaterial wurde ein Stück abgeschnitten und in einer Presse von 8 MN Preßkraft einer Umformung in ein fertiges Werkstück unterzogen. Der Verformungsgrad s betrug 1, der logarithmische Wert der Verformungsgeschwindigkeit entsprechend

Figure imgb0005
In accordance with the reduction of the cold deformation originally introduced, it was considered to be insufficiently deformed ("underworked"). In general, these materials have an average sub-grain size of 0.25 µm to 0.35 µm. A piece of the bar stock obtained was cut off and in a press from 8 MN press force subjected to forming into a finished workpiece. The degree of deformation s was 1, the logarithmic value corresponding to the rate of deformation
Figure imgb0005

Das Werkstück wurde einer Grobkornglühung bei einer Temperatur von 1220°C während 1 h unterzogen. Dabei wurde eine mittlere Korngröße von über 100 µm festgestellt. Im allgemeinen kann man unter diesen gegebenen Verhältnissen als Grobkorn jene Korngröße verstehen, die gegenüber dem feinkörnigen Vormaterial eine Vergröberung um mindestens einen Faktor 100 bedeutet.The workpiece was subjected to coarse grain annealing at a temperature of 1220 ° C for 1 h. An average grain size of over 100 µm was found. In general, given these conditions, coarse grain can be understood to mean that grain size which means a coarsening by at least a factor of 100 compared to the fine-grained starting material.

In Fig. 3 ist das Fließbild der Verfahrensschritte für optimal verformtes Vormaterial dargestellt. Die Ausgangslage entsprach dem unter Fig. 2 erläuterten Ausführungsbeispiel. Es wurde dieselbe Legierung verwendet und die gleichen ersten Verfahrensschritte angewandt. Das Strangpressen erfolgte unter ähnlichen Bedingungen, jedoch bei einer Temperatur von 960° C. Das Reduktionsverhältnis ergab ebenfalls ein e von 3. Das feinkörnige Vormaterial wies eine Subkorngröße von 0,2 um auf. Entsprechend dem Abbau der Kaltverfestigung befand sich dieses Material im optimalen Verformungszustand (»normal«). Die durchschnittliche Subkorngröße dieser Materialien bewegt sich im allgemeinen im Bereich von 0,15 µm bis 0,25 µm. Ein Stück des Vormaterials wurde auf einer Presse um den Verformungsgrad s=1,1 mit einer Verformungsgeschwindigkeit umgeformt, die dem Wert

Figure imgb0006
entsprach.3 shows the flow diagram of the process steps for optimally deformed starting material. The starting position corresponded to the exemplary embodiment explained in FIG. 2. The same alloy was used and the same first process steps were used. The extrusion was carried out under similar conditions, but at a temperature of 960 ° C. The reduction ratio likewise gave an e of 3. The fine-grained starting material had a sub-grain size of 0.2 μm. In accordance with the breakdown of work hardening, this material was in the optimal state of deformation ("normal"). The average sub-grain size of these materials generally ranges from 0.15 µm to 0.25 µm. A piece of the primary material was formed on a press by the degree of deformation s = 1.1 with a deformation rate that corresponds to the value
Figure imgb0006
corresponded.

Nach einer Grobkornglühung bei 1220°C/1 h wurde eine Korngröße von durchschnittlich 350 µm festgestellt. Auch hier war die Korngröße um mehr als 2 Größenordnungen angestiegen.After coarse grain annealing at 1220 ° C / 1 h, an average grain size of 350 µm was determined. Here, too, the grain size had increased by more than 2 orders of magnitude.

Fig. 4 zeigt das Fließbild der Verfahrensschritte für übermäßig verformtes Vormaterial. Eine Pulvermischung wurde mechanisch legiert und in eine Dose aus weichem Stahl eingekapselt. Die Endlegierung hatte folgende Zusammensetzung:4 shows the flow diagram of the process steps for excessively deformed starting material. A powder mixture was mechanically alloyed and encapsulated in a soft steel can. The final alloy had the following composition:

Figure imgb0007
Der Warmverformungsschritt zur Verdichtung des eingekapselten Pulvers auf 100% der theoretischen Dichte bestand in einem heiß-isostatischen Pressen bei einer Temperatur von 950°C während 4 h unter einem Druck von 135 MPa. Die Höhe des ursprünglichen zylindrischen Körpers von 200 mm wurde dabei auf 150 mm reduziert. Das entsprechende ε ergab sich zu 0,3. Das auf diese Weise erzeugte feinkörnige Vormaterial hatte eine Subkorngröße von durchschnittlich 0,14 µm. Entsprechend dem geringeren Abbau der Kaltverfestigung des Pulvers galt dieses Material als übermäßig verformt (»overworked«). Die Subkorngröße derartiger Materialien ist in der Regel ≤0,15 µm. Das Vormaterial wurde auf einer Presse um den Verformungsgrad ε=0,3 mit einer Verformungsgeschwindigkeit umgeformt, welche dem logarithmischen Wert von
Figure imgb0008
entsprach.
Figure imgb0007
The thermoforming step to compress the encapsulated powder to 100% of the theoretical density consisted of hot isostatic pressing at a temperature of 950 ° C. for 4 hours under a pressure of 135 MPa. The height of the original cylindrical body of 200 mm was reduced to 150 mm. The corresponding ε was 0.3. The fine-grained primary material produced in this way had an average sub-grain size of 0.14 µm. Due to the lower breakdown of the work hardening of the powder, this material was considered to be excessively deformed ("overworked"). The subgrain size of such materials is usually ≤0.15 µm. The primary material was formed on a press by the degree of deformation ε = 0.3 at a rate of deformation which corresponds to the logarithmic value of
Figure imgb0008
corresponded.

Das Werkstück wurde einer Grobkornglühung bei einer Temperatur von 1220°C während 1 h unterzogen. Dabei wurde eine mittlere Korngröße von über 60 µm festgestellt, was eindeutig in diesem Fall Grobkorn bedeutet.The workpiece was subjected to coarse grain annealing at a temperature of 1220 ° C for 1 h. An average grain size of over 60 µm was determined, which clearly means coarse grain in this case.

Fig. 5 zeigt ein Diagramm der experimentell ermittelten Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück für den Fall, daß von ungenügend verformtem Vormaterial (»underworked«) ausgegangen wird. Die Verformungsbedingungen sind als Wertepaare der Verformungsgeschwindigkeit und des Verformungsgrades dargestellt. Jeder Schnittpunkt eines Abszissenwertes mit einem Ordinatenwert stellt einen bestimmten, die Verformungsbedingung charakterisierenden Zustand, jedoch nicht einen funktionalen Zusammenhang zwischen Verformungsgeschwindigkeit und Verformungsgrad dar. Fällt der Schnittpunkt innerhalb des schraffierten Gebietes, so sind die Bedingungen für den Erfolg einer nachträglichen Grobkornglühung am fertigen Werkstück erfüllt. Fällt der Schnittpunkt außerhalb des schraffierten Gebietes, so kann nicht mehr mit Grobkornbildung gerechnet werden. Entweder bleibt dann die Rekristallisation zumindest teilweise aus oder es bildet sich ein für den Betrieb unerwünschtes feinkörniges Gefüge aus.5 shows a diagram of the experimentally determined deformation conditions in order to achieve coarse grain for the finished workpiece in the event that insufficiently deformed starting material (“underworked”) is assumed. The deformation conditions are shown as pairs of values for the deformation speed and the degree of deformation. Each intersection of an abscissa value with an ordinate value represents a specific state that characterizes the deformation condition, but not a functional relationship between the deformation speed and the degree of deformation. If the intersection falls within the hatched area, the conditions for the success of subsequent coarse grain annealing on the finished workpiece are met. If the intersection falls outside the hatched area, coarse grain formation can no longer be expected. Either the recrystallization is then at least partially absent, or a fine-grained structure that is undesirable for operation is formed.

Dem Diagramm ist zu entnehmen, daß zur Erzielung von Grobkorn die Verformungsgeschwindigkeit sich in ziemlich engen Grenzen zu halten hat, daß ein optimaler Wert unabhängig vom Verformungsgrad existiert und daß letzterer ein gewisses Minimum nicht unterschreiten darf. Der Wert für

Figure imgb0009
soll zwischen 16,5 und 20 liegen, optimal bei etwa 18 (strichpunktierte Horizontale), während
Figure imgb0010
sein soll. Das günstige Gebiet im Diagramm ist parallel zur Abszisse offen, was bedeutet, daß dem Verformungsgrad nach oben keine Grenzen gesetzt sind.It can be seen from the diagram that the rate of deformation must be kept within fairly narrow limits in order to achieve coarse grain, that an optimum value exists regardless of the degree of deformation and that the latter must not fall below a certain minimum. The value for
Figure imgb0009
should be between 16.5 and 20, optimally around 18 (dash-dotted horizontal), while
Figure imgb0010
should be. The favorable area in the diagram is open parallel to the abscissa, which means that there is no upper limit to the degree of deformation.

Fig. ist ein Diagramm der experimentell ermittelten Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück für den Fall, daß von optimal verformtem Vormaterial (»normal«) ausgegangen wird. Das schraffierte Gebiet stellt wieder die Gesamtheit der Schnittpunkte je eines Abszissen- und Ordinatenwertes dar, für welchen die Grobkornbildung anläßlich der nachfolgenden Glühung gewährleistet ist.Fig. Is a diagram of the experimentally determined deformation conditions to achieve coarseness for the finished workpiece in the event that optimally deformed starting material ("normal") is assumed. The hatched area again represents the totality of the intersection points of an abscissa and ordinate value, for which the coarse grain formation is guaranteed on the occasion of the subsequent annealing.

Wurde z. B. ein Vormaterial gemäß den unter Fig. 3 erläuterten Kennzeichen, jedoch mit einer Verformungsgeschwindigkeit entsprechend

Figure imgb0011
bis auf
Figure imgb0012
verformt, so wurde nach anschließender Glühung bei 1220°C/lh kein Grobkorn erhalten. Das gleiche Material entsprechend
Figure imgb0013
bis auf
Figure imgb0014
verformt, ergab eindeutig Grobkorn.Has z. B. a raw material according to the characteristics explained in Fig. 3, but with a deformation rate accordingly
Figure imgb0011
until
Figure imgb0012
deformed, no coarse grain was obtained after subsequent annealing at 1220 ° C / lh. The same material accordingly
Figure imgb0013
until
Figure imgb0014
deformed, clearly gave coarse grain.

Das Diagramm zeigt, daß immer dann, wenn größere Verformungen des Werkstückes entsprechend ε>1,0 notwendig sind, sich die Verformungsgeschwindigkeit in engen Grenzen zu halten hat, die dem Wert für

Figure imgb0015
zwischen 15,5 und 20, optimal etwa 18 entsprechen. Der Wert für s ist hingegen nicht begrenzt, kann also beliebig klein, im Grenzfall auch Null sein (keine weitere Umformung von der Praxis her möglich bzw. erwünscht). Im Bereich niedriger Verformungsgrade für die Endformgebung entsprechend
Figure imgb0016
ist der Bereich für die Verformungsgeschwindigkeit erweitert und erreicht für
Figure imgb0017
Werte, die zwischen etwa 10 und 22 liegen. Das heißt für die Praxis, daß im Falle kleiner Verformungen (z. B. Nachpressen zur Erzielung höherer Genauigkeit und Oberflächengüte des Werkstückes) die Verformungsgeschwindigkeit für zuvor optimal verformtes Vormaterial nicht so kritisch ist wie bei höheren Verformungsgraden.The diagram shows that whenever larger deformations of the workpiece corresponding to ε> 1.0 are necessary, the deformation speed has to be kept within narrow limits, which is the value for
Figure imgb0015
between 15.5 and 20, optimally around 18. The value for s, however, is not limited, so it can be as small as desired, in the limit case it can also be zero (no further transformation possible or desirable in practice). Correspondingly in the area of low degrees of deformation for the final shaping
Figure imgb0016
is the range for the rate of deformation expanded and reached for
Figure imgb0017
Values that are between approximately 10 and 22. In practice, this means that in the case of small deformations (e.g. re-pressing to achieve higher accuracy and surface quality of the workpiece), the deformation speed for previously optimally deformed primary material is not as critical as for higher degrees of deformation.

Fig. 7 zeigt ein Diagramm der experimentell ermittelten Verformungsbedingungen zur Erzielung von Grobkörnigkeit für das fertige Werkstück für den Fall, daß von übermäßig verformtem Vormaterial (»overworked«) ausgegangen wird.FIG. 7 shows a diagram of the experimentally determined deformation conditions in order to achieve coarseness for the finished workpiece in the event that excessively deformed starting material ("overworked") is assumed.

Das oben definierte schraffierte Gebiet nähert sich zwar der Ordinate, erreicht sie aber nicht ganz. Im Bereich niedriger Verformungsgrade entsprechend

Figure imgb0018
liegt der zulässige Wert für
Figure imgb0019
etwa zwischen 14 und 18, für höhere Verformungsgrade entsprechend
Figure imgb0020
zwischen 16 und 20, optimal wieder bei ungefähr 18. Im übrigen besteht im niedrigeren Verformungsbereich entsprechend
Figure imgb0021
etwa ein linearer Zusammenhang mit dem Mittelwert des Logarithmus der Verformungsgeschwindigkeit. Der Verformungsgrad s muß mindestens 0,1 erreichen.The hatched area defined above approaches the ordinate, but does not quite reach it. Correspondingly in the area of low degrees of deformation
Figure imgb0018
is the permissible value for
Figure imgb0019
approximately between 14 and 18, for higher degrees of deformation accordingly
Figure imgb0020
between 16 and 20, optimal again at around 18. Otherwise there is a correspondingly lower deformation range
Figure imgb0021
for example a linear relationship with the mean of the logarithm of the rate of deformation. The degree of deformation s must reach at least 0.1.

Wurde ein Vormaterial gemäß den unter Fig. 4 erläuterten Kennzeichen, jedoch mit einer Verformungsgeschwindigkeit entsprechend

Figure imgb0022
bis auf
Figure imgb0023
verformt, so wurde nachträglich kein Grobkorn erhalten, während das Wertepaar 16,6 (Ordinate/0,27 (Abszisse) nach einer Glühung bei 1220° C zu Grobkorn führte.Was a raw material in accordance with the characteristics explained in FIG. 4, but with a deformation rate accordingly
Figure imgb0022
until
Figure imgb0023
deformed, no coarse grain was subsequently obtained, while the value pair 16.6 (ordinate / 0.27 (abscissa) resulted in coarse grain after annealing at 1220 ° C.

Aus den Diagrammen nach Fig. 5, 6 und 7 läßt sich entnehmen, daß es für alle Gefüge- und Verformungszustände des Vormaterials einen gemeinsamen optimalen Bereich für den Logarithmus der Verformungsgeschwindigkeit für das umzuformende Werkstück gibt, welcher unabhängig vom zu erreichenden Verformungsgrad bei einem Wert von 18±1,0 liegt. Die Verformungsgeschwindigkeit muß also in einem verhältnismäßig engen kritischen Bereich gehalten werden. Einzige zusätzliche Bedingung ist, daß der Verformungsgrad hoch genug ist, sofern man den Zustand des Vormaterials nicht genügend kennt.5, 6 and 7 it can be seen that for all structural and deformation states of the primary material there is a common optimal range for the logarithm of the deformation speed for the workpiece to be formed, which is at a value of regardless of the degree of deformation to be achieved 18 ± 1.0. The rate of deformation must therefore be kept in a relatively narrow critical range. The only additional condition is that the degree of deformation is high enough if the condition of the primary material is not sufficiently known.

Diese Verformungsbedingungen gelten sowohl für einen einzigen Verformungsschritt wie auch für einen aus Teilschritten bestehenden komplizierten Umformprozeß. Dabei müssen in jedem Fall während der Durchführung des letzten Teilschrittes die obenerwähnten Bedingungen eingehalten werden. Aus dem vorstehenden geht eindeutig hervor, daß letztlich der Gefüge- und Kaltverfestigungszustand des Vormaterials (also die Ausgangsbedingungen) weitgehend belanglos ist. Es gelingt immer, ein Grobkorn nach der Endglühung zu erzielen. Die Umformung zum fertigen Werkstück kann durch Schmieden, Walzen, Pressen, Hämmern oder Warmziehen oder eine beliebige Kombination dieser Prozesse erfolgen.These deformation conditions apply both to a single deformation step and to a complicated forming process consisting of partial steps. In any case, during the implementation of the last step the conditions mentioned above are met. From the above it is clear that ultimately the structural and work hardening condition of the primary material (i.e. the initial conditions) is largely irrelevant. It is always possible to achieve a coarse grain after the final annealing. Forming to the finished workpiece can be done by forging, rolling, pressing, hammering or hot drawing or any combination of these processes.

Das Vormaterial kann durch heiß-isostatisches Pressen oder durch Strangpressen in herkömmlicher Weise hergestellt werden.The starting material can be produced in a conventional manner by hot isostatic pressing or by extrusion.

Das Verfahren ist allgemein auf den in den Beispielen angegebenen Legierungstyp und verwandte dispersionsgehärtete und zur Ausscheidungshärtung geeignete hochnickelhaltige austenitische Superlegierungen anwendbar.The method is generally applicable to the alloy type specified in the examples and related dispersion-hardened austenitic superalloys which are suitable for precipitation hardening.

Durch das erfindungsgemäße Verfahren wurden die für die weitere Formgebung eines Werkstückes aus einer dispersionsgehärteten Nickellegierung einzuhaltenden Arbeitsbedingungen als Wertepaare Verformungsgeschwindigkeit/Verformungsgrad zur nochmaligen Erzielung eines grobkörnigen, für den Betrieb bei hoher Temperaturen optimalen Gefüges festgelegt und in Diagrammen übersichtlich dargestellt. Das Verfahren gewährleistet, in jedem Fall, unabhängig vom ultra-feinkörnigen Vormaterial und dessen Kaltverfestigungsgrad, im Endprodukt Grobkorn zu erzielen.By means of the method according to the invention, the working conditions to be observed for the further shaping of a workpiece from a dispersion-hardened nickel alloy were defined as pairs of values of deformation rate / degree of deformation in order to again achieve a coarse-grained structure which is optimal for operation at high temperatures and clearly represented in diagrams. The process ensures, regardless of the ultra-fine-grained raw material and its degree of work hardening, that coarse grain is obtained in the end product.

Claims (10)

1. Process for manufacturing a workpiece from a creep-resistant, precipitation-hardenable austenitic alloy having a high nickel content and containing a metal oxide as the hardening idspersoid, this process being in accordance with the methods employed in powder metallurgy and in which a metal powder is mixed with a metal oxide powder, is mechanically alloyed, is encased in a metal container, and is densified, by hot-compaction, to 100% of the theoretical density, in a manner such that an easily deformable intermediate material is produced, which has a very fine grain size and is suitable for further processing, terminating in an annealing treatment for developing a coarse grain size, characterised in that the abovementioned intermediate material is converted to the finished workpiece by means of a purpose-designed working operation which embodies the final shaping step, the deformation rate and the degree of deformation being determined in accordance with the intermediate material, which can exhibit deformation which is insufficient, optimum, or excessive, in a manner such that the logarithm of the temperature-compensated deformation rate, expressed as
Figure imgb0031
where
Figure imgb0032
and Ao and Af respectively denote the cross-sectional areas of the workpiece before and after the working operation, while DNi dentoes the diffusion coefficient of nickel, which is a function of temperature,
lies between the values 16.5 and 20 in
case a) - insufficient deformation of the intermediate material, lies between the values 10 and 22 in
case b) - optimum deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0≤ε<0.3, where
Figure imgb0033
and lies, in the range of comparatively high degrees of deformation for the final-shaping step, described by s>1.0, between the values 15.5 and 20,
lies between the values 14 and 18 in
case c) - excessive deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0.1 <|ε|<0.2,

and lies, in the range of comparatively high degrees of deformation for the final-shaping step, described by |ε|>0.8, between 16 and 20, and in that the degree of deformation for the final-shaping step, described by s, reaches a value of not less than 0.5 in
case a) - insufficient deformation of the intermediate material,

is as small as desired, and can thus also be nil, in
case b) - optimum deformation of the intermediate material,

increases linearly with the deformation rate, but reaches a value of not less than 0.1, in
case c) - excessive deformation of the intermediate material in the range of low degrees of deformation for the final-shaping step, described by 0.1 < |ε| < 0.6,

the above being subject to the restriction that in
case a), the values must lie within the shaded region in Figure 5, in
case b), the values must lie within the shaded region in Figure 6, and in
case c), the values must lie within the shaded region in Figure 7.
2. Process according to Claim 1, characterised in that the logarithm of the temperature-compensated deformation rate for the final-shaping step, expressed as
Figure imgb0034
has the value of 18 ±1.0, irrespective of the degree of deformation which is to be achieved, and irrespective of the initial deformation-state of the intermediate material.
3. Process according to Claim 1, characterised in that the easily deformable intermediate material, which has a very fine grain size, is produced by hot-isostatic pressing, or by extrusion.
4. Process according to Claim 1, characterised in that the intermediate material exhibits insufficient deformation, is produced by the extrusion of an encased powder, at a temperature of 1075°C, achieving a reduction ratio of 20 : 1, and possesses a sub-grain size of 0.25 to 0.35 µm.
5. Process according to Claim 1, characterised in that the intermediate material exhibits the optimum deformation, is produced by the extrusion of an encased powder, at a temperature of 950°C, achieving a reduction ratio of 20 : 1, and possesses a sub-grain size of 0.15 to 0.25 µm.
6. Process according to Claim 1, characterised in that the intermediate material exhibits excessive deformation, is produced by hot-isostatic pressing of an encased powder, at a temperature of 950°C, under a pressure of 135 Mpa, for 4 hours, the case undergoing a height-reduction of 30%, this intermediate material possessing a sub-grain size not exceeding 0.15 µm.
7. Process according to Claim 1, characterised in that the creep-resistant austenetic alloy has the following composition:
Figure imgb0035
8. Process according to Claim 1, characterised in that the creep-resistant austenitic alloy has the following composition:
Figure imgb0036
Figure imgb0037
9. Process according to Claim 1, characterised in that the working step, to produce the finished workpiece, is carried out by forging, rolling, pressing, hammering, or hot-drawing.
10. Process according to Claim 9, characterised in that the step in which the intermediate material is worked to produce the finished workpiece is carried out in several successive part-stept, such that the last of them satisfies the deformation conditions specified in Claims 1 and 2, as well as in Claims 4,5 and 6.
EP81200670A 1980-08-08 1981-06-16 Process for manufacturing an article from a heat-resisting alloy Expired EP0045984B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81200670T ATE6674T1 (en) 1980-08-08 1981-06-16 PROCESS FOR MAKING A WORKPIECE FROM A HEAT RESISTANT ALLOY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH602780 1980-08-08
CH6027/80 1980-08-08

Publications (2)

Publication Number Publication Date
EP0045984A1 EP0045984A1 (en) 1982-02-17
EP0045984B1 true EP0045984B1 (en) 1984-03-14

Family

ID=4303031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81200670A Expired EP0045984B1 (en) 1980-08-08 1981-06-16 Process for manufacturing an article from a heat-resisting alloy

Country Status (4)

Country Link
EP (1) EP0045984B1 (en)
JP (1) JPS5754237A (en)
AT (1) ATE6674T1 (en)
DE (1) DE3162643D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074679B1 (en) * 1981-09-03 1985-03-20 BBC Aktiengesellschaft Brown, Boveri & Cie. Process for manufacturing an article from a heat-resisting alloy
CH661455A5 (en) * 1982-02-18 1987-07-31 Bbc Brown Boveri & Cie METHOD FOR PRODUCING A FINE-GRAIN WORKPIECE AS A FINISHED PART FROM A HEAT-RESISTANT AUSTENITIC NICKEL-BASED ALLOY OR FROM ALLOY A 286.
JPS60131943A (en) * 1983-12-19 1985-07-13 Sumitomo Electric Ind Ltd Heat-and wear-resistant aluminum alloy reinforced with dispersed particles and its manufacture
CH671583A5 (en) * 1986-12-19 1989-09-15 Bbc Brown Boveri & Cie
DE59007734D1 (en) * 1989-05-16 1995-01-05 Asea Brown Boveri Process for the production of coarse longitudinally oriented stem crystals in an oxide dispersion hardened nickel-based superalloy.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794801A (en) * 1972-01-31 1973-07-31 Int Nickel Ltd ANALYZING PROCESS IN ALLOY ZONES
GB1435796A (en) * 1972-10-30 1976-05-12 Int Nickel Ltd High-strength corrosion-resistant nickel-base alloy
US3909309A (en) * 1973-09-11 1975-09-30 Int Nickel Co Post working of mechanically alloyed products
CH599348A5 (en) * 1975-10-20 1978-05-31 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
JPS5754237A (en) 1982-03-31
ATE6674T1 (en) 1984-03-15
EP0045984A1 (en) 1982-02-17
DE3162643D1 (en) 1984-04-19

Similar Documents

Publication Publication Date Title
EP0513407B1 (en) Method of manufacture of a turbine blade
EP0299027B1 (en) Creep-resistant alloy of refractory metals and its production process
DE3445767C2 (en)
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
DE69918350T2 (en) Process for producing a dispersion-hardened ferritic-martensitic alloy
EP0369114B1 (en) Process for manufacturing alloyed tungsten rods
EP2990141B1 (en) Method for producing TiAl components
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
DE1283547B (en) Process for increasing the tensile strength, yield strength and creep rupture strength and for stabilizing the grain orientation of dispersion-hardened alloys
EP3372700B1 (en) Method for making forged tial components
EP0035601B1 (en) Process for making a memory alloy
AT411027B (en) DEVICE AND METHOD FOR PRODUCING FINE CRYSTALLINE MATERIALS
CH638833A5 (en) METHOD FOR PRODUCING A SOLID BODY FROM A COPPER-ZINC-ALUMINUM ALLOY AND BODY PRODUCED BY THIS METHOD.
DE2360914C2 (en) Binding, deoxidizing and carburizing agents for the manufacture of preforms from metal powders
DE1558632A1 (en) Corrosion-resistant cobalt-nickel-molybdenum-chromium alloys
WO1981002587A1 (en) Memory allows with a copper,zinc and aluminum base and method for preparing them
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
DE1558805C3 (en) Process for the production of deformed workpieces from dispersion-reinforced metals or alloys
DE2200670B2 (en)
DE4001799C2 (en) Process for producing an intermetallic compound
EP0045984B1 (en) Process for manufacturing an article from a heat-resisting alloy
DE2362650C3 (en) Process for improving the deformability of atomized powders
DE2443187C2 (en) Process for the manufacture of flat rolled products from mechanically alloyed powders
DE2522073A1 (en) PLATE MADE OF AN ALLOY
DE3113733C2 (en) Process for the recovery of high quality materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB SE

17P Request for examination filed

Effective date: 19820528

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 6674

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3162643

Country of ref document: DE

Date of ref document: 19840419

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840724

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860527

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910517

Year of fee payment: 11

Ref country code: BE

Payment date: 19910517

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: BBC A.G. BROWN BOVERI & CIE

Effective date: 19920630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81200670.8

Effective date: 19930109