EP0497652A1 - Vorrichtung zur elektronischen Steuerung des Strahlungsdiagrammes einer Einfach-/Mehrfach-Strahlenantenne mit variabler Richtung und/oder Breite - Google Patents

Vorrichtung zur elektronischen Steuerung des Strahlungsdiagrammes einer Einfach-/Mehrfach-Strahlenantenne mit variabler Richtung und/oder Breite Download PDF

Info

Publication number
EP0497652A1
EP0497652A1 EP92400136A EP92400136A EP0497652A1 EP 0497652 A1 EP0497652 A1 EP 0497652A1 EP 92400136 A EP92400136 A EP 92400136A EP 92400136 A EP92400136 A EP 92400136A EP 0497652 A1 EP0497652 A1 EP 0497652A1
Authority
EP
European Patent Office
Prior art keywords
radiators
outputs
network
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92400136A
Other languages
English (en)
French (fr)
Other versions
EP0497652B1 (de
Inventor
Antoine Roederer
Cornelis Van't Klooster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agence Spatiale Europeenne
Original Assignee
Agence Spatiale Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence Spatiale Europeenne filed Critical Agence Spatiale Europeenne
Publication of EP0497652A1 publication Critical patent/EP0497652A1/de
Application granted granted Critical
Publication of EP0497652B1 publication Critical patent/EP0497652B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • the present invention relates to a device for electronic control of the radiation pattern of an antenna with one or more directional beams and / or of variable width.
  • the antenna will mainly be described in transmission mode but all the lessons can be transposed, mutatis mutandis , to reception operation by simple application of the principle of reciprocity, the structure of the circuits and their links remaining the same but the signal traveling from the antenna array to the transmit / receive circuits instead of traveling in the opposite direction.
  • the amplifier stages which are placed in the same places, are in this case low noise amplifier stages whose input is located on the antenna side and the output on the transmit / receive circuit side.
  • the two types of amplifiers power amplifiers for transmission and low-bit amplifiers for reception
  • either passive antennas or active antennas can be used.
  • the so-called "passive" antennas essentially comprise a main amplifier followed by a power divider, fixed or variable, as well as phase shifters and / or switches.
  • the main drawbacks are the need to have a high power generator (since the amplifier is unique), to present significant losses downstream of this generator (since the latter is located upstream of the rest of the device and d 'imply switching at high power level.
  • the low noise amplifier being located downstream of the system, the signal undergoes significant losses before amplification, thus significantly degrading the signal / noise ratio.
  • FIGS. 1 and 2 Such an example of passive antenna is illustrated in FIGS. 1 and 2, with a circular network 10 comprising a large number of elementary radiators (thirty-two in this example) distributed regularly over a cylindrical surface, as illustrated diagrammatically in the figure. 2 which represents a plan view of the network 10.
  • the successive elements of this circular network have been numbered from 1 to 32.
  • This network 10 is supplied by a signal source 20.
  • This signal is amplified by a stage 30 and applied to a beam forming and scanning network 40, 50 comprising on the one hand, a power divider stage 40 and, d on the other hand, a series of four-way switches 50.
  • the power divider stage 40 comprises, in this example, a four-way power divider 41 whose outputs are applied as input to two-way variable dividers 42.
  • the divider 41 is a fixed, equiphase and equiamplitude divider, while the dividers 42 are equiphase dividers with variable amplitude.
  • Each of the outputs of the variable power dividers 42 is connected to a four-way switch 50 supplying four non-contiguous radiators and angularly offset by 90 ° on the circular network.
  • the output of each divider 42 is thus applied to one of the radiators of a sub-network, each sub-network consisting of four elementary radiators having the rank indicated in the figure (the first sub-network consists of radiators of row 1, 9, 17 and 25, the second sub-network, radiators of rows 5, 13, 21 and 29, etc.).
  • variable phase shifts dividers 42
  • commutations switches 50
  • three central elements for example elements 2, 3 and 4
  • the distribution of the last quarter is gradually varied from one external element (in this example, element 1) to the other (element 5), also in phase, producing thus progressive scanning.
  • This configuration is not without drawbacks.
  • the main one is the very significant loss of power between the signal at the output of the amplifier and the signal actually radiated by the network, due to the many elements crossed; in general, this loss is around 40%.
  • This configuration comprises, between the network 10 and the signal source 20 with its power amplifier 30, an assembly constituted, from upstream to downstream: of an equiphase and equiamplitude power divider 40 comprising as many outputs as there are elementary radiators, a phase shifter assembly 60 comprising, for each of the outputs of the divider 40, a fixed phase shifter 61 and a variable phase shifter 62, and a Butler matrix 70 whose inputs are connected to the outputs of the phase shifters and whose outputs are connected to the various elementary radiators of network 10 (as we know, a Butler matrix is a passive network without theoretical loss comprising N inputs and N outputs, N generally being a power of 2; the inputs are isolated between them, and a signal applied to any one of the inputs produced on all the outputs of currents of equal amplitudes but whose phases vary linearly from one element to the next).
  • a Butler matrix is a passive network without theoretical loss comprising N inputs and N outputs, N generally being a power of 2;
  • the scanning is carried out by action on the phase shifters 62 so as to obtain a linear progression of the phase on the mode inputs, while keeping the mode amplitudes fixed.
  • the second type of antenna consists of so-called “active" antennas, in which the amplification is no longer concentrated at one point but distributed over a plurality of amplifiers.
  • each radiating element is associated with an amplifier mounted in the immediate vicinity of the radiator.
  • the main disadvantage is that, for an antenna with four (or six) facets for example, one will use, at a given time, only one amplifier out of four (or six), all the power being concentrated in the only amplifier associated with the corresponding element used. This drawback limits the use of this principle to antennas which must have an extended scanning range.
  • US-A-4,901,085, to Spring et al. Further describes a configuration for a multi-beam antenna supply system comprising a plurality of modules forming hybrid matrix power amplifiers. These modules, preferably all identical, each comprise an input matrix and an output matrix having between them a mirror symmetry and interconnected by a battery of power amplifiers. Each of the modules thus formed is mounted between, on the one hand, a low level beam forming network and, on the other hand, the radiating elements.
  • Such a structure which involves a duplication of the matrices, is therefore relatively complex, bulky and heavy, highly disadvantageous characteristics in the case of an antenna on board a satellite.
  • the beam forming network connects certain beam selection ports to certain input ports of the modules, some of which other ports have no signal applied to them. Consequently, the various amplifiers are not loaded identically, thus leading to a loss of efficiency of the system.
  • One of the aims of the present invention is to propose an electronic device for controlling the radiation pattern of an active antenna with electronic scanning, with one or more beams, operating in a wide angular range and with optimum efficiency.
  • this device comprises a network of radiators subdivided into a certain number of groups, each bundle typically using one or two elements from each group.
  • Amplification is carried out in a distributed manner by a plurality of amplifiers, in a number equal to that of the radiators, and the connection between radiators and amplifiers is carried out by means of a hybrid coupler, means being further provided for optimize and adjust the phases of the signals before amplification (in transmission) or after amplification (in reception) in order to control the distribution of energy between the elements.
  • the distributed amplification according to the invention has the advantage that, compared to an active antenna with an amplifier module directly associated with each radiating element, the power per module can be reduced essentially in the ratio of the number of elements contributing to a beam to the total number of elements.
  • the amplifiers all receive signals of equal amplitude permanently, the efficiency of the amplification function can be optimized.
  • this device between the power dividing means and the radiators: P groups of M phase-amplifier-amplifier modules, placed at the output of the power dividing means; and P couplers with M inputs and M outputs each, these M inputs being connected to the corresponding M outputs of the group of associated phase-amplifier modules, and these M outputs being connected to the M radiators of the associated sub-network, the phase shift of the phase-amplifier modules being chosen so as to direct the power delivered by the source to the radiators participating in the specified radiation diagram, and thus to achieve a distributed amplification of the signal emitted by the source while maintaining on each amplifier a substantially identical and constant charge whatever the modifications made to the diagram.
  • said power dividing means may in particular comprise, in a number equal to that of the beams, a plurality of elementary power dividing assemblies with one input and N outputs, the homologous outputs of the respective elementary assemblies being coupled by variable phase-shifting means to give N outputs applied to the N inputs of the N phase-amplifier-amplifier modules.
  • said network is a cylindrical network, excited so as to carry out a circular scanning of said beam or of each of said beams, and / or excited so as to effect a modification of the width of said beam or of each of said beams.
  • FIGS. 1 and 2 schematically show a first known type of passive circular scanning antenna.
  • FIG. 3, cited above, shows a second known type of passive antenna with circular scanning.
  • Figures 4 and 5 schematically illustrate a first mode of the device of the invention, corresponding to a single-beam circular scanning antenna.
  • Figures 6 and 7 show a second embodiment of the invention, corresponding to a circular scanning antenna with two simultaneous beams.
  • FIG. 8 illustrates a third embodiment of the invention, corresponding to a single beam antenna with fixed pointing but with variable width.
  • FIGS. 4 and 5 show a first embodiment of the invention, for a cylindrical antenna with sixteen radiating elements (radiators) and with a single beam. This configuration typically corresponds to that of a counter-rotating antenna for satellite, but many other applications are of course perfectly conceivable.
  • Figure 4 shows, in top view, the overall configuration of the circular network and the circuits associated with it, while Figure 5 refers only to the electrical diagram defining the connections between these different elements.
  • the radiating elements of the network 10 are subdivided into groups A, B, C and D of four radiators each (A1, A2, A3, A4, etc.), the beam typically using one or two elements from each group: thus, in the 'illustrated example, the beam whose direction is ⁇ uses the five elements A1, B1, C1, D1 and D4; the elements A1, B1 and C1 are each excited typically by a quarter of the total power, the last quarter being distributed between the two elements D1 and D4, with a continuous variation (the level of power more or less high was symbolized on the Figures 4 and 5 by a more or less large hatched area associated with each excited element).
  • each of the three central sources in this example the sources A1, B1 and C1
  • those of the two external sources D1 and D4 are equal but with adjustable values: we can thus maximize the radiation in one direction variable continuously or not.
  • Each group of radiators is associated with a generalized multiport coupler 80, or a Butler matrix, with four inputs and four outputs in the example illustrated.
  • Such couplers are for example described, with their operating conditions, in the work of YT Lo and SW Lee entitled Antenna Handbook - Theory , Applications and Design, published by Van Nostrand Reinhold Company, New York, in particular on pages 19-101 at 19-111 of the chapter Beam-Forming Feeds, or in the article by S. Egami and M. Kawai entitled An Adaptative Multiple Beam System Concept , published in the IEEE Journal on Selected Areas in Communications , volume SAC-5, n ° 4 of May 1987, pages 630 to 636.
  • Each of the couplers 80 associated with the different groups A, B, C and D makes it possible to connect each element of a group (for example, for the coupler of group A, the radiators A1, A2, A3 and A4) to an equal number of amplifier modules 30 and phase shifters 60, the phase shifters being variable and controllable so as to adjust the phase shift before amplification (at transmission) or after amplification (at reception).
  • the properties of the couplers 80 are such that it is possible, by an appropriate choice of the phases applied by the phase shifters 60 to the signals coming from the divider 40, to focus the input power towards one, two or four of the outputs of the coupler; here, we will focus the power towards one or two outputs to achieve the desired result.
  • Figures 6 and 7 illustrate a generalization of the previous embodiment to a circular scanning antenna with two simultaneous beams, corresponding to the two directions referenced ⁇ and ⁇ ′.
  • the structure is comparable to that of the previous case with regard to the multiport couplers 80 and the amplifiers 30.
  • phase shifters are split; provision is therefore made, for each of the amplifiers 30, for two phase shifters 60 and 60 ′ making it possible to couple the signals from the two sources 20 and 20 ′ while applying to them, separately, an appropriate separate phase shift.
  • FIG. 8 illustrates another embodiment of the invention, in an application to a "zoom" antenna, that is to say an antenna producing a beam of given direction ( ⁇ ), but of variable width according to requirements .
  • a "zoom" antenna that is to say an antenna producing a beam of given direction ( ⁇ ), but of variable width according to requirements .
  • such antennas can be very useful in the case of satellites having an elliptical orbit with high eccentricity, because they make it possible to maintain a zone of illumination that is substantially constant despite periodic variations in altitude of the satellite.
  • the number of radiating elements used is varied, a wide beam using a small number of radiating elements and a strongly directive beam using a larger number.
  • a network 10 (circular or plane) of eight elements is used, distributed in two nested groups A1, A2, A3, A4 and B1, B2, B3, B4.
  • a wide beam will use the two central elements B2 and A3, a slightly narrower beam will use the four central elements A2, B2, A3, B3, etc. and the narrowest beam will use all of the elements.
  • all the elements point in the same direction and that, moreover, the network can be enlarged, in itself known manner, by an optical system.
  • each of the two groups are combined with the first series of ports of a coupler 80, the second series of ports of which is attacked by the amplifiers 30, in a number equal to that of the radiators.
  • Each amplifier is associated with a phase shifting module 60, itself supplied by one of the outputs of the divider. of power 40 supplied by the signal source 20.
  • the network radiators can be distributed over a conforming, spherical, cylindrical, conical or faceted surface to extend the angular range of the antenna.
EP92400136A 1991-01-31 1992-01-20 Vorrichtung zur elektronischen Steuerung des Strahlungsdiagrammes einer Einfach-/Mehrfach-Strahlenantenne mit variabler Richtung und/oder Breite Expired - Lifetime EP0497652B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9101086A FR2672436B1 (fr) 1991-01-31 1991-01-31 Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
FR9101086 1991-01-31

Publications (2)

Publication Number Publication Date
EP0497652A1 true EP0497652A1 (de) 1992-08-05
EP0497652B1 EP0497652B1 (de) 1994-11-30

Family

ID=9409227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400136A Expired - Lifetime EP0497652B1 (de) 1991-01-31 1992-01-20 Vorrichtung zur elektronischen Steuerung des Strahlungsdiagrammes einer Einfach-/Mehrfach-Strahlenantenne mit variabler Richtung und/oder Breite

Country Status (6)

Country Link
US (1) US5151706A (de)
EP (1) EP0497652B1 (de)
JP (1) JP2607198B2 (de)
CA (1) CA2059584C (de)
DE (1) DE69200720T2 (de)
FR (1) FR2672436B1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532763A1 (de) * 1991-04-08 1993-03-24 Mitsubishi Denki Kabushiki Kaisha Gruppenantenne zum empfang eines übertragungssignals
US5548295A (en) * 1995-02-16 1996-08-20 Space Engineering Spa Multishaped beam direct radiating array antenna
EP0734093A1 (de) * 1995-03-20 1996-09-25 Agence Spatiale Europeenne Vorrichtung zur Speisung einer Mehrstrahl-Gruppenantenne
FR3052870A1 (fr) * 2016-06-21 2017-12-22 Thales Sa Radar secondaire a gestion spatio-temporelle optimisee

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69611533T2 (de) * 1995-10-13 2001-06-07 Peter Nielsen Verfahren und system zur übertragung elektromagnetischer signale
US5680142A (en) * 1995-11-07 1997-10-21 Smith; David Anthony Communication system and method utilizing an antenna having adaptive characteristics
US5760741A (en) * 1996-04-09 1998-06-02 Trw Inc. Beam forming network for multiple-beam-feed sharing antenna system
GB2317056A (en) * 1996-09-04 1998-03-11 Marconi Gec Ltd Signal processor system for a phased array antenna
US5825762A (en) * 1996-09-24 1998-10-20 Motorola, Inc. Apparatus and methods for providing wireless communication to a sectorized coverage area
JP3432697B2 (ja) 1997-04-02 2003-08-04 松下電器産業株式会社 適応受信ダイバーシチ装置及び適応送信ダイバーシチ装置
US6173191B1 (en) * 1997-12-31 2001-01-09 Mdivesity Inc. Localization of shaped directional transmitting and transmitting/receiving antenna array
US6257526B1 (en) * 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
EP1181743A4 (de) * 1999-04-20 2002-10-23 Sonetech Corp Bestimmung und bildung von verzögerten wellenformen
US6078287A (en) * 1999-08-13 2000-06-20 Hughes Electronics Corporation Beam forming network incorporating phase compensation
DE19938862C1 (de) 1999-08-17 2001-03-15 Kathrein Werke Kg Hochfrequenz-Phasenschieberbaugruppe
US7339520B2 (en) * 2000-02-04 2008-03-04 The Directv Group, Inc. Phased array terminal for equatorial satellite constellations
US7184761B1 (en) * 2000-03-27 2007-02-27 The Directv Group, Inc. Satellite communications system
US6388615B1 (en) 2000-06-06 2002-05-14 Hughes Electronics Corporation Micro cell architecture for mobile user tracking communication system
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
JP4147724B2 (ja) * 2000-06-09 2008-09-10 ソニー株式会社 アンテナ装置及び無線装置
KR20030024777A (ko) * 2000-07-10 2003-03-26 앤드류 코포레이션 셀룰러 안테나
US6895217B1 (en) 2000-08-21 2005-05-17 The Directv Group, Inc. Stratospheric-based communication system for mobile users having adaptive interference rejection
US7257418B1 (en) 2000-08-31 2007-08-14 The Directv Group, Inc. Rapid user acquisition by a ground-based beamformer
US6380893B1 (en) 2000-09-05 2002-04-30 Hughes Electronics Corporation Ground-based, wavefront-projection beamformer for a stratospheric communications platform
US6941138B1 (en) 2000-09-05 2005-09-06 The Directv Group, Inc. Concurrent communications between a user terminal and multiple stratospheric transponder platforms
US6728554B1 (en) * 2000-09-11 2004-04-27 International Systems, Llc Wireless communication network
FI113590B (fi) 2000-09-13 2004-05-14 Nokia Corp Menetelmä suunnattujen antennikeilojen muodostamiseksi ja menetelmän toteuttava radiolähetin
US6763242B1 (en) 2000-09-14 2004-07-13 The Directv Group, Inc. Resource assignment system and method for determining the same
US7369847B1 (en) 2000-09-14 2008-05-06 The Directv Group, Inc. Fixed cell communication system with reduced interference
US7317916B1 (en) 2000-09-14 2008-01-08 The Directv Group, Inc. Stratospheric-based communication system for mobile users using additional phased array elements for interference rejection
US7369809B1 (en) 2000-10-30 2008-05-06 The Directv Group, Inc. System and method for continuous broadcast service from non-geostationary orbits
US6388634B1 (en) 2000-10-31 2002-05-14 Hughes Electronics Corporation Multi-beam antenna communication system and method
US7181162B2 (en) 2000-12-12 2007-02-20 The Directv Group, Inc. Communication system using multiple link terminals
US6952580B2 (en) 2000-12-12 2005-10-04 The Directv Group, Inc. Multiple link internet protocol mobile communications system and method therefor
US7103317B2 (en) 2000-12-12 2006-09-05 The Directv Group, Inc. Communication system using multiple link terminals for aircraft
US6891813B2 (en) 2000-12-12 2005-05-10 The Directv Group, Inc. Dynamic cell CDMA code assignment system and method
US7400857B2 (en) 2000-12-12 2008-07-15 The Directv Group, Inc. Communication system using multiple link terminals
US7809403B2 (en) 2001-01-19 2010-10-05 The Directv Group, Inc. Stratospheric platforms communication system using adaptive antennas
US8396513B2 (en) 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US7187949B2 (en) 2001-01-19 2007-03-06 The Directv Group, Inc. Multiple basestation communication system having adaptive antennas
US7068733B2 (en) * 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
US6559797B1 (en) * 2001-02-05 2003-05-06 Hughes Electronics Corporation Overlapping subarray patch antenna system
FR2826511B1 (fr) * 2001-06-21 2003-12-19 Cit Alcatel Procede de repointage pour antenne reseau a reflecteur
US7639196B2 (en) * 2001-07-10 2009-12-29 Andrew Llc Cellular antenna and systems and methods therefor
DE10157109B4 (de) * 2001-10-30 2011-01-13 Rohde & Schwarz Gmbh & Co. Kg Richtantennenanordnung und Verfahren zum Messen der Einstrahlrichtung zumindest einer eingestrahlten elektromagnetischen Welle
DE10237823B4 (de) 2002-08-19 2004-08-26 Kathrein-Werke Kg Antennen-Array mit einer Kalibriereinrichtung sowie Verfahren zum Betrieb eines derartigen Antennen-Arrays
DE10237822B3 (de) * 2002-08-19 2004-07-22 Kathrein-Werke Kg Kalibriereinrichtung für ein umschaltbares Antennen-Array sowie ein zugehöriges Betriebsverfahren
US6922169B2 (en) * 2003-02-14 2005-07-26 Andrew Corporation Antenna, base station and power coupler
US8018390B2 (en) * 2003-06-16 2011-09-13 Andrew Llc Cellular antenna and systems and methods therefor
US7427962B2 (en) * 2003-06-16 2008-09-23 Andrew Corporation Base station antenna rotation mechanism
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
US20050030248A1 (en) * 2003-08-06 2005-02-10 Kathrein-Werke Kg, Antenna arrangement
US7038621B2 (en) * 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
DE10336071B3 (de) * 2003-08-06 2005-03-03 Kathrein-Werke Kg Antennenanordnung sowie Verfahren insbesondere zu deren Betrieb
US7026989B1 (en) * 2004-01-23 2006-04-11 Itt Manufacturing Enterprises, Inc. Methods and apparatus for shaping antenna beam patterns of phased array antennas
US7315279B1 (en) * 2004-09-07 2008-01-01 Lockheed Martin Corporation Antenna system for producing variable-size beams
US7741997B1 (en) * 2005-08-17 2010-06-22 Lockheed Martin Corporation Multiple-beam phased array with switchable element areas
US20090061941A1 (en) * 2006-03-17 2009-03-05 Steve Clark Telecommunications antenna monitoring system
EP2097949A4 (de) * 2006-11-30 2011-12-07 Ericsson Telefon Ab L M Spärliche mikrowellen-gruppenantennenanordnung
ITRM20070144A1 (it) * 2007-03-20 2008-09-21 Space Engineering Spa Sistema di allineamento elettronico della polarizzazione di un'antenna.
US7834807B2 (en) 2007-05-21 2010-11-16 Spatial Digital Systems, Inc. Retro-directive ground-terminal antenna for communication with geostationary satellites in slightly inclined orbits
US10490892B2 (en) * 2007-12-06 2019-11-26 Spatial Digital Systems, Inc. Satellite ground terminal incorporating a smart antenna that rejects interference
GB2458900A (en) * 2008-03-31 2009-10-07 Ubidyne Inc Method and apparatus for suppression of sidelobes in antenna arrays
US7701384B2 (en) * 2008-04-08 2010-04-20 Honeywell International Inc. Antenna system for a micro air vehicle
JP2010032497A (ja) * 2008-07-02 2010-02-12 Toshiba Corp レーダ装置とその受信ビーム形成方法
FR2956928B1 (fr) * 2010-02-26 2012-03-09 Thales Sa Formateur de voies analogique reconfigurable pour antenne reseau
US9331774B2 (en) * 2010-06-09 2016-05-03 Exactearth Ltd. Systems and methods for segmenting a satellite field of view for detecting radio frequency signals
US20120196545A1 (en) * 2011-01-28 2012-08-02 Georg Schmidt Antenna array and method for synthesizing antenna patterns
US11855680B2 (en) * 2013-09-06 2023-12-26 John Howard Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage
US10734733B2 (en) * 2013-09-06 2020-08-04 John Howard Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage
EP3078076A1 (de) * 2013-12-04 2016-10-12 Telefonaktiebolaget LM Ericsson (publ) Drahtloskommunikationssystemknoten mit rekonfigurierbaren antennenvorrichtungen
US9831549B2 (en) * 2014-08-15 2017-11-28 Honeywell International Inc. Systems and methods for high power microwave combining and switching
CN111052503B (zh) * 2017-04-10 2021-06-29 维尔塞特公司 用于适应卫星通信的覆盖区域调整的方法和系统
JP7210408B2 (ja) * 2019-09-13 2023-01-23 株式会社東芝 電子装置及び方法
CN113675614A (zh) * 2021-08-20 2021-11-19 重庆两江卫星移动通信有限公司 一种基于龙伯透镜架构的高增益宽角扫描星载天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1527939A (fr) * 1967-04-04 1968-06-07 Csf Perfectionnement aux antennes à balayage électronique
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
FR2241886A1 (en) * 1973-05-21 1975-03-21 Labo Cent Telecommunicat Multibeam satellite antennae network - operates in low gigacycle frequency range to increase channel availability
US4124852A (en) * 1977-01-24 1978-11-07 Raytheon Company Phased power switching system for scanning antenna array
US4901085A (en) * 1988-09-23 1990-02-13 Spar Aerospace Limited Divided LLBFN/HMPA transmitted architecture
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813916C3 (de) * 1978-03-31 1981-07-30 Siemens AG, 1000 Berlin und 8000 München Richtantennenanordnung mit elektronisch steuerbarer Strahlschwenkung
USRE31772E (en) * 1978-11-13 1984-12-18 Anaren Microwave, Incorporated Digital bearing indicator
US4414550A (en) * 1981-08-04 1983-11-08 The Bendix Corporation Low profile circular array antenna and microstrip elements therefor
US4639732A (en) * 1985-02-22 1987-01-27 Allied Corporation Integral monitor system for circular phased array antenna
CA1226934A (en) * 1986-09-26 1987-09-15 Henry Downs Reconfigurable beam-forming network that provides in- phase power to each region
JPH0265401A (ja) * 1988-08-31 1990-03-06 Mitsubishi Electric Corp アンテナ制御用データ転送装置
FR2640821B1 (fr) * 1988-12-16 1991-05-31 Thomson Csf Antenne a couverture tridimensionnelle et balayage electronique, du type reseau volumique rarefie aleatoire
US5028930A (en) * 1988-12-29 1991-07-02 Westinghouse Electric Corp. Coupling matrix for a circular array microwave antenna
US5081463A (en) * 1989-04-13 1992-01-14 Mitsubishi Denki Kabushiki Kaisha Method and system for forming desired radiation pattern with array antenna
US4916454A (en) * 1989-06-05 1990-04-10 Allied-Signal Inc. Adaptive nulling circular array antenna
US5093668A (en) * 1989-06-29 1992-03-03 Ball Corporation Multiple-beam array antenna
US4973971A (en) * 1989-12-18 1990-11-27 Allied-Signal Inc. Broadband circular phased array antenna
US5038150A (en) * 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1527939A (fr) * 1967-04-04 1968-06-07 Csf Perfectionnement aux antennes à balayage électronique
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
FR2241886A1 (en) * 1973-05-21 1975-03-21 Labo Cent Telecommunicat Multibeam satellite antennae network - operates in low gigacycle frequency range to increase channel availability
US4124852A (en) * 1977-01-24 1978-11-07 Raytheon Company Phased power switching system for scanning antenna array
US4901085A (en) * 1988-09-23 1990-02-13 Spar Aerospace Limited Divided LLBFN/HMPA transmitted architecture
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532763A1 (de) * 1991-04-08 1993-03-24 Mitsubishi Denki Kabushiki Kaisha Gruppenantenne zum empfang eines übertragungssignals
EP0532763A4 (en) * 1991-04-08 1994-10-05 Mitsubishi Electric Corp Array antenna for receiving communication signal
US5548295A (en) * 1995-02-16 1996-08-20 Space Engineering Spa Multishaped beam direct radiating array antenna
EP0727839A1 (de) * 1995-02-16 1996-08-21 SPACE ENGINEERING S.p.A. Direktstrahlende Gruppenantenne mit multigeformter Strahlungskeule
EP0734093A1 (de) * 1995-03-20 1996-09-25 Agence Spatiale Europeenne Vorrichtung zur Speisung einer Mehrstrahl-Gruppenantenne
FR2732163A1 (fr) * 1995-03-20 1996-09-27 Europ Agence Spatiale Dispositif d'alimentation d'une antenne multisources et multifaisceaux
US5736963A (en) * 1995-03-20 1998-04-07 Agence Spatiale Europeenne Feed device for a multisource and multibeam antenna
FR3052870A1 (fr) * 2016-06-21 2017-12-22 Thales Sa Radar secondaire a gestion spatio-temporelle optimisee
WO2017220461A1 (fr) * 2016-06-21 2017-12-28 Thales Radar secondaire a gestion spatio-temporelle optimisee
JP2019521332A (ja) * 2016-06-21 2019-07-25 タレス 最適化された時空間管理を有する二次レーダ
US10823838B2 (en) 2016-06-21 2020-11-03 Thales Secondary radar with optimized spatio-temporal management

Also Published As

Publication number Publication date
US5151706A (en) 1992-09-29
FR2672436B1 (fr) 1993-09-10
JPH04319804A (ja) 1992-11-10
DE69200720D1 (de) 1995-01-12
CA2059584C (fr) 1995-09-05
FR2672436A1 (fr) 1992-08-07
CA2059584A1 (fr) 1992-08-01
DE69200720T2 (de) 1995-04-06
EP0497652B1 (de) 1994-11-30
JP2607198B2 (ja) 1997-05-07

Similar Documents

Publication Publication Date Title
EP0497652B1 (de) Vorrichtung zur elektronischen Steuerung des Strahlungsdiagrammes einer Einfach-/Mehrfach-Strahlenantenne mit variabler Richtung und/oder Breite
EP0420739B1 (de) Speiseeinrichtung für eine Mehrkeulenantenne
EP2532046B1 (de) Flachplatten-abtastantenne für landfahrzeuganwendung, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit solch einem fahrzeug
EP0723308B1 (de) Mehrkeulenantenne von hoher Kapazität mit elektronisch gesteuertem Abtasten beim Senden
EP1955405B1 (de) Array-antenne mit irregulärem netz und potentieller kälteredundanz
EP2706613B1 (de) Mehrfachband-Antenne mit variabler elektrischer Inklination
EP0600799A1 (de) Aktive Antenne mit variabler Polarisations-Synthese
EP2194602A1 (de) Antenne mit gemeinsam benützte Elementarstrahler und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützte Elementarstrahler
CA2172013A1 (fr) Dispositif d'alimentation d'une antenne multisources et multifaisceaux
EP3176875B1 (de) Aufbau einer aktiven hybriden rekonfigurierbaren strahlbildungsantenne
EP0108670A1 (de) Speisevorrichtung für abtastende Gruppenantenne
FR2792116A1 (fr) Formation numerique de faisceaux
EP3758146A1 (de) Analoger zweidimensionaler multipler strahlformer mit reduzierter komplexität für rekonfigurierbare aktive netzwerkantennen
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
EP3639409A1 (de) Satellitennutzlast mit einem reflektor mit zwei reflektierenden oberflächen
EP3159965B1 (de) Antennennetzsender für ein monoimpulsradarsystem
EP0225219A1 (de) Konisch abtastende Antennengruppe und Radar mit einer solchen Antenne
EP1533866A1 (de) Adaptive Phasengesteuerte Gruppenantenne mit digitaler Keulenformung
FR2952759A1 (fr) Antenne a reflecteurs et reseau focal
FR3047859A1 (fr) Antenne reseau d'emission d'ondes electromagnetiques porteuses d'un moment angulaire orbital et procede d'emission associe
EP4092831A1 (de) Antenne mit lückenhaftem verteilungsnetz
FR3129535A1 (fr) Antenne réseau active multifaisceaux comportant un dispositif hybride pour la formation de faisceaux directifs
FR3113216A1 (fr) Nœud de contrôle à constellation vectorielle octogonale pour antenne réseau
FR2773269A1 (fr) Dispositif large bande de detection, notamment de radars
EP1698021A1 (de) Verfahren zur optimierung der architektur einer mehrstrahlantenne mit digitaler strahlformung mit verschachtelten subnetzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930115

17Q First examination report despatched

Effective date: 19940217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941209

REF Corresponds to:

Ref document number: 69200720

Country of ref document: DE

Date of ref document: 19950112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000311

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030129

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120