EP0501263B1 - Dispositif pour la télécommande d'une douche - Google Patents

Dispositif pour la télécommande d'une douche Download PDF

Info

Publication number
EP0501263B1
EP0501263B1 EP92102579A EP92102579A EP0501263B1 EP 0501263 B1 EP0501263 B1 EP 0501263B1 EP 92102579 A EP92102579 A EP 92102579A EP 92102579 A EP92102579 A EP 92102579A EP 0501263 B1 EP0501263 B1 EP 0501263B1
Authority
EP
European Patent Office
Prior art keywords
sensor
detection
circuit
output signal
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92102579A
Other languages
German (de)
English (en)
Other versions
EP0501263A2 (fr
EP0501263A3 (en
Inventor
Horst Kunkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansa Metallwerke AG
Original Assignee
Hansa Metallwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hansa Metallwerke AG filed Critical Hansa Metallwerke AG
Publication of EP0501263A2 publication Critical patent/EP0501263A2/fr
Publication of EP0501263A3 publication Critical patent/EP0501263A3/de
Application granted granted Critical
Publication of EP0501263B1 publication Critical patent/EP0501263B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/05Arrangements of devices on wash-basins, baths, sinks, or the like for remote control of taps
    • E03C1/055Electrical control devices, e.g. with push buttons, control panels or the like
    • E03C1/057Electrical control devices, e.g. with push buttons, control panels or the like touchless, i.e. using sensors

Definitions

  • the object of the present invention is a device for the contactless control of a shower of the type mentioned in such a way that an interruption of the water flow is possible in a contactless manner without the user having to leave the room below the shower head.
  • a second sensor is used to interrupt the water flow through the shower head, but its detection range is so small that it is normally not activated by a person in the shower. Rather, it is necessary for the user to deliberately bring a body part, usually the hand, into the small detection area of the second sensor.
  • the starting edge of the pulse then generated by the second detection circuit is then used to reverse the respective switching state of the electrically operated valve. For example an open valve is closed or a closed valve is opened.
  • the mode of operation of the second sensor is therefore somewhat similar to that of a mechanical touch valve which opens when a manual actuation element is pressed for the first time and closes again when it is pressed again.
  • a special safety feature which prevents the device from malfunctioning is that a circuit which performs a logical AND function is provided, to which the output signals of the two detection circuits are supplied and which generates an output signal when both an output signal from the first detection circuit and of the second detection circuit, this output signal being supplied to the logic circuit as an input signal.
  • the switchover of the electrically operated valve can therefore not take place every time an object enters the detection range of the second sensor, but only if the presence of a user is detected in the detection range of the first sensor at the same time.
  • the range of the first detection area should be approximately 50 cm. This is roughly the distance that the user of a standing shower normally stands away from the corresponding building wall.
  • the range of the second detection area should be about 10 cm. Normally, the logic circuit serving as a "changeover switch" cannot be triggered unintentionally.
  • sensors on the market include a transmitter and a receiver, for example an infrared light emitting diode and a corresponding receiving diode.
  • either the transmitter or the receiver can be physically present only once and can thus be a component of two sensors at the same time. If, for example, there is only one transmitting diode, but there are two receiving diodes, the light emitted by one transmitting diode can in principle be reflected back to both receiving diodes. By appropriate selection of the operating parameters of the two receiving diodes, however, it is ensured that the detection area of the one receiving diode is larger than the detection area of the other receiving diode.
  • a "rapid chronological sequence” is understood to mean a change of the operating modes, which is quick compared to the normal length of time a person or an object is in the detection range.
  • At least the sensor should switch from one operating mode to another several times a second.
  • the output signal of the detection circuit is also available in the corresponding operating mode .
  • FIG. 1 a device for contactless control of a shower is shown schematically.
  • a shower head 1 is mounted as a standing shower on a building wall 2.
  • a first sensor 3 and a second sensor 4 are integrated in the building wall 2. They are used for the contactless detection of an object or a person in a detection area 5 or 6 assigned to them.
  • the exact construction of the sensors 3 and 4 is of no interest in the present context. Any sensor that can be assigned a defined detection range is suitable.
  • sensors come into question that work according to the reflection principle, that is, they emit radiation and receive it again after reflection on the object or person. The most common in this context are sensors that work with infrared radiation.
  • a larger detection area 5 is assigned to the first sensor 3 and a smaller detection area 6 to the second sensor 4.
  • the range of the larger detection area 5 is approximately 50 cm, calculated from the wall 2; the range of the smaller detection area 6, on the other hand, is only about 10 cm, again calculated from the wall 2.
  • the ranges are dimensioned such that a user of the shower 1 is normally within the larger detection area 5, but not within the smaller detection area 6.
  • the first sensor 3, to which the larger detection area 5 is assigned, is used in the usual way for contactless control of the shower 1 in the sense that the water flow through the shower 1 is released as long as the presence of a person in the detection area 5 of the first Sensor 3 is determined.
  • a first detection circuit 7 generates all those signals which are necessary for the operation of the first sensor 3.
  • the pulse trains required for energizing the transmitter diode are provided with the desired frequencies in the first detection circuit 7.
  • the detection circuit 7 also contains all those circuit elements which are necessary for evaluating the output signals generated by the sensor 3.
  • the size of the first detection area 5 can be set by the choice of the operating parameters of the various circuit components that are located within the first detection circuit 7. If, as an example, a sensor 3 working with infrared light is again selected, the size of the detection range 5 can be varied, for example, by the power of the transmitter diode, by the gain factor of the selective amplifier, or possibly also by the switching threshold of the threshold switch 7. These measures are generally known to the person skilled in the art.
  • a signal always appears at the output of the first detection circuit 7 for as long as a person is detected in the first detection area 5 of the first sensor 3.
  • This output signal is fed to a driver circuit 8, which then provides the signals required for energizing a solenoid valve 9.
  • timing elements can also be contained in a known manner, which delay the switching on or switching off of the solenoid valve 9 by a certain time.
  • the second sensor 4, to which the smaller detection area 6 is assigned, is connected to a second detection circuit 10, the internal structure of which essentially corresponds to the first detection circuit 7.
  • the operating parameters of the second detection circuit 10 are selected so that the smaller detection area 6 results for the second sensor 4. An always appears at the output of the second detection circuit 10 Signal when an object or a person, preferably the hand of a person, is in the smaller detection area 6 of the second sensor 4.
  • the output signal of the second detection circuit 10 is fed to an input of an AND gate 11.
  • the output signal of the first detection circuit 7 is at the second input of the AND gate 11.
  • the AND gate 11 generates an output signal whenever both the first detection circuit 7 and the second detection circuit 10 generate output signals. This is equivalent to the statement that the AND gate 11 always delivers an output signal when a person or an object is located both in the detection area 5 of the first sensor 3 and in the detection area 6 of the second sensor 4.
  • the output signal of the AND gate 11 is fed to a logic circuit 12.
  • the logic circuit 12 works as follows: Each time the output signal of the AND gate 11 occurs for the first time, the logic circuit 12 determines the switching state of the solenoid valve 9. If the solenoid valve 9 is open, the logic circuit 12 generates an output signal which closes the solenoid valve 9 via the driver circuit 8. Conversely, if the logic circuit 12 determines when the first output signal of the AND gate 11 occurs that the solenoid valve 9 is closed, then it generates an output signal which opens the solenoid valve 9 via the driver circuit 8. In this sense, the logic circuit 12 has the function of a "changeover switch".
  • the device for contactless control of a shower described above works as follows: If a user steps under the shower head 1 in the usual way in order to take a shower, he automatically gets into the detection area 5 of the first sensor 3. An output signal appears at the output of the first detection circuit 7, which opens the solenoid valve 9 via the driver circuit 8. Water now emerges from the shower head 1 in the desired manner.
  • the AND gate 11 does not generate an output signal since it only receives a signal at its input connected to the first detection circuit 7; the second input of the AND gate 11, which is connected to the second detection circuit 10, is without a signal, however, since there is no object or person in the smaller detection area 6 of the second sensor 4.
  • the logic circuit 12 determines that the solenoid valve 9 is open and, after its function as a changeover switch, generates an output signal which causes the solenoid valve 9 to close via the driver circuit 8.
  • the user can now take his hand out of the detection area 6 of the second sensor 4, without anything changing the circuit state of the solenoid valve 9. He can soap himself in peace without causing water to flow through the shower head 1, although it is in the detection range 5 of the first sensor 3. If the user then wants to resume the water flow through the shower 1, for example in order to rinse off the soap, he again leads his hand into the detection area 6 of the second sensor 4 lower input of the AND gate 11 is supplied.
  • the output of the first detection circuit 7 was at the upper input of the AND gate 11 all the time, since the user has never left the detection range 5 of the first sensor 3.
  • the now generated output signal of the AND gate 11 is in turn processed by the logic circuit 12 in the sense of a two-way switch.
  • the logic circuit 12 determines that the solenoid valve 9 is closed and generates an output signal which opens the solenoid valve 9 again via the driver circuit 8.
  • the water begins to flow again from the shower head 1 until either the user again leads his hand into the smaller detection area 6 of the second sensor 4 or until he himself has left the detection area 5 of the first sensor 3.
  • FIG. 2 shows a second exemplary embodiment of a device for contactless control of a shower, the basic function of which corresponds to the exemplary embodiment shown in FIG. 1. Corresponding parts are therefore identified by the same reference number plus 100.
  • FIG. 2 differs from that in Figure 1 essentially in that the various functions that are required to generate the sensor signals or to evaluate the sensor signals in a suitably programmed microprocessor are summarized.
  • a simplification compared to the exemplary embodiment in FIG. 1 is also present insofar as only a single sensor is provided which at the same time takes over the functions of the two sensors 3, 4 of the exemplary embodiment from FIG. 1 and is operated alternately for this purpose.
  • This exemplary embodiment is based on the knowledge that the function given in FIG.
  • the AND gate 11 does not have to take place simultaneously in the strict sense, but rather that it is sufficient if the presence of a person or an object in the larger and in the smaller surveillance area at intervals that are small compared to the periods during which a person is normally below the shower head.
  • the shower head 101, the building wall 102, the driver circuit 108 and the solenoid valve 109 that is energized by the driver circuit 108 can initially be recognized identically from FIG. 1.
  • a single sensor 103 is provided, to which a single detection circuit 107 is assigned.
  • the basic construction of the detection circuit 107 can correspond to the detection circuits 7 and 10 of the exemplary embodiment from FIG. 1. However, its internal operating parameters are periodically changed so that a large detection area 105 and a small detection area 106 of the (single) sensor 103 alternate at short time intervals.
  • the change between the two operating states of the sensor 103 must take place so quickly that, for practical purposes, the measurements which take place in successive operating states of the sensor 103 can be understood as "simultaneously". As a rule, at least some changes in the operating state of the sensor 103 should take place every second.
  • the frequency at which the operating state of the sensor 103 is changed is only limited by the speed at which the entire electronic circuit arrangement can process signals.
  • the detection circuit 107 is activated in the manner described, as is the evaluation of the signals supplied by the detection circuit 107 by an appropriately controlled microprocessor 113.
  • the output signals of the detection circuit 107 are evaluated, in short, in the following manner: If the microprocessor 113 determines that only in those times in which the sensor 103 is operated with the larger detection range 105, an output signal is output by the detection circuit 107, it has the driver circuit 108 open the solenoid valve 109 during this switching state. This corresponds to the normal operation of a non-contact shower.
  • the microprocessor 113 determines that an output signal is emitted by the detection circuit 107 in successive operating states of the sensor 103 with a larger detection area 105 and a smaller detection area 106, it performs the function of a "changeover switch" already described above for the logic circuit 12. That is, it causes the driver circuit 108 to change the respective switching state of the solenoid valve 109 to the opposite switching state. In other words: if the solenoid valve is initially open, it is closed and vice versa. Again, the microprocessor 113 performs this function of the "changeover switch" only when output signals of the detection circuit 107 occur for the first time in succession with detection areas 105 and 106 of different sizes.
  • FIG. 3 shows a logic flow diagram which illustrates the type of programming of the microprocessor 113 from FIG. 2.
  • Object field detection describes the function of the device in which the presence of a person and / or an object in the larger detection area 105 of the sensor 103 is queried.
  • Touch field detection is understood to mean the query of a person and / or an object in the smaller detection area 106 of the sensor 103.
  • the program steps shown in FIG. 3 are carried out as follows: After the first start of the program, which can be connected with initialization procedures that are not of interest here, point 301 is reached, which is the starting point for the following considerations. An object field detection takes place in the first program step 302. If no person is found in the larger detection area 105 of sensor 103, the program returns to point 301 via point 303 and block 304. In block 304, various tests are carried out which check the functionality and functionality of the entire device and which are of no interest in the present context.
  • the program now goes to block 305, which corresponds to the opening of the solenoid valve 109.
  • the object field detection is continued, as represented by the branch point 310 in FIG. 3. If the presence of a user in the larger detection area 105 persists (answer "yes" after the branch point 310), a touch field detection is carried out. If this reveals that there is no object or no person in the smaller detection area 106 of the sensor 103, the program returns via point 312 to point 313, which lies before branch 310 "object field detection".
  • the program now runs through a loop from program point 313 via branch 310, branch 311 and program point 312 back to program point 313. As long as this loop is run through, the solenoid valve 109 remains open.
  • the manner of closing the solenoid valve 109 just described corresponds to the normal stopping of the water flow from the shower head 101 when the user leaves the room below the shower head 101.
  • the flow of water from the shower head 101 after positive object field detection can, however, be interrupted in a second way: namely, if the touch field detection at branching point 311 turns out positive, that is, after previous positive object field detection at branching point 310, an additional positive touch field Detection detected at branch point 311, the program now goes to branch point 316.
  • branch point 316 the position of the solenoid valve 109 is checked again.
  • the solenoid valve 109 is normally open, that is to say "not closed” in the diction of FIG. 3.
  • the program now goes to block 317, which corresponds to the closing of solenoid valve 109.
  • the program then returns to node 313 via nodes 318 and 312.
  • the branch point 311 is reached again.
  • the touch field detection at the branch point 311 is now negative, regardless of whether the user is still in the small detection area 106 of the sensor 103 or has already moved away from this detection area.
  • the microprocessor 113 now operates with the valve 109 closed in the loop which leads back from the switching point 313 via the branching points 310, 311 and the switching point 312 to the switching point 313.
  • This state in which the solenoid valve 109 is closed, can be ended in two ways: Either the object field detection taking place at the branch point 310 determines that the user has left the large detection area 105 (without a water flow having previously occurred again). The program then proceeds from branch point 310 to branch point 314. This determines that the valve is not open. As already explained above, this has the consequence that the program proceeds to program point 303 and enters the waiting loop 301-302-303-304-301 via it.
  • the second way to exit the loop 313-310-311-312-313 is, if the positive object field detection continues, that for the first time the touch field detection in the branch point 311 is positive, that is, the user again puts his hand in the smaller one Detected area 106 of the sensor 103 has introduced.
  • the program proceeds from branch point 311 to branch point 316. It is now found there that solenoid valve 109 is closed, which leads to the opening of the solenoid valve in block 110.
  • the program goes over the program items 318 and 312 back into loop 313-310-311-312-313. As is known, the switching state of the solenoid valve 109 does not change during the cyclical passage through this loop.
  • the object field detections carried out in program steps 302 and 310 in the inner program sequence of microprocessor 113 are temporally correlated with the operation of sensor 103 in the larger detection area 106. This can be done by a corresponding control of the detection circuit 107 by the microprocessor 113.
  • the microprocessor 113 can then always use the value stored in the buffer during the object field detection in the program steps 302 and 310.
  • Program steps 310 and 311 also perform a kind of AND function in the exemplary embodiment according to FIG. 2 because the switching state of the solenoid valve 109 only changes if both the object field detection and the touch field detection are positive.
  • the fact that object field detection and touch field detection are not exactly simultaneous is irrelevant as long as the sequence of object field detection and touch field detection takes place relatively quickly. This has already been referred to above.
  • two completely independent sensors were used, which could for example contain two transmit diodes and two receive diodes.
  • a single sensor was used which, for example, has a single transmitting and a single receiving diode.
  • Mixed forms are of course also possible in principle, in which, for example, two transmitters and one receiver or vice versa, one transmitter and two receivers are used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Domestic Plumbing Installations (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Massaging Devices (AREA)
  • Selective Calling Equipment (AREA)

Claims (10)

  1. Dispositif pour la commande sans contact d'une douche (1 ; 101), avec
    a) un premier capteur (3 ; 103), auquel est associé une première plage de détection (5 ; 105) ;
    b) un premier circuit de détection (7 ; 107), qui produit un signal de sortie tant que la présence d'une personne ou d'un objet dans la première plage de détection (5 ; 105) est constatée par le premier capteur (3 ; 103) ;
    c) un distributeur (9 ; 109) à actionnement électrique, qui commande l'écoulement d'eau par la douche (1 ; 101) ;
    d) un circuit excitateur, asservi par le premier circuit de détection et fournissant les signaux nécessaires pour le fonctionnement du distributeur à actionnement électrique,
    caractérisé en ce qu'il comprend en outre :
    e) un deuxième capteur (4 ; 103), auquel est associé une deuxième plage de détection (6 ; 106) qui est plus petite que la première plage de détection (5 ; 105) ;
    f) un deuxième circuit de détection (10 ; 107), qui produit un signal de sortie tant que la présence d'une personne ou d'un objet dans la deuxième plage de détection (6 ; 106) est constatée par le deuxième capteur (4 ; 103) ;
    g) un circuit logique (12 ; 113) qui, au début du signal de sortie du deuxième circuit de détection (10 ; 107), fournit un propre signal de sortie par lequel, à la manière d'un commutateur inverseur, l'état de commutation respectif du distributeur (9 ; 109) à actionnement électrique est commué en son contraire.
  2. Dispositif selon la revendication 1, caractérisé en ce qu'il est prévu un circuit (11 ; 113) exerçant une fonction logique ET, qui reçoit les signaux de sortie des deux circuits de détection (7, 10 ; 107) et qui produit un signal de sortie en présence à la fois d'un signal de sortie du premier circuit de détection (7 ; 107) et d'un signal de sortie du deuxième circuit de détection (10 ; 107), le signal de sortie du circuit (11 ; 113) étant fourni comme signal d'entrée au circuit logique (12 ; 113).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la portée de la première plage de détection (5 ; 105) est d'environ 50 cm.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la portée de la deuxième plage de détection (6 ; 106) est d'environ 10 cm.
  5. Dispositif selon l'une des revendications précédentes, dans lequel chaque capteur comprend un émetteur et un récepteur, caractérisé en ce que soit l'émetteur, soit le récepteur n'est physiquement présent qu'une seule fois et fait simultanément partie de deux capteurs.
  6. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que
    a) un seul capteur (103) et un seul circuit de détection (107) associé à ce capteur sont physiquement présents, et ils travaillent alternativement, dans une rapide succession dans le temps, dans un premier mode de fonctionnement avec une grande plage de détection (105) et dans un deuxième mode de fonctionnement avec une petite plage de détection (106) ;
    b) le circuit (113) exerçant la fonction logique ET contrôle, dans une rapide succession dans le temps, la présence d'un signal de sortie du circuit de détection (107) tant dans le premier que dans le deuxième mode de fonctionnement du capteur (103).
  7. Dispositif selon la revendication 6, caractérisé en ce que la valeur du signal de sortie du circuit de détection (107) déterminée pendant la durée d'un mode de fonctionnement du capteur (103) fait l'objet d'une mémorisation temporaire pendant la durée de l'autre mode de fonctionnement.
  8. Dispositif selon la revendication 6, caractérisé en ce que les instants auxquels ont lieu, dans le déroulement interne du fonctionnement du circuit (113) exerçant la fonction logique ET, les contrôles sur la présence du signal de sortie du circuit de détection (107), sont corrélés dans le temps avec les instants auxquels le capteur (103) travaille dans le mode de fonctionnement correspondant.
  9. Dispositif selon l'une des revendications 6 à 8, caractérisé en ce que les déroulements sont commandés par un microprocesseur (113).
  10. Dispositif selon l'une des revendications 6 à 9, caractérisé en ce que le capteur (103) alterne d'un mode de fonctionnement à l'autre au moins plusieurs fois par seconde.
EP92102579A 1991-03-01 1992-02-16 Dispositif pour la télécommande d'une douche Expired - Lifetime EP0501263B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4106539 1991-03-01
DE4106539A DE4106539C2 (de) 1991-03-01 1991-03-01 Einrichtung zur berührungslosen Steuerung einer Dusche

Publications (3)

Publication Number Publication Date
EP0501263A2 EP0501263A2 (fr) 1992-09-02
EP0501263A3 EP0501263A3 (en) 1993-03-17
EP0501263B1 true EP0501263B1 (fr) 1995-01-11

Family

ID=6426234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102579A Expired - Lifetime EP0501263B1 (fr) 1991-03-01 1992-02-16 Dispositif pour la télécommande d'une douche

Country Status (4)

Country Link
EP (1) EP0501263B1 (fr)
AT (1) ATE117035T1 (fr)
DE (1) DE4106539C2 (fr)
ES (1) ES2069326T3 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9211188U1 (de) * 1992-08-20 1993-09-16 Lepel Freifrau Von Barbara Auslaufarmatur mit Näherungssensor
DE4415234A1 (de) * 1994-04-30 1995-11-02 Lepel Barbara Freifrau Von Verfahren zum Betrieb einer Auslaufarmatur und eine nach dem Verfahren arbeitende Auslaufarmatur
DE19501014A1 (de) * 1995-01-14 1996-07-18 Grohe Armaturen Friedrich Automatische Duschensteuerung
DE19508644B4 (de) * 1995-03-10 2004-05-19 Aquis Sanitär AG Wasserauslaufarmatur
DE19510218C2 (de) * 1995-03-21 2000-03-09 Grohe Kg Hans Elektrisch betätigbares Sanitärventil
DE19625252A1 (de) * 1996-06-25 1998-01-02 Brand Gerhart Rosemarie Wasserauslauf mit manueller und automatischer Bedienung
FI102034B (fi) * 1997-03-14 1998-10-15 Oras Oy Suihkujärjestely
FR2761446B1 (fr) * 1997-03-28 1999-06-04 Celec Conception Electronique Robinet d'eau automatique a commande sans contact
ES2224783B1 (es) * 1997-06-24 2005-12-16 Compañia Roca Radiadores, S.A. Sistema de control para el accionamiento, sin contacto, del suministro de agua en aparatos sanitarios.
DE19743477A1 (de) * 1997-10-01 1999-04-29 Fraunhofer Ges Forschung Duschanordnung mit Strahlarteinstellung
DE19962742B4 (de) * 1999-12-23 2009-05-07 Artweger Gmbh & Co. Sanitäreinrichtung
FR2809609B1 (fr) * 2000-05-30 2002-08-30 Leda Cabine de douche
DE10058962A1 (de) * 2000-11-28 2002-05-29 Kludi Armaturen Scheffer Vertr Sensor zur Steuerung einer Wasserarmatur
DE10219944C1 (de) * 2002-05-03 2003-12-11 Hansa Metallwerke Ag Einrichtung zur berührungslosen Steuerung einer Dusche
DE102004027948C5 (de) * 2004-06-08 2010-01-28 Hansa Metallwerke Ag Sanitärarmatur mit einer Schaltungsanordnung
DE102004041786B4 (de) * 2004-08-30 2008-12-18 Hansa Metallwerke Ag Sanitärarmatur
MXPA06009223A (es) * 2006-08-14 2008-02-13 Juan Miguel Cordero Gome Campo Regadera ahorradora de agua.
DE102007011183B4 (de) * 2007-03-06 2014-04-17 Aquis Sanitär AG Elektrisch betätigbare Sanitäraramtur
EP2707960A1 (fr) * 2011-05-12 2014-03-19 EnOcean GmbH Appareil électrique pourvu de système de détection à capteurs
DE102017129185A1 (de) 2016-12-19 2018-06-21 Wimtec Sanitärprodukte Gmbh Verfahren zum energieeffizienten Betrieb einer Schaltungsanordnung mit einem Annäherungssensor sowie Annäherungssensoren und Schaltungsanordnungen zum Durchführen dieses Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH496281A (de) * 1969-03-11 1970-09-15 Groen Johannes Vorrichtung zur Abgabe einer Flüssigkeit mit wenigstens einem von einem Annäherungsdetektor gesteuerten elektromagnetischen Ventil
AT326573B (de) * 1974-04-10 1975-12-29 Kuhnel Robert J W Dipl Ing Optoelektronische wassersteuerung
AT364322B (de) * 1980-01-17 1981-10-12 Robert Kuehnel Ges M B H Dipl Elektronische steuerungsanordnung zur steuerung des wasserflusses bei waschbecken, spuelanlagen u. dgl.
DE3008025A1 (de) * 1980-03-01 1981-09-10 Georg Rost & Söhne, 4952 Porta Westfalica Radar-sonde zur steuerung von sanitaerarmaturen
IT1221043B (it) * 1981-05-25 1990-06-21 Dmp Electronics Srl Rubinetto ad erogazione automatica
FR2585147B1 (fr) * 1985-07-18 1989-08-25 Ferbos Pierre Robinetterie " econome " traditionnelle ou automatique a volonte
DE3629580C1 (de) * 1986-08-30 1987-07-09 Hansa Metallwerke Ag Schaltungsanordnung zur beruehrungslosen Steuerung einer Sanitaerarmatur
DE3642698C2 (de) * 1986-12-13 1996-09-26 Grohe Armaturen Friedrich Automatische Duschensteuerung

Also Published As

Publication number Publication date
ATE117035T1 (de) 1995-01-15
EP0501263A2 (fr) 1992-09-02
DE4106539A1 (de) 1992-09-03
ES2069326T3 (es) 1995-05-01
EP0501263A3 (en) 1993-03-17
DE4106539C2 (de) 1994-12-15

Similar Documents

Publication Publication Date Title
EP0501263B1 (fr) Dispositif pour la télécommande d'une douche
EP0632290B1 (fr) Appareil et procédé de commande sans contact du débit d'eau dans une installation sanitaire
EP0463440B1 (fr) Méthode d'utilisation de circuit destiné à commander sans contact une armature sanitaire et circuit pour la réalisation de cette méthode
EP3312351B1 (fr) Dispositif de surveillance pour une installation sanitaire
EP0670504A1 (fr) Dispositif de commande et procédé pour la commande sans contact d'une installation, en particulier une installation sanitaire
DE3618693A1 (de) Verfahren und vorrichtung zur feststellung der anwesenheit eines menschlichen koerpers
EP0332045B1 (fr) Appareil de commande sans contact d'installations sanitaires
DE1284137B (de) Anordnung zum Anzeigen eines Objekts auf oder vor einer Flaeche
DE3210985C3 (de) Berührungslose elektronische Steuerung für eine sanitäre Armatur, insbesondere ein Urinal
DE102007009038A1 (de) Sanitärarmatur mit wählbarer Betriebsart
DE2721254C3 (de) Schaltungsanordnung für einen Bewegungsdetektor
EP0531646B1 (fr) Circuit de commande sans contact d'une armature sanitaire et procédé de commande de celui-ci
CH531278A (de) Annäherungsschalter
DE3629580C1 (de) Schaltungsanordnung zur beruehrungslosen Steuerung einer Sanitaerarmatur
AT15321U1 (de) Anwesenheitsdetektion mittels Schall
DE2735942A1 (de) Vorrichtung zur beruehrungslosen steuerung einer doppelfunktion
DE10219944C1 (de) Einrichtung zur berührungslosen Steuerung einer Dusche
DE3212468C2 (de) Steuerungsschaltung für eine Sanitärarmatur
DE10200905A1 (de) Photoelektrischer Schalter
DE102004027948B4 (de) Sanitärarmatur mit einer Schaltungsanordnung
WO1998041701A1 (fr) Procede et dispositif permettant d'influer sur au moins une propriete d'un objet
DE19801916A1 (de) Überwachungsvorrichtung
EP1209293B1 (fr) Capteur pour commander une robinetterie d'eau
CH680627A5 (en) Control system for fluorescent lamp - responds to detected movement to operate lamp over successive timed intervals with reduced light output
DE3009346A1 (de) Steuerschaltung fuer eine beruehrungslos arbeitende detektionsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH ES FR GB IT LI

17P Request for examination filed

Effective date: 19930506

17Q First examination report despatched

Effective date: 19940526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH ES FR GB IT LI

REF Corresponds to:

Ref document number: 117035

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069326

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010213

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080215

Year of fee payment: 17

Ref country code: CH

Payment date: 20080229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080229

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080229

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090217