EP0497652A1 - Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width - Google Patents

Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width Download PDF

Info

Publication number
EP0497652A1
EP0497652A1 EP92400136A EP92400136A EP0497652A1 EP 0497652 A1 EP0497652 A1 EP 0497652A1 EP 92400136 A EP92400136 A EP 92400136A EP 92400136 A EP92400136 A EP 92400136A EP 0497652 A1 EP0497652 A1 EP 0497652A1
Authority
EP
European Patent Office
Prior art keywords
radiators
outputs
network
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92400136A
Other languages
German (de)
French (fr)
Other versions
EP0497652B1 (en
Inventor
Antoine Roederer
Cornelis Van't Klooster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agence Spatiale Europeenne
Original Assignee
Agence Spatiale Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence Spatiale Europeenne filed Critical Agence Spatiale Europeenne
Publication of EP0497652A1 publication Critical patent/EP0497652A1/en
Application granted granted Critical
Publication of EP0497652B1 publication Critical patent/EP0497652B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • the present invention relates to a device for electronic control of the radiation pattern of an antenna with one or more directional beams and / or of variable width.
  • the antenna will mainly be described in transmission mode but all the lessons can be transposed, mutatis mutandis , to reception operation by simple application of the principle of reciprocity, the structure of the circuits and their links remaining the same but the signal traveling from the antenna array to the transmit / receive circuits instead of traveling in the opposite direction.
  • the amplifier stages which are placed in the same places, are in this case low noise amplifier stages whose input is located on the antenna side and the output on the transmit / receive circuit side.
  • the two types of amplifiers power amplifiers for transmission and low-bit amplifiers for reception
  • either passive antennas or active antennas can be used.
  • the so-called "passive" antennas essentially comprise a main amplifier followed by a power divider, fixed or variable, as well as phase shifters and / or switches.
  • the main drawbacks are the need to have a high power generator (since the amplifier is unique), to present significant losses downstream of this generator (since the latter is located upstream of the rest of the device and d 'imply switching at high power level.
  • the low noise amplifier being located downstream of the system, the signal undergoes significant losses before amplification, thus significantly degrading the signal / noise ratio.
  • FIGS. 1 and 2 Such an example of passive antenna is illustrated in FIGS. 1 and 2, with a circular network 10 comprising a large number of elementary radiators (thirty-two in this example) distributed regularly over a cylindrical surface, as illustrated diagrammatically in the figure. 2 which represents a plan view of the network 10.
  • the successive elements of this circular network have been numbered from 1 to 32.
  • This network 10 is supplied by a signal source 20.
  • This signal is amplified by a stage 30 and applied to a beam forming and scanning network 40, 50 comprising on the one hand, a power divider stage 40 and, d on the other hand, a series of four-way switches 50.
  • the power divider stage 40 comprises, in this example, a four-way power divider 41 whose outputs are applied as input to two-way variable dividers 42.
  • the divider 41 is a fixed, equiphase and equiamplitude divider, while the dividers 42 are equiphase dividers with variable amplitude.
  • Each of the outputs of the variable power dividers 42 is connected to a four-way switch 50 supplying four non-contiguous radiators and angularly offset by 90 ° on the circular network.
  • the output of each divider 42 is thus applied to one of the radiators of a sub-network, each sub-network consisting of four elementary radiators having the rank indicated in the figure (the first sub-network consists of radiators of row 1, 9, 17 and 25, the second sub-network, radiators of rows 5, 13, 21 and 29, etc.).
  • variable phase shifts dividers 42
  • commutations switches 50
  • three central elements for example elements 2, 3 and 4
  • the distribution of the last quarter is gradually varied from one external element (in this example, element 1) to the other (element 5), also in phase, producing thus progressive scanning.
  • This configuration is not without drawbacks.
  • the main one is the very significant loss of power between the signal at the output of the amplifier and the signal actually radiated by the network, due to the many elements crossed; in general, this loss is around 40%.
  • This configuration comprises, between the network 10 and the signal source 20 with its power amplifier 30, an assembly constituted, from upstream to downstream: of an equiphase and equiamplitude power divider 40 comprising as many outputs as there are elementary radiators, a phase shifter assembly 60 comprising, for each of the outputs of the divider 40, a fixed phase shifter 61 and a variable phase shifter 62, and a Butler matrix 70 whose inputs are connected to the outputs of the phase shifters and whose outputs are connected to the various elementary radiators of network 10 (as we know, a Butler matrix is a passive network without theoretical loss comprising N inputs and N outputs, N generally being a power of 2; the inputs are isolated between them, and a signal applied to any one of the inputs produced on all the outputs of currents of equal amplitudes but whose phases vary linearly from one element to the next).
  • a Butler matrix is a passive network without theoretical loss comprising N inputs and N outputs, N generally being a power of 2;
  • the scanning is carried out by action on the phase shifters 62 so as to obtain a linear progression of the phase on the mode inputs, while keeping the mode amplitudes fixed.
  • the second type of antenna consists of so-called “active" antennas, in which the amplification is no longer concentrated at one point but distributed over a plurality of amplifiers.
  • each radiating element is associated with an amplifier mounted in the immediate vicinity of the radiator.
  • the main disadvantage is that, for an antenna with four (or six) facets for example, one will use, at a given time, only one amplifier out of four (or six), all the power being concentrated in the only amplifier associated with the corresponding element used. This drawback limits the use of this principle to antennas which must have an extended scanning range.
  • US-A-4,901,085, to Spring et al. Further describes a configuration for a multi-beam antenna supply system comprising a plurality of modules forming hybrid matrix power amplifiers. These modules, preferably all identical, each comprise an input matrix and an output matrix having between them a mirror symmetry and interconnected by a battery of power amplifiers. Each of the modules thus formed is mounted between, on the one hand, a low level beam forming network and, on the other hand, the radiating elements.
  • Such a structure which involves a duplication of the matrices, is therefore relatively complex, bulky and heavy, highly disadvantageous characteristics in the case of an antenna on board a satellite.
  • the beam forming network connects certain beam selection ports to certain input ports of the modules, some of which other ports have no signal applied to them. Consequently, the various amplifiers are not loaded identically, thus leading to a loss of efficiency of the system.
  • One of the aims of the present invention is to propose an electronic device for controlling the radiation pattern of an active antenna with electronic scanning, with one or more beams, operating in a wide angular range and with optimum efficiency.
  • this device comprises a network of radiators subdivided into a certain number of groups, each bundle typically using one or two elements from each group.
  • Amplification is carried out in a distributed manner by a plurality of amplifiers, in a number equal to that of the radiators, and the connection between radiators and amplifiers is carried out by means of a hybrid coupler, means being further provided for optimize and adjust the phases of the signals before amplification (in transmission) or after amplification (in reception) in order to control the distribution of energy between the elements.
  • the distributed amplification according to the invention has the advantage that, compared to an active antenna with an amplifier module directly associated with each radiating element, the power per module can be reduced essentially in the ratio of the number of elements contributing to a beam to the total number of elements.
  • the amplifiers all receive signals of equal amplitude permanently, the efficiency of the amplification function can be optimized.
  • this device between the power dividing means and the radiators: P groups of M phase-amplifier-amplifier modules, placed at the output of the power dividing means; and P couplers with M inputs and M outputs each, these M inputs being connected to the corresponding M outputs of the group of associated phase-amplifier modules, and these M outputs being connected to the M radiators of the associated sub-network, the phase shift of the phase-amplifier modules being chosen so as to direct the power delivered by the source to the radiators participating in the specified radiation diagram, and thus to achieve a distributed amplification of the signal emitted by the source while maintaining on each amplifier a substantially identical and constant charge whatever the modifications made to the diagram.
  • said power dividing means may in particular comprise, in a number equal to that of the beams, a plurality of elementary power dividing assemblies with one input and N outputs, the homologous outputs of the respective elementary assemblies being coupled by variable phase-shifting means to give N outputs applied to the N inputs of the N phase-amplifier-amplifier modules.
  • said network is a cylindrical network, excited so as to carry out a circular scanning of said beam or of each of said beams, and / or excited so as to effect a modification of the width of said beam or of each of said beams.
  • FIGS. 1 and 2 schematically show a first known type of passive circular scanning antenna.
  • FIG. 3, cited above, shows a second known type of passive antenna with circular scanning.
  • Figures 4 and 5 schematically illustrate a first mode of the device of the invention, corresponding to a single-beam circular scanning antenna.
  • Figures 6 and 7 show a second embodiment of the invention, corresponding to a circular scanning antenna with two simultaneous beams.
  • FIG. 8 illustrates a third embodiment of the invention, corresponding to a single beam antenna with fixed pointing but with variable width.
  • FIGS. 4 and 5 show a first embodiment of the invention, for a cylindrical antenna with sixteen radiating elements (radiators) and with a single beam. This configuration typically corresponds to that of a counter-rotating antenna for satellite, but many other applications are of course perfectly conceivable.
  • Figure 4 shows, in top view, the overall configuration of the circular network and the circuits associated with it, while Figure 5 refers only to the electrical diagram defining the connections between these different elements.
  • the radiating elements of the network 10 are subdivided into groups A, B, C and D of four radiators each (A1, A2, A3, A4, etc.), the beam typically using one or two elements from each group: thus, in the 'illustrated example, the beam whose direction is ⁇ uses the five elements A1, B1, C1, D1 and D4; the elements A1, B1 and C1 are each excited typically by a quarter of the total power, the last quarter being distributed between the two elements D1 and D4, with a continuous variation (the level of power more or less high was symbolized on the Figures 4 and 5 by a more or less large hatched area associated with each excited element).
  • each of the three central sources in this example the sources A1, B1 and C1
  • those of the two external sources D1 and D4 are equal but with adjustable values: we can thus maximize the radiation in one direction variable continuously or not.
  • Each group of radiators is associated with a generalized multiport coupler 80, or a Butler matrix, with four inputs and four outputs in the example illustrated.
  • Such couplers are for example described, with their operating conditions, in the work of YT Lo and SW Lee entitled Antenna Handbook - Theory , Applications and Design, published by Van Nostrand Reinhold Company, New York, in particular on pages 19-101 at 19-111 of the chapter Beam-Forming Feeds, or in the article by S. Egami and M. Kawai entitled An Adaptative Multiple Beam System Concept , published in the IEEE Journal on Selected Areas in Communications , volume SAC-5, n ° 4 of May 1987, pages 630 to 636.
  • Each of the couplers 80 associated with the different groups A, B, C and D makes it possible to connect each element of a group (for example, for the coupler of group A, the radiators A1, A2, A3 and A4) to an equal number of amplifier modules 30 and phase shifters 60, the phase shifters being variable and controllable so as to adjust the phase shift before amplification (at transmission) or after amplification (at reception).
  • the properties of the couplers 80 are such that it is possible, by an appropriate choice of the phases applied by the phase shifters 60 to the signals coming from the divider 40, to focus the input power towards one, two or four of the outputs of the coupler; here, we will focus the power towards one or two outputs to achieve the desired result.
  • Figures 6 and 7 illustrate a generalization of the previous embodiment to a circular scanning antenna with two simultaneous beams, corresponding to the two directions referenced ⁇ and ⁇ ′.
  • the structure is comparable to that of the previous case with regard to the multiport couplers 80 and the amplifiers 30.
  • phase shifters are split; provision is therefore made, for each of the amplifiers 30, for two phase shifters 60 and 60 ′ making it possible to couple the signals from the two sources 20 and 20 ′ while applying to them, separately, an appropriate separate phase shift.
  • FIG. 8 illustrates another embodiment of the invention, in an application to a "zoom" antenna, that is to say an antenna producing a beam of given direction ( ⁇ ), but of variable width according to requirements .
  • a "zoom" antenna that is to say an antenna producing a beam of given direction ( ⁇ ), but of variable width according to requirements .
  • such antennas can be very useful in the case of satellites having an elliptical orbit with high eccentricity, because they make it possible to maintain a zone of illumination that is substantially constant despite periodic variations in altitude of the satellite.
  • the number of radiating elements used is varied, a wide beam using a small number of radiating elements and a strongly directive beam using a larger number.
  • a network 10 (circular or plane) of eight elements is used, distributed in two nested groups A1, A2, A3, A4 and B1, B2, B3, B4.
  • a wide beam will use the two central elements B2 and A3, a slightly narrower beam will use the four central elements A2, B2, A3, B3, etc. and the narrowest beam will use all of the elements.
  • all the elements point in the same direction and that, moreover, the network can be enlarged, in itself known manner, by an optical system.
  • each of the two groups are combined with the first series of ports of a coupler 80, the second series of ports of which is attacked by the amplifiers 30, in a number equal to that of the radiators.
  • Each amplifier is associated with a phase shifting module 60, itself supplied by one of the outputs of the divider. of power 40 supplied by the signal source 20.
  • the network radiators can be distributed over a conforming, spherical, cylindrical, conical or faceted surface to extend the angular range of the antenna.

Abstract

This device comprises: an array (10) of N radiators, subdivided into P sub-arrays (A, B, C, D) each of M radiators, each beam of the specified pattern utilising a plurality of radiators chosen from the radiators of at least some of the sub-arrays; a common signal source (30); power divider means (40), with one input and N outputs, for distributing the signal delivered by the source; means (30) for amplifying the said signal; and means for selectively exciting with the amplified signal, together with a controlled phase shift, at least some of the radiators so as to obtain the specified radiation pattern. …<??>According to the invention, between the power divider means and the radiators there are provided: P groups of M phase-shifter/amplifier modules (30, 60) placed at the output of the power divider means; and P couplers (80) each with M inputs and M outputs, these M inputs being connected to the M corresponding outputs of the associated group of phase-shifter/amplifier modules, and these M outputs being connected to the M radiators of the associated sub-array. …<??>The phase shift of the phase-shifter/amplifier modules is chosen so as to direct the power delivered by the source towards the radiators participating in the specified radiation pattern, and to thus produce a distributed amplification of the signal emitted by the source while maintaining an essentially identical and constant load on each amplifier whatever modifications are made to the pattern. …<IMAGE>…

Description

La présente invention concerne un dispositif de contrôle électronique du diagramme de rayonnement d'une antenne à un ou plusieurs faisceaux de direction et/ou de largeur variable.The present invention relates to a device for electronic control of the radiation pattern of an antenna with one or more directional beams and / or of variable width.

Elle s'applique notamment à la réalisation d'antennes dites "contrarotatives", qui sont des antennes à balayage continu, montées sur un satellite affecté d'un mouvement de rotation permanent sur son axe, et dans lesquelles le balayage du faisceau de l'antenne s'effectue à la même vitesse que la rotation du satellite mais en sens contraire, de manière à maintenir une direction de pointage inchangée en dépit de la rotation du satellite.It applies in particular to the production of so-called "counter-rotating" antennas, which are continuous scanning antennas, mounted on a satellite affected by a permanent rotational movement on its axis, and in which the scanning of the beam of the antenna is carried out at the same speed as the rotation of the satellite but in the opposite direction, so as to maintain a direction of pointing unchanged despite the rotation of the satellite.

Bien que cette configuration constitue l'un des modes de réalisation avantageux de l'invention, elle n'est cependant en aucune façon limitative et les enseignements de l'invention peuvent, comme on le verra, s'appliquer à une très grande variété d'antennes à un ou plusieurs faisceaux contrôlés électroniquement.Although this configuration constitutes one of the advantageous embodiments of the invention, it is however in no way limiting and the teachings of the invention can, as will be seen, apply to a very wide variety of '' antennas with one or more electronically controlled beams.

De même, on décrira l'antenne essentiellement en mode d'émission mais tous les enseignements pourront en être transposés, mutatis mutandis, à un fonctionnement en réception par simple application du principe de réciprocité, la structure des circuits et leurs liaisons restant les mêmes mais le signal cheminant du réseau d'antennes vers les circuits d'émission/réception au lieu de cheminer en sens inverse. Les étages amplificateurs, qui sont placés aux mêmes endroits, sont dans ce cas des étages amplificateurs faible bruit dont l'entrée est située côté antenne et la sortie côté circuit d'émission/réception. Les deux types d'amplificateurs (amplificateurs de puissance pour l'émission et amplificateurs faible bit pour la réception) peuvent d'ailleurs coexister dans un même module, moyennant une commutation ou un duplexage appropriés.Similarly, the antenna will mainly be described in transmission mode but all the lessons can be transposed, mutatis mutandis , to reception operation by simple application of the principle of reciprocity, the structure of the circuits and their links remaining the same but the signal traveling from the antenna array to the transmit / receive circuits instead of traveling in the opposite direction. The amplifier stages, which are placed in the same places, are in this case low noise amplifier stages whose input is located on the antenna side and the output on the transmit / receive circuit side. The two types of amplifiers (power amplifiers for transmission and low-bit amplifiers for reception) can also coexist in the same module, with appropriate switching or duplexing.

Lorsqu'il s'agit de rayonner (ou de recevoir) de la puissance radioélectrique par balayage électronique d'un ou de plusieurs faisceaux dans un domaine angulaire étendu avec un rendement optimum, on peut utiliser soit des antennes passives, soit des antennes actives.When it comes to radiating (or receiving) radio power by electronic scanning of one or more beams in a wide angular range with optimum efficiency, either passive antennas or active antennas can be used.

Les antennes dites "passives" comportent, essentiellement, un amplificateur principal suivi d'un diviseur de puissance, fixe ou variable, ainsi que de déphaseurs et/ou de commutateurs.The so-called "passive" antennas essentially comprise a main amplifier followed by a power divider, fixed or variable, as well as phase shifters and / or switches.

En émission, les principaux inconvénients sont la nécessité d'avoir un générateur de forte puissance (puisque l'amplificateur est unique), de présenter des pertes importantes en aval de ce générateur (puisque ce dernier est situé en amont du reste du dispositif et d'impliquer des commutations à haut niveau de puissance. En réception, inversement, l'amplificateur faible bruit étant situé tout en aval du système, le signal subit des pertes importantes avant amplification, dégradant ainsi notablement le rapport signal/bruit.In transmission, the main drawbacks are the need to have a high power generator (since the amplifier is unique), to present significant losses downstream of this generator (since the latter is located upstream of the rest of the device and d 'imply switching at high power level. On reception, conversely, the low noise amplifier being located downstream of the system, the signal undergoes significant losses before amplification, thus significantly degrading the signal / noise ratio.

Enfin, dans tous les cas, du fait de l'unicité de l'amplificateur d'émission et/ou de réception, une panne de celui-ci empêche tout fonctionnement du système, puisqu'un fonctionnement en "mode dégradé" n'est pas possible, une panne se répercutant sur la totalité du processus d'émission ou de réception.Finally, in all cases, due to the uniqueness of the transmit and / or receive amplifier, a failure thereof prevents any operation of the system, since operation in "degraded mode" is not not possible, a breakdown affecting the entire process of transmission or reception.

Un tel exemple d'antenne passive est illustré figures 1 et 2, avec un réseau circulaire 10 comportant un nombre important de radiateurs élémentaires (au nombre de trente-deux dans cet exemple) répartis régulièrement sur une surface cylindrique, comme illustré schématiquement sur la figure 2 qui représente une vue en plan du réseau 10. Les éléments successifs de ce réseau circulaire ont été numérotés de 1 à 32.Such an example of passive antenna is illustrated in FIGS. 1 and 2, with a circular network 10 comprising a large number of elementary radiators (thirty-two in this example) distributed regularly over a cylindrical surface, as illustrated diagrammatically in the figure. 2 which represents a plan view of the network 10. The successive elements of this circular network have been numbered from 1 to 32.

Ce réseau 10 est alimenté par une source de signal 20. Ce signal est amplifié par un étage 30 et appliqué à un réseau de formation de faisceau et de balayage 40, 50 comportant d'une part, un étage diviseur de puissance 40 et, d'autre part, une série de commutateurs à quatre directions 50.This network 10 is supplied by a signal source 20. This signal is amplified by a stage 30 and applied to a beam forming and scanning network 40, 50 comprising on the one hand, a power divider stage 40 and, d on the other hand, a series of four-way switches 50.

L'étage diviseur de puissance 40 comporte, dans cet exemple, un diviseur de puissance à quatre voies 41 dont les sorties sont appliquées en entrée de diviseurs variables à deux voies 42. Le diviseur 41 est un diviseur fixe, équiphase et équiamplitude, tandis que les diviseurs 42 sont des diviseurs équiphase à amplitude variable.The power divider stage 40 comprises, in this example, a four-way power divider 41 whose outputs are applied as input to two-way variable dividers 42. The divider 41 is a fixed, equiphase and equiamplitude divider, while the dividers 42 are equiphase dividers with variable amplitude.

Chacune des sorties des diviseurs de puissance variable 42 est reliée à un commutateur à quatre voies 50 alimentant quatre radiateurs non contigus et décalés angulairement de 90° sur le réseau circulaire. La sortie de chaque diviseur 42 est ainsi appliquée à l'un des radiateurs d'un sous-réseau, chaque sous-réseau étant constitué de quatre radiateurs élémentaires présentant le rang indiqué sur la figure (le premier sous-réseau est constitué des radiateurs de rang 1, 9, 17 et 25, le second sous-réseau, des radiateurs de rangs 5, 13, 21 et 29, etc.).Each of the outputs of the variable power dividers 42 is connected to a four-way switch 50 supplying four non-contiguous radiators and angularly offset by 90 ° on the circular network. The output of each divider 42 is thus applied to one of the radiators of a sub-network, each sub-network consisting of four elementary radiators having the rank indicated in the figure (the first sub-network consists of radiators of row 1, 9, 17 and 25, the second sub-network, radiators of rows 5, 13, 21 and 29, etc.).

Par une combinaison appropriée des déphasages variables (diviseurs 42) et des commutations (commutateurs 50), il est possible d'obtenir un balayage circulaire progressif du faisceau : par exemple, trois éléments centraux (par exemple les éléments 2, 3 et 4) sont excités en phase par un quart de la puissance, et la répartition du dernier quart est variée progressivement d'un élément extérieur (dans cet exemple, l'élément 1) vers l'autre (l'élément 5), également en phase, produisant ainsi le balayage progressif.By an appropriate combination of variable phase shifts (dividers 42) and commutations (switches 50), it is possible to obtain a progressive circular scanning of the beam: for example, three central elements (for example elements 2, 3 and 4) are excited in phase by a quarter of the power, and the distribution of the last quarter is gradually varied from one external element (in this example, element 1) to the other (element 5), also in phase, producing thus progressive scanning.

Cette configuration n'est pas dénuée d'inconvénients. Le principal en est la perte très importante de puissance entre le signal en sortie de l'amplificateur et le signal effectivement rayonné par le réseau, du fait des nombreux éléments traversés ; en général, cette perte est de l'ordre de 40 %.This configuration is not without drawbacks. The main one is the very significant loss of power between the signal at the output of the amplifier and the signal actually radiated by the network, due to the many elements crossed; in general, this loss is around 40%.

Un autre inconvénient tient au fait que, comme l'on ne joue que sur les amplitudes pour réaliser le balayage, les phases d'excitation des radiateurs élémentaires sont loin de l'optimum, introduisant ainsi une dégradation de la qualité du faisceau.Another drawback stems from the fact that, as we only play on the amplitudes to carry out the scanning, the excitation phases of the elementary radiators are far from the optimum, thus introducing a degradation of the quality of the beam.

Une autre configuration connue, décrite par exemple dans un article de Boris Sheleg intitulé A Matrix-Fed Circular Array for Continuous Scanning, paru dans les Proceedings of the IEEE, Vol. 56, n°11, de novembre 1968, pages 2016 à 2027, utilise une matrice de Butler unique pour une application similaire.Another known configuration, described for example in an article by Boris Sheleg entitled A Matrix-Fed Circular Array for Continuous Scanning , published in the Proceedings of the IEEE , Vol. 56, n ° 11, from November 1968, pages 2016 to 2027, uses a single Butler matrix for a similar application.

Cette configuration, illustrée schématiquement figure 3, comporte, entre le réseau 10 et la source de signal 20 avec son amplificateur de puissance 30, un ensemble constitué, d'amont en aval : d'un diviseur de puissance équiphase et équiamplitude 40 comportant autant de sorties que de radiateurs élémentaires, d'un ensemble déphaseur 60 comportant, pour chacune des sorties du diviseur 40, un déphaseur fixe 61 et un déphaseur variable 62, et d'une matrice de Butler 70 dont les entrées sont reliées aux sorties des déphaseurs et dont les sorties sont reliées aux différents radiateurs élémentaires du réseau 10 (comme on le sait, une matrice de Butler est un réseau passif sans perte théorique comprenant N entrées et N sorties, N étant généralement une puissance de 2 ; les entrées sont isolées entre elles, et un signal appliqué à l'une quelconque des entrées produit sur toutes les sorties des courants d'amplitudes égales mais dont les phases varient linéairement d'un élément au suivant).This configuration, illustrated diagrammatically in FIG. 3, comprises, between the network 10 and the signal source 20 with its power amplifier 30, an assembly constituted, from upstream to downstream: of an equiphase and equiamplitude power divider 40 comprising as many outputs as there are elementary radiators, a phase shifter assembly 60 comprising, for each of the outputs of the divider 40, a fixed phase shifter 61 and a variable phase shifter 62, and a Butler matrix 70 whose inputs are connected to the outputs of the phase shifters and whose outputs are connected to the various elementary radiators of network 10 (as we know, a Butler matrix is a passive network without theoretical loss comprising N inputs and N outputs, N generally being a power of 2; the inputs are isolated between them, and a signal applied to any one of the inputs produced on all the outputs of currents of equal amplitudes but whose phases vary linearly from one element to the next).

Dans le dispositif de la figure 3, le balayage est réalisé par action sur les déphaseurs 62 de manière à obtenir une progression linéaire de la phase sur les entrées de mode, tout en maintenant fixes les amplitudes de mode.In the device of FIG. 3, the scanning is carried out by action on the phase shifters 62 so as to obtain a linear progression of the phase on the mode inputs, while keeping the mode amplitudes fixed.

Cette structure, bien qu'elle élimine les difficultés liées à la présence de commutateurs, présente néanmoins les mêmes autres inconvénients que ceux du dispositif de la figure 1.This structure, although it eliminates the difficulties associated with the presence of switches, nevertheless has the same other drawbacks as those of the device in FIG. 1.

Le second type d'antenne est constitué par les antennes dites "actives", dans lesquelles l'amplification n'est plus concentrée en un point mais répartie sur une pluralité d'amplificateur.The second type of antenna consists of so-called "active" antennas, in which the amplification is no longer concentrated at one point but distributed over a plurality of amplifiers.

Plus précisément, à chaque élément rayonnant est associé un amplificateur monté au voisinage immédiat du radiateur. L'inconvénient principal est que, pour une antenne à quatre (ou six) facettes par exemple, on n'utilisera, à un instant donné, qu'un amplificateur sur quatre (ou six), toute la puissance étant concentrée dans le seul amplificateur associé à l'élément correspondant utilisé. Cet inconvénient limite l'utilisation de ce principe à des antennes devant présenter un domaine de balayage étendu.More specifically, each radiating element is associated with an amplifier mounted in the immediate vicinity of the radiator. The main disadvantage is that, for an antenna with four (or six) facets for example, one will use, at a given time, only one amplifier out of four (or six), all the power being concentrated in the only amplifier associated with the corresponding element used. This drawback limits the use of this principle to antennas which must have an extended scanning range.

Le US-A-4 901 085, au nom de Spring et al., décrit par ailleurs une configuration pour un système d'alimentation d'antennes à faisceaux multiples comprenant une pluralité de modules formant amplificateurs de puissance à matrice hybride. Ces modules, de préférence tous identiques, comportent chacun une matrice d'entrée et une matrice de sortie présentant entre elles une symétrie en miroir et interconnectées par une batterie d'amplificateurs de puissance. Chacun des modules ainsi constitué est monté entre, d'une part, un réseau de formation de faisceaux à bas niveau et, d'autre part, les éléments rayonnants.US-A-4,901,085, to Spring et al., Further describes a configuration for a multi-beam antenna supply system comprising a plurality of modules forming hybrid matrix power amplifiers. These modules, preferably all identical, each comprise an input matrix and an output matrix having between them a mirror symmetry and interconnected by a battery of power amplifiers. Each of the modules thus formed is mounted between, on the one hand, a low level beam forming network and, on the other hand, the radiating elements.

Une telle structure, qui implique un dédoublement des matrices, est de ce fait relativement complexe, encombrante et lourde caractéristiques fortement désavantageuses dans le cas d'une antenne embarquée sur satellite.Such a structure, which involves a duplication of the matrices, is therefore relatively complex, bulky and heavy, highly disadvantageous characteristics in the case of an antenna on board a satellite.

En second lieu, dans la configuration décrite par ce brevet le réseau formateur de faisceaux relie certains ports de sélection de faisceaux à certains ports d'entrée des modules, dont certains autres ports n'ont aucun signal qui leur est appliqué. Dès lors, les divers amplificateurs ne sont pas chargés identiquement, aboutissant donc à une perte d'efficacité du système.Secondly, in the configuration described by this patent, the beam forming network connects certain beam selection ports to certain input ports of the modules, some of which other ports have no signal applied to them. Consequently, the various amplifiers are not loaded identically, thus leading to a loss of efficiency of the system.

Enfin et surtout, le système décrit par cette antériorité ne permet aucune variation continue de pointage du faisceau tout en conservant une charge uniforme sur les amplificateurs, alors qu'il s'agit là, comme on le verra, de la caractéristique essentielle de la présente invention.Last but not least, the system described by this prior art does not allow any continuous variation in beam pointing while retaining a uniform charge on the amplifiers, whereas this is, as will be seen, the essential characteristic of the present invention.

En effet, l'un des buts de la présente invention est de proposer un dispositif de contrôle électronique du diagramme de rayonnement d'une antenne active à balayage électronique, à un ou plusieurs faisceaux, opérant dans un domaine angulaire étendu et avec un rendement optimum.One of the aims of the present invention is to propose an electronic device for controlling the radiation pattern of an active antenna with electronic scanning, with one or more beams, operating in a wide angular range and with optimum efficiency. .

Essentiellement, ce dispositif comporte un réseau de radiateurs subdivisés en un certain nombre de groupes, chaque faisceau utilisant typiquement un ou deux éléments de chaque groupe. L'amplification y est réalisée de façon répartie par une pluralité d'amplificateurs, en nombre égal à celui des radiateurs, et la liaison entre radiateurs et amplificateurs est effectuée par l'intermédiaire d'un coupleur hybride, des moyens étant en outre prévus pour optimiser et ajuster les phases des signaux avant amplification (en émission) ou après amplification (en réception) afin de contrôler la distribution d'énergie entre les éléments.Essentially, this device comprises a network of radiators subdivided into a certain number of groups, each bundle typically using one or two elements from each group. Amplification is carried out in a distributed manner by a plurality of amplifiers, in a number equal to that of the radiators, and the connection between radiators and amplifiers is carried out by means of a hybrid coupler, means being further provided for optimize and adjust the phases of the signals before amplification (in transmission) or after amplification (in reception) in order to control the distribution of energy between the elements.

Ceci permet, par application de déphasages appropriées, d'orienter la puissance au mieux vers les éléments correspondant à la (aux) direction(s) de rayonnement voulue(s), et d'assurer une variation de puissance continue d'une partie à l'autre de l'antenne pour en changer le diagramme de rayonnement.This allows, by applying appropriate phase shifts, to orient the power at best towards the elements corresponding to the direction (s) of radiation desired (s), and to ensure a continuous power variation from one part to another of the antenna to change the diagram of radiation.

En outre, l'amplification répartie selon l'invention présente l'avantage que, par rapport à une antenne active à un module amplificateur associé directement à chaque élément rayonnant, la puissance par module peut être réduite essentiellement dans le rapport du nombre d'éléments contribuant à un faisceau au nombre total d'éléments.In addition, the distributed amplification according to the invention has the advantage that, compared to an active antenna with an amplifier module directly associated with each radiating element, the power per module can be reduced essentially in the ratio of the number of elements contributing to a beam to the total number of elements.

On atteint ainsi un double avantage : tout d'abord, on réduit la puissance unitaire des amplificateurs, ce qui en accroît la fiabilité ; d'autre part, en cas de panne d'un ou de deux amplificateurs les performances globales sont peu affectées par cette panne puisque, à un instant donné, les amplificateurs du dispositif participent tous, chacun pour leur part, à la formation du faisceau.This achieves a double advantage: first of all, the unit power of the amplifiers is reduced, which increases reliability; on the other hand, in the event of a failure of one or two amplifiers, the overall performance is little affected by this failure since, at a given instant, the amplifiers of the device all participate, each for their part, in the formation of the beam.

En outre, les amplificateurs recevant tous, et de façon permanente, des signaux d'amplitudes égales, on peut optimiser l'efficacité de la fonction d'amplification.In addition, since the amplifiers all receive signals of equal amplitude permanently, the efficiency of the amplification function can be optimized.

La présente invention concerne un dispositif du type générique précité, c'est-à-dire comprenant : un réseau de N radiateurs, subdivisé en P sous-réseaux de M radiateurs chacun, avec M.P = N, chaque faisceau du diagramme spécifié utilisant une pluralité de radiateurs choisis parmi les radiateurs d'au moins certains des sous-réseaux ; une source de signal, commune à tous les radiateurs du réseau ; des moyens diviseurs de puissance, à une entrée et N sorties, pour distribuer le signal délivré par la source ; des moyens pour amplifier ledit signal ; et des moyens pour exciter sélectivement par le signal amplifié, avec un déphasage contrôlé, au moins certains des radiateurs de manière à obtenir le diagramme de rayonnement spécifié pour l'antenne.The present invention relates to a device of the aforementioned generic type, that is to say comprising: a network of N radiators, subdivided into P sub-networks of M radiators each, with MP = N, each beam of the specified diagram using a plurality radiators chosen from the radiators of at least some of the sub-networks; a signal source, common to all the radiators in the network; power dividing means, at one input and N outputs, for distributing the signal delivered by the source; means for amplifying said signal; and means for selectively exciting, by the amplified signal, with a controlled phase shift, at least some of the radiators so as to obtain the radiation pattern specified for the antenna.

Selon l'invention, il est prévu dans ce dispositif, entre les moyens diviseurs de puissance et les radiateurs : P groupes de M modules déphaseurs-amplificateurs, placés en sortie des moyens diviseurs de puissance ; et P coupleurs à M entrées et M sorties chacun, ces M entrées étant reliées aux M sorties correspondantes du groupe de modules déphaseurs-amplificateurs associé, et ces M sorties étant reliées aux M radiateurs du sous-réseau associé, le déphasage des modules déphaseurs-amplificateurs étant choisi de manière à diriger la puissance délivrée par la source vers les radiateurs participant au diagramme de rayonnement spécifié, et à réaliser ainsi une amplification répartie du signal émis par la source en maintenant sur chaque amplificateur une charge essentiellement identique et constante quelles que soient les modifications apportées au diagramme.According to the invention, there is provided in this device, between the power dividing means and the radiators: P groups of M phase-amplifier-amplifier modules, placed at the output of the power dividing means; and P couplers with M inputs and M outputs each, these M inputs being connected to the corresponding M outputs of the group of associated phase-amplifier modules, and these M outputs being connected to the M radiators of the associated sub-network, the phase shift of the phase-amplifier modules being chosen so as to direct the power delivered by the source to the radiators participating in the specified radiation diagram, and thus to achieve a distributed amplification of the signal emitted by the source while maintaining on each amplifier a substantially identical and constant charge whatever the modifications made to the diagram.

Lorsque le diagramme comprend une pluralité de faisceaux distincts, lesdits moyens diviseurs de puissance peuvent notamment comporter, en nombre égal à celui des faisceaux, une pluralité d'ensembles diviseurs de puissance élémentaires à une entrée et N sorties, les sorties homologues des ensembles élémentaires respectifs étant couplées par des moyens déphaseurs variables pour donner N sorties appliquées aux N entrées des N modules déphaseurs-amplificateurs.When the diagram comprises a plurality of distinct beams, said power dividing means may in particular comprise, in a number equal to that of the beams, a plurality of elementary power dividing assemblies with one input and N outputs, the homologous outputs of the respective elementary assemblies being coupled by variable phase-shifting means to give N outputs applied to the N inputs of the N phase-amplifier-amplifier modules.

Avantageusement, ledit réseau est un réseau cylindrique, excité de manière à réaliser un balayage circulaire dudit faisceau ou de chacun desdits faisceaux, et/ou excité de manière à réaliser une modification de la largeur dudit faisceau ou de chacun desdits faisceaux.Advantageously, said network is a cylindrical network, excited so as to carry out a circular scanning of said beam or of each of said beams, and / or excited so as to effect a modification of the width of said beam or of each of said beams.

D'autre caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux dessins annexés, sur lesquels les mêmes références numériques désignent partout des éléments fonctionnellement semblables.Other characteristics and advantages of the invention will appear on reading the detailed description below, made with reference to the appended drawings, in which the same reference numerals designate functionally similar elements everywhere.

Les figures 1 et 2, précitées, montrent schématiquement un premier type connu d'antenne passive à balayage circulaire.Figures 1 and 2, above, schematically show a first known type of passive circular scanning antenna.

La figure 3, précitée, montre un second type connu d'antenne passive à balayage circulaire.FIG. 3, cited above, shows a second known type of passive antenna with circular scanning.

Les figures 4 et 5 illustrent schématiquement un premier mode de réalisation du dispositif de l'invention, correspondant à une antenne à balayage circulaire à faisceau unique.Figures 4 and 5 schematically illustrate a first mode of the device of the invention, corresponding to a single-beam circular scanning antenna.

Les figures 6 et 7 montrent un second mode de réalisation de l'invention, correspondant à une antenne à balayage circulaire à deux faisceaux simultanés.Figures 6 and 7 show a second embodiment of the invention, corresponding to a circular scanning antenna with two simultaneous beams.

La figure 8 illustre un troisième mode de réalisation de l'invention, correspondant à une antenne à faisceau unique à pointage fixe mais à largeur variable.FIG. 8 illustrates a third embodiment of the invention, corresponding to a single beam antenna with fixed pointing but with variable width.

Sur les figures 4 et 5, on a représenté un premier mode de réalisation de l'invention, pour une antenne cylindrique à seize éléments rayonnants (radiateurs) et à faisceau unique. Cette configuration correspond, typiquement, à celle d'une antenne contrarotative pour satellite, mais de très nombreuses autres applications sont bien entendu parfaitement envisageables.FIGS. 4 and 5 show a first embodiment of the invention, for a cylindrical antenna with sixteen radiating elements (radiators) and with a single beam. This configuration typically corresponds to that of a counter-rotating antenna for satellite, but many other applications are of course perfectly conceivable.

La figure 4 montre, en vue de dessus, la configuration d'ensemble du réseau circulaire et des circuits qui lui sont associés, tandis que la figure 5 se réfère uniquement au schéma électrique définissant les liaisons entre ces différents éléments.Figure 4 shows, in top view, the overall configuration of the circular network and the circuits associated with it, while Figure 5 refers only to the electrical diagram defining the connections between these different elements.

Les éléments rayonnants du réseau 10 sont subdivisés en groupes A, B, C et D de quatre radiateurs chacun (A₁, A₂, A₃, A₄, etc.), le faisceau utilisant typiquement un ou deux éléments de chaque groupe : ainsi, dans l'exemple illustré, le faisceau dont la direction est Δ utilise les cinq éléments A₁, B₁, C₁, D₁ et D₄ ; les éléments A₁, B₁ et C₁ sont excitées chacune typiquement par un quart de la puissance totale, le dernier quart étant réparti entre les deux éléments D₁ et D₄, avec une variation continue (le niveau de puissance plus ou moins élevé a été symbolisé sur les figures 4 et 5 par une zone hachurée plus ou moins importante associée à chaque élément excité).The radiating elements of the network 10 are subdivided into groups A, B, C and D of four radiators each (A₁, A₂, A₃, A₄, etc.), the beam typically using one or two elements from each group: thus, in the 'illustrated example, the beam whose direction is Δ uses the five elements A₁, B₁, C₁, D₁ and D₄; the elements A₁, B₁ and C₁ are each excited typically by a quarter of the total power, the last quarter being distributed between the two elements D₁ and D₄, with a continuous variation (the level of power more or less high was symbolized on the Figures 4 and 5 by a more or less large hatched area associated with each excited element).

Les phases de chacune des trois sources centrales (dans cet exemple les sources A₁, B₁ et C₁) peuvent être optimisées, celles des deux sources extérieures (D₁ et D₄) sont égales mais de valeurs réglables : on peut ainsi maximiser le rayonnement dans une direction variable de manière continue ou non.The phases of each of the three central sources (in this example the sources A₁, B₁ and C₁) can be optimized, those of the two external sources (D₁ and D₄) are equal but with adjustable values: we can thus maximize the radiation in one direction variable continuously or not.

A chaque groupe de radiateurs est associé un coupleur multiport généralisé 80, ou une matrice de Butler, à quatre entrées et quatre sorties dans l'exemple illustré. De tels coupleurs sont par exemple décrits, avec leurs conditions de fonctionnement, dans l'ouvrage de Y. T. Lo et S. W. Lee intitulé Antenna Handbook - Theory, Applications and Design, publié chez Van Nostrand Reinhold Company, New York, notamment aux pages 19-101 à 19-111 du chapitre Beam-Forming Feeds, ou encore dans l'article de S. Egami et M. Kawai intitulé An Adaptative Multiple Beam System Concept, paru dans le IEEE Journal on Selected Areas in Communications, volume SAC-5, n° 4 de mai 1987, pages 630 à 636.Each group of radiators is associated with a generalized multiport coupler 80, or a Butler matrix, with four inputs and four outputs in the example illustrated. Such couplers are for example described, with their operating conditions, in the work of YT Lo and SW Lee entitled Antenna Handbook - Theory , Applications and Design, published by Van Nostrand Reinhold Company, New York, in particular on pages 19-101 at 19-111 of the chapter Beam-Forming Feeds, or in the article by S. Egami and M. Kawai entitled An Adaptative Multiple Beam System Concept , published in the IEEE Journal on Selected Areas in Communications , volume SAC-5, n ° 4 of May 1987, pages 630 to 636.

Chacun des coupleurs 80 associé aux différents groupes A, B, C et D permet de relier chaque élément d'un groupe (par exemple, pour le coupleur du groupe A, les radiateurs A₁, A₂, A₃ et A₄) à un nombre égal de modules amplificateurs 30 et déphaseurs 60, les déphaseurs étant variables et commandables de manière à ajuster le déphasage avant amplification (à l'émission) ou après amplification (à la réception).Each of the couplers 80 associated with the different groups A, B, C and D makes it possible to connect each element of a group (for example, for the coupler of group A, the radiators A₁, A₂, A₃ and A₄) to an equal number of amplifier modules 30 and phase shifters 60, the phase shifters being variable and controllable so as to adjust the phase shift before amplification (at transmission) or after amplification (at reception).

Chacun des déphaseurs 60 (qui sont donc au nombre de 4x4 = 16) est alimenté par l'une des sorties d'un diviseur de puissance équiphase, équiamplitude 40, lui-même alimenté par la source de signal 20 (et inversement en réception).Each of the phase shifters 60 (which are therefore 4x4 = 16) is supplied by one of the outputs of an equiphase power divider, equiamplitude 40, itself supplied by the signal source 20 (and vice versa in reception) .

Les propriétés des coupleurs 80 sont telles qu'il est possible, par un choix approprié des phases appliquées par les déphaseurs 60 au signaux provenant du diviseur 40, de focaliser la puissance d'entrée vers une, deux ou quatre des sorties du coupleur; ici, on focalisera la puissance vers une ou deux sorties pour aboutir au résultat voulu. En outre, dans le cas de deux sorties utilisées, il est de plus possible d'en ajuster les niveaux relatifs ainsi que, dans une certaine mesure, la phase, de manière à orienter au mieux la puissance vers les éléments correspondant à la direction de rayonnement spécifiée.The properties of the couplers 80 are such that it is possible, by an appropriate choice of the phases applied by the phase shifters 60 to the signals coming from the divider 40, to focus the input power towards one, two or four of the outputs of the coupler; here, we will focus the power towards one or two outputs to achieve the desired result. In addition, in the case of two outputs used, it is also possible to adjust the relative levels as well as, to a certain extent, the phase, so as to best direct the power towards the elements corresponding to the direction of specified radiation.

Les figures 6 et 7 illustrent une généralisation du mode de réalisation précédent à une antenne à balayage circulaire à deux faisceaux simultanés, correspondant aux deux directions référencées Δ et Δ′.Figures 6 and 7 illustrate a generalization of the previous embodiment to a circular scanning antenna with two simultaneous beams, corresponding to the two directions referenced Δ and Δ ′.

Comme on peut le voir sur ces figures, la structure est comparable à celle du cas précédent en ce qui concerne les coupleurs multiport 80 et les amplificateurs 30.As can be seen in these figures, the structure is comparable to that of the previous case with regard to the multiport couplers 80 and the amplifiers 30.

En revanche, du fait de la pluralité de faisceaux et donc de la pluralité de sources (20 et 20′), on dédouble les déphaseurs ; on prévoit ainsi, pour chacun des amplificateurs 30, deux déphaseurs 60 et 60′ permettant de coupler les signaux issus des deux sources 20 et 20′ tout en leur appliquant, séparément, un déphasage distinct approprié.On the other hand, due to the plurality of beams and therefore the plurality of sources (20 and 20 ′), the phase shifters are split; provision is therefore made, for each of the amplifiers 30, for two phase shifters 60 and 60 ′ making it possible to couple the signals from the two sources 20 and 20 ′ while applying to them, separately, an appropriate separate phase shift.

La figure 8 illustre un autre mode de réalisation de l'invention, dans une application à une antenne "zoom" c'est-à-dire une antenne produisant un faisceau de direction donnée (Δ), mais de largeur variable en fonction des besoins. En particulier, de telles antennes peuvent être très utiles dans le cas des satellites présentant une orbite elliptique à forte excentricité, car elles permettent de maintenir une zone d'illumination sensiblement constante en dépit des variations périodiques d'altitude du satellite.FIG. 8 illustrates another embodiment of the invention, in an application to a "zoom" antenna, that is to say an antenna producing a beam of given direction (Δ), but of variable width according to requirements . In particular, such antennas can be very useful in the case of satellites having an elliptical orbit with high eccentricity, because they make it possible to maintain a zone of illumination that is substantially constant despite periodic variations in altitude of the satellite.

A cet effet, on fait varier le nombre des éléments rayonnants utilisés, un faisceau large utilisant un faible nombre d'éléments rayonnants et un faisceau fortement directif en utilisant un nombre plus important. Ainsi, dans l'exemple de la figure 8, on utilise un réseau 10 (circulaire ou plan) de huit éléments répartis en deux groupes imbriqués A₁, A₂, A₃, A₄ et B₁, B₂, B₃, B₄. Un faisceau large utilisera les deux éléments centraux B₂ et A₃, un faisceau un peu moins large utilisera les quatre éléments centraux A₂, B₂, A₃, B₃, etc. et le faisceau le plus étroit utilisera la totalité des éléments. On notera que, dans ce cas, tous les éléments pointent dans la même direction et que, par ailleurs, le réseau peut être agrandi, de manière en elle-même connue, par un système optique.To this end, the number of radiating elements used is varied, a wide beam using a small number of radiating elements and a strongly directive beam using a larger number. Thus, in the example of FIG. 8, a network 10 (circular or plane) of eight elements is used, distributed in two nested groups A₁, A₂, A₃, A₄ and B₁, B₂, B₃, B₄. A wide beam will use the two central elements B₂ and A₃, a slightly narrower beam will use the four central elements A₂, B₂, A₃, B₃, etc. and the narrowest beam will use all of the elements. It will be noted that, in this case, all the elements point in the same direction and that, moreover, the network can be enlarged, in itself known manner, by an optical system.

Les quatre radiateurs de chacun des deux groupes sont réunis à la première série de ports d'un coupleur 80, dont la deuxième série de ports est attaquée par les amplificateurs 30, en nombre égal à celui des radiateurs. A chaque amplificateur est associé un module déphaseur 60, lui-même alimenté par l'une des sorties du diviseur de puissance 40 alimenté par la source de signal 20.The four radiators of each of the two groups are combined with the first series of ports of a coupler 80, the second series of ports of which is attacked by the amplifiers 30, in a number equal to that of the radiators. Each amplifier is associated with a phase shifting module 60, itself supplied by one of the outputs of the divider. of power 40 supplied by the signal source 20.

Les enseignements de la présente invention peuvent être appliqués à de très nombreuses configurations d'antennes parmi lesquelles on peut citer, outre les antennes contrarotatives pour satellites et les antennes "zoom" à faisceau de largeur variable, déjà exposées:

  • les antennes de télécommande et de télémesure pour satellites, sondes spatiales, avions spatiaux et lanceurs,
  • les antennes pour communications entre véhicules spatiaux,
  • les antennes pour astronautes,
  • les antennes pour terminaux mobiles maritimes, aéronautiques ou terrestres,
  • les antennes pour balises radioélectriques échangeant des signaux (en émission et/ou en réception) avec des satellites ou des avions,
  • les antennes pour terminaux de radionavigation par satellites,
  • les antennes de réception de télévision pour satellites placées sur des positions différentes, ou encore
  • les antennes pour radars au sol ou radars de bord.
The lessons of the present invention can be applied to very numerous antenna configurations among which, in addition to the counter-rotating antennas for satellites and the "zoom" beam antennas of variable width, already mentioned:
  • remote control and telemetry antennas for satellites, space probes, space planes and launchers,
  • antennas for communications between spacecraft,
  • antennas for astronauts,
  • antennas for maritime, aeronautical or land mobile terminals,
  • antennas for radio beacons exchanging signals (in transmission and / or in reception) with satellites or planes,
  • antennas for satellite radionavigation terminals,
  • television reception antennas for satellites placed in different positions, or
  • antennas for ground or on-board radars.

Selon les besoins, les radiateurs du réseau pourront être répartis sur une surface conforme, sphérique, cylindrique, conique ou à facettes pour étendre le domaine angulaire de l'antenne.Depending on requirements, the network radiators can be distributed over a conforming, spherical, cylindrical, conical or faceted surface to extend the angular range of the antenna.

Claims (7)

Un dispositif de contrôle électronique du diagramme de rayonnement d'une antenne à un ou plusieurs faisceaux de direction et/ou de largeur variable, ce dispositif comprenant: - un réseau (10) de N radiateurs, subdivisé en P sous-réseaux (A, B, C, D) de M radiateurs chacun, avec M.P = N, chaque faisceau du diagramme spécifié utilisant une pluralité de radiateurs choisis parmi les radiateurs d'au moins certains des sous-réseaux, - une source (20) de signal, commune à tous les radiateurs du réseau, - des moyens diviseurs de puissance (40), à une entrée et N sorties, pour distribuer le signal délivré par la source, - des moyens (30) pour amplifier ledit signal, et - des moyens pour exciter sélectivement par le signal amplifié, avec un déphasage contrôlé, au moins certains des radiateurs de manière à obtenir le diagramme de rayonnement spécifié pour l'antenne,    dispositif caractérisé en ce qu'il est prévu, entre les moyens diviseurs de puissance et les radiateurs : - P groupes de M modules déphaseurs-amplificateurs (30, 60), placés en sortie des moyens diviseurs de puissance, et - P coupleurs (80) à M entrées et M sorties chacun, ces M entrées étant reliées aux M sorties correspondantes du groupe de modules déphaseurs-amplificateurs associé, et ces M sorties étant reliées aux M radiateurs du sous-réseau associé,    le déphasage des modules déphaseurs-amplificateurs étant choisi de manière à diriger la puissance délivrée par la source vers les radiateurs participant au diagramme de rayonnement spécifié, et à réaliser ainsi une amplification répartie du signal émis par la source en maintenant sur chaque amplificateur une charge essentiellement identique et constante quelles que soient les modifications apportées au diagramme.A device for electronic control of the radiation pattern of an antenna with one or more directional beams and / or of variable width, this device comprising: - a network (10) of N radiators, subdivided into P sub-networks (A, B, C, D) of M radiators each, with MP = N, each beam of the specified diagram using a plurality of radiators chosen from the radiators d '' at least some of the subnets, - a signal source (20), common to all the radiators in the network, - power dividing means (40), at one input and N outputs, for distributing the signal delivered by the source, - means (30) for amplifying said signal, and - means for selectively exciting by the amplified signal, with a controlled phase shift, at least some of the radiators so as to obtain the radiation pattern specified for the antenna, device characterized in that there is provided, between the power dividing means and the radiators: - P groups of M phase-amplifier modules (30, 60), placed at the output of the power dividing means, and P couplers (80) with M inputs and M outputs each, these M inputs being connected to the corresponding M outputs of the group of associated phase-shifting amplifier modules, and these M outputs being connected to the M radiators of the associated subnetwork, the phase shift of the phase-amplifier modules being chosen so as to direct the power delivered by the source to the radiators participating in the specified radiation pattern, and thus to achieve a distributed amplification of the signal emitted by the source while maintaining a charge essentially on each amplifier identical and constant whatever the modifications made to the diagram. Le dispositif de la revendication 1, dans lequel, le diagramme comprenant une pluralité de faisceaux distincts, lesdits moyens diviseurs de puissance comportent, en nombre égal à celui des faisceaux, une pluralité d'ensembles diviseurs de puissance élémentaires (40, 40′) à une entrée et N sorties chacun, les sorties homologues des ensembles élémentaires respectifs étant couplées par des moyens déphaseurs variables (60, 60′) pour donner N sorties appliquées aux N entrées des N modules déphaseurs-amplificateurs.The device of claim 1, wherein, the diagram comprising a plurality of separate beams, said power dividing means comprising, in number equal to that of the beams, a plurality of elementary power dividing assemblies (40, 40 ′) to one input and N outputs each, the homologous outputs of the respective elementary assemblies being coupled by variable phase-shifting means (60, 60 ′) to give N outputs applied to the N inputs of the N phase-amplifier-amplifier modules. Le dispositif de la revendication 1, dans lequel ledit réseau (10) est un réseau cylindrique, excité de manière à réaliser un balayage circulaire dudit faisceau ou de chacun desdits faisceaux.The device of claim 1, wherein said network (10) is a cylindrical network, excited so as to carry out a circular scan of said beam or of each of said beams. Le dispositif de la revendication 1, dans lequel le réseau est un réseau excité de manière à réaliser une modification de la largeur dudit faisceau ou de chacun desdits faisceaux.The device of claim 1, in which the network is an excited network so as to modify the width of said beam or of each of said beams. Le dispositif de la revendication 1, dans lequel les radiateurs du réseau sont disposés sur une surface conique.The device of claim 1, wherein the network radiators are arranged on a conical surface. Le dispositif de la revendication 1, dans lequel les radiateurs du réseau sont disposés sur des facettes planes autour de l'axe central de l'antenne.The device of claim 1, wherein the radiators of the network are arranged on planar facets around the central axis of the antenna. Le dispositif de la revendication 1, dans lequel les radiateurs du réseau sont disposés sur une surface sphérique ou sur des parties de surface sphérique.The device of claim 1, wherein the network radiators are arranged on a spherical surface or on spherical surface portions.
EP92400136A 1991-01-31 1992-01-20 Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width Expired - Lifetime EP0497652B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9101086 1991-01-31
FR9101086A FR2672436B1 (en) 1991-01-31 1991-01-31 DEVICE FOR ELECTRONICALLY MONITORING THE RADIATION DIAGRAM OF AN ANTENNA WITH ONE OR MORE VARIABLE STEERING AND / OR WIDTH BEAMS.

Publications (2)

Publication Number Publication Date
EP0497652A1 true EP0497652A1 (en) 1992-08-05
EP0497652B1 EP0497652B1 (en) 1994-11-30

Family

ID=9409227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400136A Expired - Lifetime EP0497652B1 (en) 1991-01-31 1992-01-20 Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width

Country Status (6)

Country Link
US (1) US5151706A (en)
EP (1) EP0497652B1 (en)
JP (1) JP2607198B2 (en)
CA (1) CA2059584C (en)
DE (1) DE69200720T2 (en)
FR (1) FR2672436B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532763A1 (en) * 1991-04-08 1993-03-24 Mitsubishi Denki Kabushiki Kaisha Array antenna for receiving communication signal
US5548295A (en) * 1995-02-16 1996-08-20 Space Engineering Spa Multishaped beam direct radiating array antenna
EP0734093A1 (en) * 1995-03-20 1996-09-25 Agence Spatiale Europeenne Feeding device for a multibeam array antenna
FR3052870A1 (en) * 2016-06-21 2017-12-22 Thales Sa SECONDARY RADAR WITH OPTIMIZED SPATIO-TEMPORAL MANAGEMENT

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015092A1 (en) * 1995-10-13 1997-04-24 Peter Nielsen Method and system for communicating electromagnetic signals
US5680142A (en) * 1995-11-07 1997-10-21 Smith; David Anthony Communication system and method utilizing an antenna having adaptive characteristics
US5760741A (en) * 1996-04-09 1998-06-02 Trw Inc. Beam forming network for multiple-beam-feed sharing antenna system
GB2317056A (en) * 1996-09-04 1998-03-11 Marconi Gec Ltd Signal processor system for a phased array antenna
US5825762A (en) * 1996-09-24 1998-10-20 Motorola, Inc. Apparatus and methods for providing wireless communication to a sectorized coverage area
JP3432697B2 (en) 1997-04-02 2003-08-04 松下電器産業株式会社 Adaptive reception diversity apparatus and adaptive transmission diversity apparatus
US6173191B1 (en) * 1997-12-31 2001-01-09 Mdivesity Inc. Localization of shaped directional transmitting and transmitting/receiving antenna array
US6257526B1 (en) * 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
CA2370087A1 (en) * 1999-04-20 2000-10-26 Harvey C. Woodsum Determining and forming delayed waveforms
US6078287A (en) * 1999-08-13 2000-06-20 Hughes Electronics Corporation Beam forming network incorporating phase compensation
DE19938862C1 (en) 1999-08-17 2001-03-15 Kathrein Werke Kg High frequency phase shifter assembly
US7339520B2 (en) * 2000-02-04 2008-03-04 The Directv Group, Inc. Phased array terminal for equatorial satellite constellations
US7184761B1 (en) * 2000-03-27 2007-02-27 The Directv Group, Inc. Satellite communications system
US6756937B1 (en) 2000-06-06 2004-06-29 The Directv Group, Inc. Stratospheric platforms based mobile communications architecture
US6388615B1 (en) 2000-06-06 2002-05-14 Hughes Electronics Corporation Micro cell architecture for mobile user tracking communication system
JP4147724B2 (en) * 2000-06-09 2008-09-10 ソニー株式会社 ANTENNA DEVICE AND RADIO DEVICE
EP2088641A1 (en) * 2000-07-10 2009-08-12 Andrew Corporation Antenna control system
US6895217B1 (en) 2000-08-21 2005-05-17 The Directv Group, Inc. Stratospheric-based communication system for mobile users having adaptive interference rejection
US7257418B1 (en) 2000-08-31 2007-08-14 The Directv Group, Inc. Rapid user acquisition by a ground-based beamformer
US6941138B1 (en) 2000-09-05 2005-09-06 The Directv Group, Inc. Concurrent communications between a user terminal and multiple stratospheric transponder platforms
US6380893B1 (en) 2000-09-05 2002-04-30 Hughes Electronics Corporation Ground-based, wavefront-projection beamformer for a stratospheric communications platform
US6728554B1 (en) * 2000-09-11 2004-04-27 International Systems, Llc Wireless communication network
FI113590B (en) 2000-09-13 2004-05-14 Nokia Corp A method for forming directional antenna beams and a radio transmitter implementing the method
US7369847B1 (en) 2000-09-14 2008-05-06 The Directv Group, Inc. Fixed cell communication system with reduced interference
US6763242B1 (en) 2000-09-14 2004-07-13 The Directv Group, Inc. Resource assignment system and method for determining the same
US7317916B1 (en) 2000-09-14 2008-01-08 The Directv Group, Inc. Stratospheric-based communication system for mobile users using additional phased array elements for interference rejection
US7369809B1 (en) 2000-10-30 2008-05-06 The Directv Group, Inc. System and method for continuous broadcast service from non-geostationary orbits
US6388634B1 (en) 2000-10-31 2002-05-14 Hughes Electronics Corporation Multi-beam antenna communication system and method
US6891813B2 (en) 2000-12-12 2005-05-10 The Directv Group, Inc. Dynamic cell CDMA code assignment system and method
US7103317B2 (en) 2000-12-12 2006-09-05 The Directv Group, Inc. Communication system using multiple link terminals for aircraft
US7400857B2 (en) 2000-12-12 2008-07-15 The Directv Group, Inc. Communication system using multiple link terminals
US7181162B2 (en) 2000-12-12 2007-02-20 The Directv Group, Inc. Communication system using multiple link terminals
US6952580B2 (en) 2000-12-12 2005-10-04 The Directv Group, Inc. Multiple link internet protocol mobile communications system and method therefor
US7187949B2 (en) 2001-01-19 2007-03-06 The Directv Group, Inc. Multiple basestation communication system having adaptive antennas
US8396513B2 (en) 2001-01-19 2013-03-12 The Directv Group, Inc. Communication system for mobile users using adaptive antenna
US7809403B2 (en) 2001-01-19 2010-10-05 The Directv Group, Inc. Stratospheric platforms communication system using adaptive antennas
US6559797B1 (en) * 2001-02-05 2003-05-06 Hughes Electronics Corporation Overlapping subarray patch antenna system
US7068733B2 (en) * 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
FR2826511B1 (en) * 2001-06-21 2003-12-19 Cit Alcatel REPINTING METHOD FOR REFLECTOR NETWORK ANTENNA
US7639196B2 (en) * 2001-07-10 2009-12-29 Andrew Llc Cellular antenna and systems and methods therefor
DE10157109B4 (en) * 2001-10-30 2011-01-13 Rohde & Schwarz Gmbh & Co. Kg Directional antenna arrangement and method for measuring the irradiation direction of at least one irradiated electromagnetic wave
DE10237823B4 (en) 2002-08-19 2004-08-26 Kathrein-Werke Kg Antenna array with a calibration device and method for operating such an antenna array
DE10237822B3 (en) 2002-08-19 2004-07-22 Kathrein-Werke Kg Calibration device for a switchable antenna array and an associated operating method
US6922169B2 (en) * 2003-02-14 2005-07-26 Andrew Corporation Antenna, base station and power coupler
US7427962B2 (en) * 2003-06-16 2008-09-23 Andrew Corporation Base station antenna rotation mechanism
US8018390B2 (en) * 2003-06-16 2011-09-13 Andrew Llc Cellular antenna and systems and methods therefor
US6864837B2 (en) * 2003-07-18 2005-03-08 Ems Technologies, Inc. Vertical electrical downtilt antenna
US20050030248A1 (en) * 2003-08-06 2005-02-10 Kathrein-Werke Kg, Antenna arrangement
US7038621B2 (en) * 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
DE10336071B3 (en) * 2003-08-06 2005-03-03 Kathrein-Werke Kg Antenna arrangement and method, in particular for their operation
US7026989B1 (en) * 2004-01-23 2006-04-11 Itt Manufacturing Enterprises, Inc. Methods and apparatus for shaping antenna beam patterns of phased array antennas
US7315279B1 (en) * 2004-09-07 2008-01-01 Lockheed Martin Corporation Antenna system for producing variable-size beams
US7741997B1 (en) * 2005-08-17 2010-06-22 Lockheed Martin Corporation Multiple-beam phased array with switchable element areas
US20090061941A1 (en) * 2006-03-17 2009-03-05 Steve Clark Telecommunications antenna monitoring system
JP4944205B2 (en) * 2006-11-30 2012-05-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Microwave sparse array antenna arrangement
ITRM20070144A1 (en) * 2007-03-20 2008-09-21 Space Engineering Spa ELECTRONIC ALIGNMENT SYSTEM OF THE POLARIZATION OF AN ANTENNA.
US7834807B2 (en) 2007-05-21 2010-11-16 Spatial Digital Systems, Inc. Retro-directive ground-terminal antenna for communication with geostationary satellites in slightly inclined orbits
US10490892B2 (en) * 2007-12-06 2019-11-26 Spatial Digital Systems, Inc. Satellite ground terminal incorporating a smart antenna that rejects interference
GB2458900A (en) * 2008-03-31 2009-10-07 Ubidyne Inc Method and apparatus for suppression of sidelobes in antenna arrays
US7701384B2 (en) * 2008-04-08 2010-04-20 Honeywell International Inc. Antenna system for a micro air vehicle
JP2010032497A (en) * 2008-07-02 2010-02-12 Toshiba Corp Radar apparatus and method for forming reception beam of the same
FR2956928B1 (en) * 2010-02-26 2012-03-09 Thales Sa RECONFIGURABLE ANALOGUE CHANNEL TRAINER FOR NETWORK ANTENNA
US9331774B2 (en) * 2010-06-09 2016-05-03 Exactearth Ltd. Systems and methods for segmenting a satellite field of view for detecting radio frequency signals
US20120196545A1 (en) * 2011-01-28 2012-08-02 Georg Schmidt Antenna array and method for synthesizing antenna patterns
US11855680B2 (en) * 2013-09-06 2023-12-26 John Howard Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage
US10734733B2 (en) * 2013-09-06 2020-08-04 John Howard Random, sequential, or simultaneous multi-beam circular antenna array and beam forming networks with up to 360° coverage
WO2015082000A1 (en) * 2013-12-04 2015-06-11 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication system node with re-configurable antenna devices
US9831549B2 (en) * 2014-08-15 2017-11-28 Honeywell International Inc. Systems and methods for high power microwave combining and switching
BR112019021133A2 (en) * 2017-04-10 2020-05-12 Viasat, Inc. METHOD FOR COMMUNICATIONS THROUGH A COMMUNICATIONS SATELLITE, SYSTEM FOR COMMUNICATIONS THROUGH A COMMUNICATIONS SATELLITE AND COMMUNICATIONS SATELLITE TO PROVIDE A COMMUNICATIONS SERVICE THROUGH A FIXED PLURALITY WITH FIXED TRAINING.
JP7210408B2 (en) * 2019-09-13 2023-01-23 株式会社東芝 Electronic device and method
CN113675614A (en) * 2021-08-20 2021-11-19 重庆两江卫星移动通信有限公司 High-gain wide-angle scanning satellite-borne antenna based on luneberg lens framework

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1527939A (en) * 1967-04-04 1968-06-07 Csf Further training in electronic scanning antennas
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
FR2241886A1 (en) * 1973-05-21 1975-03-21 Labo Cent Telecommunicat Multibeam satellite antennae network - operates in low gigacycle frequency range to increase channel availability
US4124852A (en) * 1977-01-24 1978-11-07 Raytheon Company Phased power switching system for scanning antenna array
US4901085A (en) * 1988-09-23 1990-02-13 Spar Aerospace Limited Divided LLBFN/HMPA transmitted architecture
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813916C3 (en) * 1978-03-31 1981-07-30 Siemens AG, 1000 Berlin und 8000 München Directional antenna arrangement with electronically controllable beam swivel
USRE31772E (en) * 1978-11-13 1984-12-18 Anaren Microwave, Incorporated Digital bearing indicator
US4414550A (en) * 1981-08-04 1983-11-08 The Bendix Corporation Low profile circular array antenna and microstrip elements therefor
US4639732A (en) * 1985-02-22 1987-01-27 Allied Corporation Integral monitor system for circular phased array antenna
CA1226934A (en) * 1986-09-26 1987-09-15 Henry Downs Reconfigurable beam-forming network that provides in- phase power to each region
JPH0265401A (en) * 1988-08-31 1990-03-06 Mitsubishi Electric Corp Data transfer equipment for antenna control
FR2640821B1 (en) * 1988-12-16 1991-05-31 Thomson Csf ANTENNA WITH THREE-DIMENSIONAL COVERAGE AND ELECTRONIC SCANNING, OF THE RAREFIELD RANDOM VOLUME NETWORK TYPE
US5028930A (en) * 1988-12-29 1991-07-02 Westinghouse Electric Corp. Coupling matrix for a circular array microwave antenna
US5081463A (en) * 1989-04-13 1992-01-14 Mitsubishi Denki Kabushiki Kaisha Method and system for forming desired radiation pattern with array antenna
US4916454A (en) * 1989-06-05 1990-04-10 Allied-Signal Inc. Adaptive nulling circular array antenna
US5093668A (en) * 1989-06-29 1992-03-03 Ball Corporation Multiple-beam array antenna
US4973971A (en) * 1989-12-18 1990-11-27 Allied-Signal Inc. Broadband circular phased array antenna
US5038150A (en) * 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1527939A (en) * 1967-04-04 1968-06-07 Csf Further training in electronic scanning antennas
US3731315A (en) * 1972-04-24 1973-05-01 Us Navy Circular array with butler submatrices
FR2241886A1 (en) * 1973-05-21 1975-03-21 Labo Cent Telecommunicat Multibeam satellite antennae network - operates in low gigacycle frequency range to increase channel availability
US4124852A (en) * 1977-01-24 1978-11-07 Raytheon Company Phased power switching system for scanning antenna array
US4901085A (en) * 1988-09-23 1990-02-13 Spar Aerospace Limited Divided LLBFN/HMPA transmitted architecture
US4980692A (en) * 1989-11-29 1990-12-25 Ail Systems, Inc. Frequency independent circular array

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532763A1 (en) * 1991-04-08 1993-03-24 Mitsubishi Denki Kabushiki Kaisha Array antenna for receiving communication signal
EP0532763A4 (en) * 1991-04-08 1994-10-05 Mitsubishi Electric Corp Array antenna for receiving communication signal
US5548295A (en) * 1995-02-16 1996-08-20 Space Engineering Spa Multishaped beam direct radiating array antenna
EP0727839A1 (en) * 1995-02-16 1996-08-21 SPACE ENGINEERING S.p.A. Multishaped beam direct radiating array antenna
EP0734093A1 (en) * 1995-03-20 1996-09-25 Agence Spatiale Europeenne Feeding device for a multibeam array antenna
FR2732163A1 (en) * 1995-03-20 1996-09-27 Europ Agence Spatiale DEVICE FOR SUPPLYING A MULTISOURCE AND MULTIFACEAL ANTENNA
US5736963A (en) * 1995-03-20 1998-04-07 Agence Spatiale Europeenne Feed device for a multisource and multibeam antenna
FR3052870A1 (en) * 2016-06-21 2017-12-22 Thales Sa SECONDARY RADAR WITH OPTIMIZED SPATIO-TEMPORAL MANAGEMENT
WO2017220461A1 (en) * 2016-06-21 2017-12-28 Thales Secondary radar with optimized spatio-temporal management
JP2019521332A (en) * 2016-06-21 2019-07-25 タレス Second-order radar with optimized space-time management
US10823838B2 (en) 2016-06-21 2020-11-03 Thales Secondary radar with optimized spatio-temporal management

Also Published As

Publication number Publication date
US5151706A (en) 1992-09-29
DE69200720T2 (en) 1995-04-06
DE69200720D1 (en) 1995-01-12
CA2059584C (en) 1995-09-05
FR2672436B1 (en) 1993-09-10
CA2059584A1 (en) 1992-08-01
FR2672436A1 (en) 1992-08-07
EP0497652B1 (en) 1994-11-30
JP2607198B2 (en) 1997-05-07
JPH04319804A (en) 1992-11-10

Similar Documents

Publication Publication Date Title
EP0497652B1 (en) Device for the electronic control of the radiation pattern of a single or multi beam antenna with variable direction and/or width
EP0420739B1 (en) Feeding device for a multiple beam antenna
EP2532046B1 (en) Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP0723308B1 (en) Multibeam antenna of high capacity with electronic scanning in transmission
EP1955405B1 (en) Array antenna with irregular mesh and possible cold redundancy
EP2706613B1 (en) Multi-band antenna with variable electrical tilt
EP0600799A1 (en) An active antenna with variable polarisation synthesis
EP2194602A1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
CA2172013A1 (en) Multisource and multibeam antenna feed device
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP0108670A1 (en) Feeding device for a scanning array antenna
FR2792116A1 (en) Phased array antenna digital beam forming method, for communications satellite, converts signals into digital samples to form beam components with same phase
EP3758146A1 (en) Two-dimensional analog multibeams beamformer with reduced complexity for reconfigurable active network antennas
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP1533866B1 (en) Adaptive phased array antenna with digital beam forming
EP3639409A1 (en) Satellite payload comprising a dual reflective surface reflector
EP3159965B1 (en) Antenna with transmitting network for monopulse radar system
EP0225219A1 (en) Conical scan antenna array and radar comprising such an antenna
EP2764577A1 (en) Multibeam source
FR2952759A1 (en) Reflector focal network and antenna for use in satellite to cover chosen geographical area of geostationary orbit, has sub-reflector misaligning and/or deforming beam from selected sources to produce spot near area
FR3047859A1 (en) ELECTROMAGNETIC WAVE EMISSION NETWORK ANTENNA CARRIER OF AN ORBITAL ANGULAR MOMENT AND TRANSMISSION METHOD THEREOF
EP4092831A1 (en) Antenna with lacunary distribution network
FR3129535A1 (en) Active multibeam array antenna comprising a hybrid device for the formation of directional beams
FR3113216A1 (en) Octagonal Vector Constellation Control Node for Network Antenna
FR2773269A1 (en) BROADBAND DETECTION DEVICE, ESPECIALLY RADARS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930115

17Q First examination report despatched

Effective date: 19940217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941209

REF Corresponds to:

Ref document number: 69200720

Country of ref document: DE

Date of ref document: 19950112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000311

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030129

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120