EP0504651A1 - Film de polyester pour bande magnétique - Google Patents
Film de polyester pour bande magnétique Download PDFInfo
- Publication number
- EP0504651A1 EP0504651A1 EP92103616A EP92103616A EP0504651A1 EP 0504651 A1 EP0504651 A1 EP 0504651A1 EP 92103616 A EP92103616 A EP 92103616A EP 92103616 A EP92103616 A EP 92103616A EP 0504651 A1 EP0504651 A1 EP 0504651A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyester
- film
- young
- modulus
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 17
- 229920000728 polyester Polymers 0.000 claims abstract description 69
- 238000002844 melting Methods 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims abstract description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 10
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 8
- 238000006068 polycondensation reaction Methods 0.000 claims description 5
- -1 polyethylene terephthalate Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 238000007334 copolymerization reaction Methods 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 26
- 239000000843 powder Substances 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 9
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000003490 calendering Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- FGTYTUFKXYPTML-UHFFFAOYSA-N 2-benzoylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 FGTYTUFKXYPTML-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- QLIQIXIBZLTPGQ-UHFFFAOYSA-N 4-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=C(C(O)=O)C=C1 QLIQIXIBZLTPGQ-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- XQKKWWCELHKGKB-UHFFFAOYSA-L calcium acetate monohydrate Chemical compound O.[Ca+2].CC([O-])=O.CC([O-])=O XQKKWWCELHKGKB-UHFFFAOYSA-L 0.000 description 1
- 229940067460 calcium acetate monohydrate Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- AAEHPKIXIIACPQ-UHFFFAOYSA-L calcium;terephthalate Chemical compound [Ca+2].[O-]C(=O)C1=CC=C(C([O-])=O)C=C1 AAEHPKIXIIACPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73923—Organic polymer substrates
- G11B5/73927—Polyester substrates, e.g. polyethylene terephthalate
- G11B5/73929—Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73923—Organic polymer substrates
- G11B5/73927—Polyester substrates, e.g. polyethylene terephthalate
- G11B5/73931—Two or more layers, at least one layer being polyester
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/91—Product with molecular orientation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates to a polyester film for a magnetic tape. More particularly, the present invention relates to a polyester film which has high strength in both longitudinal and transverse directions and excellent abrasion resistance and is suitable as a base film of a magnetic tape.
- One object of the present invention is to provide a base film for a magnetic tape, which does not suffer from the problem of fallen particles and the abrased powder.
- Another object of the present invention is to provide a base film for a long-play video tape.
- a laminated polyester film for a magnetic tape which film comprises a layer of a crystalline polyester (A) and a layer of a polyester (B) which is laminated on at least one surface of the layer of the polyester (A) and has a melting point lower than that of the polyester (A), and which film has a Young's modulus of at least 600 kg/mm2 in both longitudinal and transverse directions.
- the polyester (A) used in the polyester film of the present invention may be a polymer prepared through a polycondensation reaction of an aromatic dicarboxylic acid (e.g. terephthalic acid and naphthalene-2,6-dicarboxylic acid) with an aliphatic glycol (e.g. ethylene glycol, diethylene glycol, tetramethylene glycol and neopentyl glycol).
- aromatic dicarboxylic acid e.g. terephthalic acid and naphthalene-2,6-dicarboxylic acid
- an aliphatic glycol e.g. ethylene glycol, diethylene glycol, tetramethylene glycol and neopentyl glycol
- Specific examples of the polyester (A) are polyethylene terephthalate (PET) and polyethylene-2,6-naphthalene dicarboxylate (PEN).
- a polymer prepared through a copolymerization with an aromatic or aliphatic dicarboxylic acid or diol in such amount that the crystallinity is not decreased, for example, at most 10 % by mole, preferably at most 5 % by mole.
- other polymer such as a polyamide, a polyolefin and a polycarbonate in an amount of not larger than 10 % by weight, it is not preferable to use the other polymer in an amount such that the crystallinity is extremely decreased or the film surface is extremely roughened after the film preparation.
- the polyester (B) used in the polyester film of the present invention has a lower melting point than the polyester (A).
- the polyester (B) is preferably a copolymeric polyester.
- the copolymeric polyester may be a copolymerization product having a base polyester component unit used in the polyester (A) such as an ethylene terephthalate unit and an ethylene-2,6-naphthalate unit with at least one other component unit.
- the copolymerizable component may be at least one dicarboxylic acid such as oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,10-decane dicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid and diphenylether dicarboxylic acid; or at least one diol such as neopentyl glycol, 1,4-butane diol, trimethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, diethylene glycol, polyalkylene glycol and 1,4-cyclohexane dimethanol.
- dicarboxylic acid such as oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,10-decane dicarboxylic acid, phthalic acid,
- a hydroxycarboxylic acid such as p-hydroxybenzoic acid and p-hydroxyethoxybenzoic acid
- a monofunctional compound such as benzoic acid, benzoylbenzoic acid and methoxypolyalkylene glycol
- a polyfunctional compound such as glycerol and pentaerythritol can be used so long as the product has a substantially straight chain.
- a content of the copolymerizable component which is other than the base components of the polyester (A) and used in the copolymer (B) is such that a total (T + W) of a ratio [T (% by mole)] of the carboxylic acid in such copolymerizable components to the total amount of all carboxylic acids and a ratio [W (% by mole)] of the diol component in such copolymerizable component to the total amount of all the diols is usually from 6 to 40 % by mole, preferably 10 to 40 % by mole.
- the amount of such copolymerizable component is smaller than 6 % by mole, effects on the prevention of particle drop off and the improvement of abrasion resistance are not expected.
- the amount is larger than 40 % by mole, the formation of the laminate film is difficult.
- the polyester used in the present invention may usually contain fine particles such as an organic lubricant and inorganic lubricant to improve a sliding property. If necessary, an additive such as a stabilizer, a pigment, an antioxidant, an antifoamer and an antistatic agent may be added.
- an additive such as a stabilizer, a pigment, an antioxidant, an antifoamer and an antistatic agent may be added.
- fine particles giving the sliding property are inert external particles such as kaolin, clay, calcium carbonate, silicon oxide, spherical silica, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride and carbon black; and internal particles formed in the polymer during the polymer preparation by a high melting point organic compound which is not meltable during the film melt preparation of the polyester resin, a cross-linked polymer and a metal compound catalyst (for example, an alkaline metal compound and an alkaline earth metal compound) used during the polyester preparation.
- inert external particles such as kaolin, clay, calcium carbonate, silicon oxide, spherical silica, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride and carbon black
- the polyester layer (A) does not necessarily contain the inert particles depending on a form of lamination, for example, when the polyester layer (A) is sandwiched between a pair of the polyester layers (B). If desired, the polyester layer (A) may contain the inert particles having an average particle size of 0.007 to 5 ⁇ m, in particular 0.02 to 1.5 ⁇ m in an amount of 0.001 to 1.00 % by weight, preferably 0.1 to 0.8 % by weight.
- An average particle size of the inert particles contained in the polyester layer (B) is not limited and is preferably from 0.007 to 3.5 ⁇ m, in particular from 0.02 to 2 ⁇ m in view of good rolled form of the film.
- a content of the particles is usually from 0.001 to 40 % by weight, preferably from 0.005 to 15 % by weight.
- the polyester film of the present invention has the Young's modulus of at least 600 kg/mm2 in both longitudinal and transverse directions.
- the longitudinal Young's modulus is at least 600 Kg/mm2 and the transverse Young's modulus is at least 700 kg/mm2.
- the Young's modulus both in the longitudinal and transverse directions is at least 700 kg/mm2.
- the longitudinal Young's modulus is at least 700 kg/mm2 and the transverse Young's modulus is at least 800 kg/mm2. If the Young's modulus in either of the longitudinal and the transverse direction is less than 600 kg/mm2, the film cannot be practically used.
- the laminated film may be prepared by any one of the conventional methods such as coextrusion, extrusion-lamination, dry lamination and the like.
- coextrusion is advantageous in the preparation of a thin copolymer film and preferable in view of the productivity. Therefore, the following explanation is made by making reference to the coextrusion.
- the polyester (A) and polyester (B) optionally containing the inorganic particles in a suitable amount are dried using a hopper dryer, a paddle dryer, a vacuum dryer or the like, and then molten at 200 to 320°C in separate extruders. Then, the polyesters are flowed together in a pipe or a nozzle, extruded in two layers or three layers, and quenched to prepare an unstretched film.
- a conventional method such as a T-die method and a tubular method can be used.
- a ratio of the thicknesses in a laminate film can be varied.
- the unstretched film When the T-die method is used to prepare the unstretched film, a film with a uniform thickness can be obtained by using a so-called electrostatic pinning method. Then, the unstretched film is stretched bin longitudinal and transverse directions at a draw ratio of at least 2.0 at a temperature of from (Tg A - 10) to (Tc A - 10) °C [Tg A : a glass transition temperature of the polyester (A), Tc A : a crystallization temperature of the polyester (A)].
- the film is again successively biaxially stretched at a temperature of from (Tg A + 10) to (Tm A - 40) °C at a longitudinal draw ratio of from 1.05 to 2.5 and a transverse draw ratio of from 1.05 to 2.5 and then heat-set.
- the heat set is preferably carried out at a temperature from (Tm B - 10) to Tm A °C, more preferably from Tm B to Tm A °C, in particular from (Tm B + 5) to Tm A °C [Tm B : a melting point of the polyester (B)].
- Tm B a melting point of the polyester
- the heat set is usually carried out with maintaining the film in the fixed state.
- the film can be shrunk or tentered in the longitudinal and/or transverse directions of the film in an amount of not larger than 20 % during the heat treatment or during cooling after the heat treatment.
- a corona discharge treatment can be applied to one or both of the film sides so that the adhesion property of the film to a magnetic layer and the like are improved.
- a coating can be conducted on one or both of film sides so that an adhesion property, an antistatic property, an easy sliding property and a light shielding property are improved.
- the film prepared as stated above is wound to give a product.
- the laminate film of the present invention is based on a two layer film consisting of layers (A) and (B), the film of the present invention may have more than two layers.
- the kinds, particle sizes and amounts of the particles to be contained in one of the polyester layers (B) may be the same as or different from those in the other in view of the end use of the polyester film.
- one of the polyester layers (B) contains a smaller amount of the particles, for example, 0.007 to 0.5 % by weight, while the other contains a larger amount of the particles, for example, 0.5 to 15 % by weight.
- Such film can be used as a base film of a nonback-coated magnetic tape.
- a ratio (t/d) of the thickness (t) of the layer (B) to the average particle size (d) of the inert particles in the layer (B) is preferably from 0.1 to 10, more preferably from 0.2 to 2.0, most preferably from 0.3 to 1.0.
- the value of t/d is outside the above range, the rolled form in the rolled product of the film tends to be unsatisfactory.
- the degree of planar orientation ⁇ P is not larger than 0.100, preferably not larger than 0.050, more preferably not larger than 0.030, most preferably not larger than 0.010.
- the film has poor abrasive resistance.
- a thickness of the polyester layer (B) is usually 5 ⁇ m or less, preferably from 0.005 to 2 ⁇ m, more preferably from 0.01 to 1 ⁇ m, in particular from 0.01 to 0.7 ⁇ m. When the thickness of the polyester layer (B) exceeds 5 ⁇ m, the strength of the polyester film decreases.
- a contamination degree of a roller surface contacting to a base film was evaluated using a five step miniature supercalender.
- the supercalender was five-step calender consisting of mirror finished metal rollers and polyester composite resin rollers. In each roller, a temperature was fixed at 95 °C, a line pressure was fixed at 250 kg/cm and a travel velocity was fixed at 80 m/min. The magnetic tape of 5000 m was repeatedly traveled seven times, and white powder adhered to the resin roller was visually evaluated as follows:
- the center line average roughness was measured according to JIS B-0601-1976, with necessary modifications.
- the measuring conditions were the use of a contact needle having having a tip radius of 2 ⁇ m, 30 mg of probe contact pressure, 80 ⁇ m of cutoff, and 2.5 mm of a measuring length.
- a film was contacted at a winding angle of 135° ( ⁇ ). With applying a load of 53 g (T2) to one end of the film, the film was moved at a rate of 1 m/min. and a resistance (T1 g) at the other end was measured.
- Terephthalic acid (87 parts by weight) was esterified with ethylene glycol (42 parts by weight) under an atmospheric pressure at 260 °C in the presence of bis-( ⁇ -hydroxyethyl) terephthalate oligomer (100 parts by weight) to prepare a polyester oligomer having an esterification rate of 97 %. Then, an ethylene glycol slurry of spherical silica particles having an average particle size of 0.3 ⁇ m was added in an amount of 0.35 % by weight based on the polyester.
- polyester (I) ethyl acid phosphate (0.014 part by weight), antimony trioxide (0.022 part by weight) and magnesium acetate (0.086 part by weight) were added to perform a polycondensation reaction so as to prepare a polyester having an intrinsic viscosity of 0.660 (polyester (I)).
- the polyester (I) was dried and extruded at 295 °C by an extruder to prepare a sheet and an amorphous sheet was prepared by the electrostatic pinning cooling method.
- the resultant amorphous sheet was firstly 2.5 times stretched at 100 °C in a longitudinal direction, and then 1.8 times at 90 °C in the same direction. Then, the sheet was 3.62 times stretched at 105 °C in a transverse direction, and again 1.06 times at 125 °C in the longitudinal direction and 1.32 times at 190 °C in the transverse direction, followed by heat setting at 220 °C to obtain a film having a thickness of 10 ⁇ m.
- polyester (B) was used a copolymeric polyester (II) in which the dicarboxylic acid component consists of 80 % by mole of a terephthalic acid units and 20 % by mole of isophthalic acid units and the diol component consists of 100 % by mole of ethylene glycol units, and which contains the same spherical silica particles as used in Comparative Example 1 and has an intrinsic viscosity of 0.70.
- polyesters (I) and (II) were dried and molten in separate extruders at 287 °C, flowed together in a pipe and coextruded in the form of a laminate consisting of an inner layer of the polyester (I) and outer layers of the polyester (II), followed by quenching to obtain an unstretched film.
- the unstretched film was stretched in the manner as in Comparative Example 1 to obtain a film having a thickness of 10 ⁇ m.
- the film consisted of three layers having thicknesses of 0.1 ⁇ m, 9.8 ⁇ m and 0.1 ⁇ m (Example 1) or 0.05 ⁇ m, 9.9 ⁇ m and 0.05 ⁇ m (Example 2).
- a magnetic paint was coated to fabricate a magnetic tape.
- the calendering step no white powder was generated and the magnetic tape had good properties.
- dimethyl naphthalene-2,6-dicarboxylate 100 parts by weight
- ethylene glycol 60 parts by weight
- calcium acetate monohydrate 0.1 part by weight
- titanium oxide having an average particle size of 0.3 ⁇ m (0.40 part by weight) and antimony trioxide (0.04 part by weight) were added to initiate the polycondensation reaction. That is, the temperature was gradually raised to 290°C while the pressure was gradually decreased from the atmospheric pressure to 0.3 mmHg.
- the above raw material (III) was dried and extruded at 295 °C by an extruder to prepare a sheet and an amorphous sheet was prepared by the electrostatic pinning cooling method.
- the polymer was filtered through a two-step filter corresponding to 2000 mesh and 2500 mesh.
- the amorphous film was 3.0 times stretched at 135 °C in the longitudinal direction and then 3.95 times at 135 °C in the transverse direction.
- the biaxially stretched film was again 1.40 times stretched at 138 °C the longitudinal direction and then 1.22 times at 209 °C in the transverse direction.
- the stretched film was heat set at 239 °C to obtain a film having a thickness of 7.0 ⁇ m.
- the film was prepared.
- polyester (III) polyester (polyester (III)) and the above polyester (IV) were dried and molten in the separate extruders at 295 °C and 287 °C, respectively. Then, they were flowed together in the pipe and coextruded and quenched to obtain an unstretched film.
- the unstretched film was stretched in the same manner as in Comparative Example 3 to obtain a film having a thickness of 7.0 ⁇ m.
- the thicknesses of the layers of the polyester (III) and the polyester (IV) were 0.05 ⁇ m and 6.95 ⁇ m, respectively.
- the surface which contacted to the stretching rolls was that of the layer of the polyester (IV).
- the film was calendered. No white powder adhered to the calendering roll, and the magnetic tape had good properties.
Landscapes
- Laminated Bodies (AREA)
- Magnetic Record Carriers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3040234A JP2970001B2 (ja) | 1991-03-06 | 1991-03-06 | 磁気テープ用ポリエステルフィルム |
JP40234/91 | 1991-03-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0504651A1 true EP0504651A1 (fr) | 1992-09-23 |
EP0504651B1 EP0504651B1 (fr) | 1995-09-13 |
Family
ID=12575035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92103616A Expired - Lifetime EP0504651B1 (fr) | 1991-03-06 | 1992-03-03 | Film de polyester pour bande magnétique |
Country Status (7)
Country | Link |
---|---|
US (1) | US5441800A (fr) |
EP (1) | EP0504651B1 (fr) |
JP (1) | JP2970001B2 (fr) |
KR (1) | KR0184684B1 (fr) |
CA (1) | CA2062401A1 (fr) |
DE (1) | DE69204708T2 (fr) |
MX (1) | MX9200994A (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0567279A1 (fr) * | 1992-04-20 | 1993-10-27 | Teijin Limited | Film laminé de polyester et milieu d'enregistrement magnétique utilisant ce film comme substrat |
EP0602964A1 (fr) * | 1992-12-17 | 1994-06-22 | Teijin Limited | Film de polyester stratifié pour milieu d'enregistrement magnétique |
EP1176005A2 (fr) * | 2000-07-26 | 2002-01-30 | Mitsubishi Polyester Film GmbH | Film composite multicouches de polyester transparent et orienté biaxialement |
EP1176163A2 (fr) * | 2000-07-26 | 2002-01-30 | Mitsubishi Polyester Film GmbH | Film de polyester transparent et orienté biaxialement |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626942A (en) * | 1993-05-05 | 1997-05-06 | Toray Industries, Inc. | Polyester film and process for producing the same |
GB9407803D0 (en) * | 1994-04-20 | 1994-06-15 | Ici Plc | Polymeric film |
CA2192695A1 (fr) * | 1995-04-13 | 1996-10-17 | Masatoshi Aoyama | Composition au polyester et films fabriques a partir de celle-ci |
US5795528A (en) * | 1996-03-08 | 1998-08-18 | Minnesota Mining And Manufacturing Company | Method for making a multilayer polyester film having a low coefficient of friction |
US5759467A (en) * | 1996-03-08 | 1998-06-02 | Minnesota Mining And Manufacturing Company | Method for making multilayer polyester film |
US8485460B2 (en) * | 1999-12-28 | 2013-07-16 | Teijin Limited | Polyester film roll |
US6908686B2 (en) | 2002-11-26 | 2005-06-21 | Dupont Teijin Films U.S. Limited Partnership | PEN-PET-PEN polymeric film |
US9558776B1 (en) | 2015-12-11 | 2017-01-31 | International Business Machines Corporation | Durable coating for magnetic tape recording media |
US11037592B2 (en) * | 2017-12-07 | 2021-06-15 | Toyobo Co., Ltd. | Resin film with controlled youngs modulus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0238985A2 (fr) * | 1986-03-26 | 1987-09-30 | Hoechst Aktiengesellschaft | Feuille en polyester à plusieurs couches pour supports d'information magnétiques |
EP0312616A1 (fr) * | 1987-05-01 | 1989-04-26 | Toray Industries, Inc. | Film en polyester et support d'enregistrement magnetique |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE238985C (fr) * | ||||
DE3414347A1 (de) * | 1984-04-16 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | Traegerfolie fuer magnetische informationstraeger |
JPS61239930A (ja) * | 1985-04-17 | 1986-10-25 | Teijin Ltd | 磁気記録用ポリエステルフイルム |
JPS62135339A (ja) * | 1985-12-09 | 1987-06-18 | Diafoil Co Ltd | 磁気記録体用ポリエチレン−2,6−ナフタレ−トフイルム |
JPH0625267B2 (ja) * | 1985-12-17 | 1994-04-06 | ダイアホイルヘキスト株式会社 | 高密度磁気記録媒体用ポリエチレン−2,6−ナフタレ−トフイルム |
DE68925599T3 (de) * | 1988-06-08 | 2004-09-30 | Toray Industries, Inc. | Biaxial orientierte Verbundfolie |
US5051292A (en) * | 1989-02-01 | 1991-09-24 | Teijin Limited | Biaxially oriented film of polyethylene-2,6-naphthalate |
JPH058357A (ja) * | 1991-07-04 | 1993-01-19 | Diafoil Co Ltd | 高密度磁気デイスク用ポリエステルフイルム |
-
1991
- 1991-03-06 JP JP3040234A patent/JP2970001B2/ja not_active Expired - Fee Related
-
1992
- 1992-03-03 DE DE69204708T patent/DE69204708T2/de not_active Expired - Fee Related
- 1992-03-03 EP EP92103616A patent/EP0504651B1/fr not_active Expired - Lifetime
- 1992-03-06 CA CA002062401A patent/CA2062401A1/fr not_active Abandoned
- 1992-03-06 MX MX9200994A patent/MX9200994A/es unknown
- 1992-03-06 KR KR1019920003704A patent/KR0184684B1/ko not_active IP Right Cessation
-
1993
- 1993-12-17 US US08/173,461 patent/US5441800A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0238985A2 (fr) * | 1986-03-26 | 1987-09-30 | Hoechst Aktiengesellschaft | Feuille en polyester à plusieurs couches pour supports d'information magnétiques |
EP0312616A1 (fr) * | 1987-05-01 | 1989-04-26 | Toray Industries, Inc. | Film en polyester et support d'enregistrement magnetique |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0567279A1 (fr) * | 1992-04-20 | 1993-10-27 | Teijin Limited | Film laminé de polyester et milieu d'enregistrement magnétique utilisant ce film comme substrat |
US5431976A (en) * | 1992-04-20 | 1995-07-11 | Teijin Limited | Laminated polyester film and magnetic recording medium using it as base film |
EP0602964A1 (fr) * | 1992-12-17 | 1994-06-22 | Teijin Limited | Film de polyester stratifié pour milieu d'enregistrement magnétique |
US5702794A (en) * | 1992-12-17 | 1997-12-30 | Teijin Limited | Laminated polyester film for magnetic recording medium |
KR100270824B1 (ko) * | 1992-12-17 | 2000-11-01 | 야스이 쇼사꾸 | 자기기록 매체용 적층 폴리에스테르 필름 |
EP1176005A2 (fr) * | 2000-07-26 | 2002-01-30 | Mitsubishi Polyester Film GmbH | Film composite multicouches de polyester transparent et orienté biaxialement |
EP1176163A2 (fr) * | 2000-07-26 | 2002-01-30 | Mitsubishi Polyester Film GmbH | Film de polyester transparent et orienté biaxialement |
EP1176005A3 (fr) * | 2000-07-26 | 2002-03-20 | Mitsubishi Polyester Film GmbH | Film composite multicouches de polyester transparent et orienté biaxialement |
EP1176163A3 (fr) * | 2000-07-26 | 2002-03-20 | Mitsubishi Polyester Film GmbH | Film de polyester transparent et orienté biaxialement |
US6420019B1 (en) | 2000-07-26 | 2002-07-16 | Mitsubishi Polyester Film Gmbh | Multilayer, transparent, biaxially oriented polyester film |
Also Published As
Publication number | Publication date |
---|---|
KR0184684B1 (ko) | 1999-04-01 |
DE69204708D1 (de) | 1995-10-19 |
KR920017808A (ko) | 1992-10-21 |
DE69204708T2 (de) | 1996-05-09 |
CA2062401A1 (fr) | 1992-09-07 |
EP0504651B1 (fr) | 1995-09-13 |
MX9200994A (es) | 1992-09-01 |
US5441800A (en) | 1995-08-15 |
JPH04278345A (ja) | 1992-10-02 |
JP2970001B2 (ja) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0086302B1 (fr) | Pellicule de polytéréphthalate d'éthylène, procédé de fabrication de celle-ci et moyen d'enregistrement magnétique fabriqué à partir de celle-ci | |
US5656356A (en) | Biaxially oriented laminated polyester film | |
EP0572224B2 (fr) | Film de polyester stratifié orienté biaxialement | |
KR100550081B1 (ko) | 폴리에스테르필름및그제조방법 | |
EP0504651B1 (fr) | Film de polyester pour bande magnétique | |
US5366783A (en) | Laminated polyester film for magnetic tape having specific surface properties | |
US6485810B1 (en) | Biaxially oriented polyester film and flexible disk | |
EP0787579A1 (fr) | Film multicouche orienté biaxialement | |
EP0893249B1 (fr) | Film de polyester stratifié orienté biaxialement | |
US5529832A (en) | Biaxially oriented laminated polyester film | |
EP0710547B1 (fr) | Film de polyester stratifié biaxialement orienté | |
JP2001162750A (ja) | 易接着性二軸配向ポリエステルフィルム | |
JP3310165B2 (ja) | 積層フイルム | |
JP3323409B2 (ja) | 積層二軸配向ポリエステルフイルム | |
JPH0542645A (ja) | 積層ポリエステルフイルム | |
JP2944071B2 (ja) | 複合化フィルムの製造法 | |
JPH0542644A (ja) | 磁気記録媒体用積層ポリエステルフイルム | |
JPH06234907A (ja) | ポリエステルフィルム | |
KR100277051B1 (ko) | 2축배향 적층 폴리에스테르필름 | |
JP3217338B2 (ja) | 複合配向ポリエステルフィルム | |
JP3306292B2 (ja) | 二軸配向積層ポリエステルフイルム | |
JPH0676268A (ja) | ベルヌーイ型フロッピーディスク用ポリエステルフイルム | |
JPH07266521A (ja) | 積層二軸配向ポリエステルフイルム | |
JPH0468144B2 (fr) | ||
JPH0531859A (ja) | 複合配向ポリエステルフイルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT LU NL |
|
17P | Request for examination filed |
Effective date: 19930303 |
|
17Q | First examination report despatched |
Effective date: 19940211 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT LU NL |
|
REF | Corresponds to: |
Ref document number: 69204708 Country of ref document: DE Date of ref document: 19951019 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990331 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20001001 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020212 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020227 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20020304 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020321 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030303 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031127 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050303 |