EP0489747B1 - Schaltungsanordnung zum betrieb einer gasentladungslampe - Google Patents

Schaltungsanordnung zum betrieb einer gasentladungslampe Download PDF

Info

Publication number
EP0489747B1
EP0489747B1 EP90911282A EP90911282A EP0489747B1 EP 0489747 B1 EP0489747 B1 EP 0489747B1 EP 90911282 A EP90911282 A EP 90911282A EP 90911282 A EP90911282 A EP 90911282A EP 0489747 B1 EP0489747 B1 EP 0489747B1
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
voltage
gas discharge
ignition
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90911282A
Other languages
English (en)
French (fr)
Other versions
EP0489747A1 (de
Inventor
Lothar Gademann
Ulrich Drews
Wolfgang Jacob
Anton Mindl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0489747A1 publication Critical patent/EP0489747A1/de
Application granted granted Critical
Publication of EP0489747B1 publication Critical patent/EP0489747B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches

Definitions

  • the invention relates to a circuit arrangement for operating a gas discharge lamp according to the preamble of the independent claim.
  • an ignition circuit for a high pressure metal vapor discharge lamp is known, in which an LC series resonant circuit acts on the switchable primary winding of a transformer. The high voltage induced in the secondary winding ignites the gas discharge lamp.
  • the secondary winding of the transformer remains part of the lighting circuit after the gas discharge lamp has been ignited.
  • the ignition circuit is constantly thermally stressed by the additional losses that occur.
  • the rate of rise of the ignition voltage which should have high values in particular for igniting warm, high-pressure gas discharge lamps, is limited in the known ignition circuit by the components contained in the lighting circuit of the gas discharge lamp.
  • circuits for operating gas discharge lamps which have an ignition circuit.
  • a separation of the ignition circuit from the gas discharge lamp as a function of the voltage generated in the ignition circuit is not provided in the previously known circuit arrangements.
  • the connection, shown in WO-A 82/01113, of a secondary winding of an ignition transformer by means of a diode to the gas discharge lamp causes decoupling only under certain potential conditions. Accordingly, a direct voltage operation of the gas discharge lamp is in the Known circuit arrangement provided. In the event of an electrical vibration occurring in the secondary winding, only negative signal components are kept away from the gas discharge lamp.
  • the circuit arrangement according to the invention with the characterizing features of the main claim has the advantage over the fact that the transformer is only actively connected to the gas discharge lamp during the ignition phase, so that the power loss of the circuit arrangement is very low.
  • the rate of rise of the ignition voltage pulses is very high.
  • the ignition energy stored in the transformer can be used for igniting the gas discharge lamp with almost no loss, so that in particular a warm gas discharge lamp can also be ignited safely.
  • breakover diode is used as the semiconductor switch, which has a high reverse voltage and only becomes conductive when the high ignition voltage is reached.
  • Such breakover diodes have a low residual current in the blocked state and are very low-resistance when they break into the conductive state.
  • Another advantage is that the ignition is monitored by means of a light sensor. As long as the lamp is not on, the light sensor controls the control circuit to generate new ignition pulses. After the gas discharge lamp has been ignited, the light sensor suppresses the generation of further ignition pulses.
  • the signal from the light sensor can advantageously be used to monitor the lamp circuit, regulate the lamp power or the light intensity or to switch off the high voltage. This is particularly advantageous for safety reasons when changing the lamp.
  • Another advantage is the fact that the ignition coil of the motor vehicle engine is used instead of the transformer. As a result, existing components are used several times, so that the construction of the circuit is very inexpensive.
  • the use of a gas discharge lamp in a motor vehicle headlight is also favorable. Since the ignition is guaranteed even when the lamp is warm, the lamp can also be used as a flasher.
  • a particularly simple circuit arrangement results if a second generator is used instead of the transformer.
  • FIG. 1 shows a first embodiment
  • FIG. 2 shows a second embodiment
  • FIG. 3 shows a third embodiment
  • FIG. 4 shows a fourth embodiment.
  • a gas discharge lamp 1 is connected to the voltage output of an AC voltage generator 2 via the series connection of a ballast 4 and a capacitor 3, the firing circuit 10 of the circuit arrangement.
  • the alternating voltage generator 2 is connected with its second output to the second electrode of the gas discharge lamp 1, which is continued as a ground line.
  • a series circuit is arranged in parallel with the gas discharge lamp 1 and has a voltage-controlled switch 5, the secondary winding 12 of a transformer 7 and a controlled switch 9.
  • the primary winding 11 of the transformer 7 is connected by its one connection to the switched side of the secondary winding and by its second connection to a first output 13 of a control circuit 6.
  • the control circuit 6 has a second output 14, which is led to the control input of the controlled switch 9, which is expediently designed as a semiconductor switch is.
  • the control circuit 6 is controlled by a light sensor 8, the arrangement of which is selected such that it can detect the ignition of the gas discharge lamp 1. This circuit part is referred to as the pulse ignition part.
  • the voltage supply to the light sensor 8, the control circuit 6 and the generator 2 takes place via common lines which are formed by the connections 15 and 16.
  • the circuit arrangement essentially has two circuits for the operation of the gas discharge lamp.
  • the first circuit is formed by the generator 2, the capacitor 3 and the ballast 4 in connection with the gas discharge lamp 1.
  • the generator 2 supplies the operating voltage necessary to maintain the burning operation of the gas discharge lamp 1.
  • the necessary operating voltage is e.g. 60 to 120 volts.
  • the operating frequency of the generator 2 is advantageously in the kilo-Hz range, because this makes the components and the generator smaller and less expensive to manufacture and, in addition, the luminous efficacy of the gas discharge lamp is particularly high in this frequency range.
  • the lamp is connected in parallel to an ignition circuit which essentially has the voltage-controlled switch 5, the transformer 7 and the controlled switch 9 Monitoring of the burning function is provided by the control circuit 6, which can be activated via the light sensor 8.
  • the control circuit 6 contains switching elements, clock generators, the voltage supply for the transformer and monitoring elements for monitoring the function of the gas discharge lamp and safety functions.
  • the switch 9 is first closed, so that the primary winding 11 of the transformer 7 can charge via the first output of the control circuit 6. After charging, the switch 9 is opened so that a voltage is induced in the secondary winding 12. With a suitable transmission ratio of the two windings, the induced voltage for igniting the gas discharge lamp 1 is sufficiently high.
  • the voltage-controlled switch 5 is initially blocked when the voltage is low. If the induced voltage rises above the threshold value of the switch 2, then it becomes practically abruptly conductive, so that a high voltage amplitude is available at the combustion electrodes for igniting the gas discharge lamp.
  • a breakover diode was used as the voltage-controlled switch 5.
  • Toggle diodes have the advantage that they are very high-resistance below their threshold voltage, which is adapted to the ignition voltage requirement of the lamp and is, for example, 20,000 volts, so that the losses caused by leakage currents are very low. If the threshold voltage is exceeded, the breakover diode becomes very low-resistance so that it can transmit the energy stored in the transformer 7 to the gas discharge lamp 1. Here, the gas discharge lamp 1 is decoupled from the AC generator 2 and capacitor 3 by the ballast 4.
  • the capacitor 3 is provided to support the ignition process in the combustion circuit. Since the capacitor 3 is further charged with each unsuccessful attempt to ignite, it can also transfer its energy to the hot electrode of the gas discharge lamp via the ballast during the ignition process and support the successful last attempt to ignite. In particular in the case of a warm gas discharge lamp, this also supports safe ignition and promotes the coupling of the lighting circuit.
  • the generator 2 can also be followed by a diode 42, of which a capacitor 41 can be connected to a connecting terminal 15, 16, preferably to ground (see FIG. 4).
  • the ignition circuit was dimensioned in such a way that a single ignition pulse has about a few microseconds. If this pulse was not sufficient to ignite the lamp, then further ignition pulses are generated, with the voltage at the capacitor 3 and at the gas discharge lamp 1 continuously increasing with each ignition pulse.
  • the charging voltage of the capacitor 3 is determined by the ignition energy transmitted by the voltage-controlled switch 5 during the ignition process. The charging voltage of the capacitor 3 is increased continuously since the capacitor was not discharged if the ignition attempt was unsuccessful.
  • the control circuit 6 keeps the switch 9 open, so that the primary winding 11 of the transformer 7 is prevented from being recharged.
  • the voltage-controlled switch 5 returns, as after each ignition pulse, to its high-resistance state and thus decouples the ignition circuit from the gas discharge lamp 1.
  • the combustion mode is now maintained by the generator 2.
  • the ballast 4, in conjunction with the capacitor 3, limits the current, since the gas discharge lamp 1 has a low resistance during the burning process.
  • a resonance tuning between the capacitor 3 and the ballast 4, which is necessary in known ignition circuits, is not necessary here.
  • ignition coils or corresponding transformers of a motor vehicle engine can also be provided.
  • Photo transistors or photo resistors can be used as light sensor 8. They recognize the optical radiation of the gas discharge lamp 1 and emit a corresponding electrical signal which can be used to control the control circuit 6.
  • the control circuit 6 also has switching devices, for example comparators for current measurement, which prevent unwanted ignition in the event of a missing gas discharge lamp 1 or a short circuit in the lines. This is for security reasons required if this circuit arrangement is used to operate the headlight of a motor vehicle.
  • control circuit 6 can regulate the combustion current of the gas discharge lamp in a light-dependent manner.
  • a thyristor or a spark gap can also be used as a voltage-controlled switch.
  • spark gaps have the disadvantage that they emit high levels of interference, which may be undesirable, and they are also subject to wear.
  • the use of a breakover diode has the advantage that when the breakover voltage is reached, the breakover diode is sufficiently fast, i.e. changes to the conductive state within a few nanoseconds.
  • breakover diodes have already been proposed in patent application EP 88/00456.
  • FIG. 2 A second exemplary embodiment of the circuit arrangement is shown in FIG. 2.
  • the control of the transformer 7 is changed here.
  • the primary winding 11 of the transformer 7 is preceded by a second capacitor 20 which is charged via a diode 21 from the output 13 of the control circuit 6.
  • a switch 9 is connected to ground between the capacitor 20 and the diode 21. After the capacitor 20 has been charged, this switch 9 is closed via the output 14 of the control circuit 6, as a result of which the ignition voltage is induced in the secondary winding 12 of the transformer 7. After reaching the breakover voltage, the voltage-controlled switch 5 becomes conductive and very quickly transmits the energy stored in the transformer 7 to the gas discharge lamp 1.
  • the circuit arrangement is dimensioned such that the capacitor 3 can receive several charging pulses until the ignition voltage for the gas discharge lamp 1 is reached. After the ignition, the generator 2 takes over the energy supply for the Gas discharge lamp 1 while the transformer 7 remains switched off.
  • a high-voltage generator 30 for example an ignition transformer, which charges a capacitor 32 which can be connected in parallel to the gas discharge lamp 1 via the voltage-controlled switch 5 via a diode 31.
  • the energy stored in the capacitor 32 switches through the controllable switch 5 for igniting the gas discharge lamp 1 when the breakover voltage is reached.
  • this circuit arrangement works like the previously described exemplary embodiments.
  • the proposed exemplary embodiments can also be operated on a DC voltage network if the available DC voltage, for example from the battery of a motor vehicle, is clocked to generate a pulsed high voltage.
  • a DC voltage network if the available DC voltage, for example from the battery of a motor vehicle, is clocked to generate a pulsed high voltage.
  • Such chopper circuits are known and need not be described in detail.
  • the generator 2 can be replaced by a battery.
  • the capacitor 3 is to be replaced by a capacitor connected to ground.

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Es wird eine Schaltungsanordnung zum Betrieb einer Gasentladungslampe (1) vorgeschlagen, bei der die Hochspannung zur Zündung der Gasentladungslampe mittels der in einem Transformator (7) oder Kondensator gespeicherten Energie erzeugt wird. Um einen steilen Spannungsanstieg der Zündspannung zu erhalten, wird die Zündspannung über einen spannungsgesteuerten Schalter (5) auf die Gasentladungslampe gegeben. Als spannungsgesteuerter Schalter (5) wird eine Kippdiode vorgeschlagen, die sehr kurze Schaltzeiten hat. Nach der Zündung wird der Zündkreis abgeschaltet. Diese Schaltungsanordnung eignet sich zum Zünden besonders auch von betriebswarmen Gasentladungslampen. Dadurch ist sie für Kraftfahrzeugscheinwerfer besonders geeignet.

Description

  • Die Erfindung geht aus von einer Schaltungsanordnung zum Betreiben einer Gasentladungslampe nach der Gattung des unabhängigen Anspruchs. Aus der DE-A 31 08 548 ist eine Zündschaltung für eine Hochdruck-Metalldampfentladungslampe bekannt, bei der ein LC-Reihenschwingkreis auf die schaltbare Primärwicklung eines Transformators einwirkt. Die in der Sekundärwicklung induzierte hohe Spannung zündet die Gasentladungslampe. Bei der vorbekannten Zündschaltung bleibt die Sekundärwicklung des Transformators nach der Zündung der Gasentladungslampe Bestandteil des Brennkreises. Durch die auftretenden zusätzlichen Verluste wird die Zündschaltung ständig thermisch belastet. Die Anstiegsgeschwindigkeit der Zündspannung, die insbesondere zum Zünden von betriebswarmen Hochdruck-Gasentladungslampen hohe Werte aufweisen sollte, ist bei der vorbekannten Zündschaltung begrenzt durch die im Brennkreis der Gasentladungslampe enthaltenen Bauteile.
  • Aus der DE-A 20 60 472 und der WO-A 82/01113 sind jeweils Schaltungen zum Betreiben von Gasentladungslampen bekannt, die eine Zündschaltung aufweisen. Eine Abtrennung der Zündschaltung von der Gasentladungslampe in Abhängigkeit von der in der Zündschaltung erzeugten Spannung ist bei den vorbekannten Schaltungsanordnungen nicht vorgesehen. Die in der WO-A 82/01113 gezeigte Verbindung einer Sekundärwicklung eines Zündtransformators mittels einer Diode mit der Gasentladungslampe bewirkt eine Entkopplung nur bei bestimmten Potentialverhältnissen. Demzufolge ist ein Gleichspannungsbetrieb der Gasentladungslampe in der vorbekannten Schaltungsanordnung vorgesehen. Bei einer in der Sekundärwicklung auftretenden elektrischen Schwingung werden lediglich negative Signalanteile von der Gasentladungslampe ferngehalten.
  • Aus der EP-A 0 331 840 ist eine Schaltungsanordnung zum Betreiben einer Hochleistungs-Gasentladungslampe bekannt, die Bauteile enthält, welche sowohl während des Brennbetriebs als auch während des Zündvorgangs vorgegebene Funktionen erfüllen. Nach dem Zünden der Gasentladungslampe werden mittels Relais diejenigen Bauelemente, die lediglich während des Zündvorgangs benötigt werden, von der Schaltungsanordnung abgetrennt.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Schaltungsanordnung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, daß der Transformator nur während der Zündphase mit der Gasentladungslampe aktiv verbunden ist, so daß die Verlustleistung der Schaltungsanordnung sehr gering ist.
  • Besonders vorteilhaft ist auch, daß die Anstiegsgeschwindigkeit der Zündspannungsimpulse sehr groß ist. Dadurch wird die im Transformator gespeicherte Zündenergie nahezu verlustfrei zur Zündung der Gasentladungslampe nutzbar, so daß insbesondere auch eine warme Gasentladungslampe sicher gezündet werden kann.
  • Ein weiterer Vorteil ist auch in der Entkopplung des Zündkreises mit dem Brennkreis zu sehen, die durch den spannungsgesteuerten Schalter erreicht wird. Ein unerwünschtes Übersprechen der Zündspannungsimpulse auf den Brennkreis wird dadurch vermieden. Besonders vorteilhaft ist auch, daß zur Erhöhung der Zündspannung kein Resonanzschwingkreis benötigt wird. Dadurch ist der Schaltungsaufbau kostengünstig herstellbar.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Schaltungsanordnung möglich. Besonders vorteilhaft ist, daß im Brennbetrieb der Zündungsteil abgeschaltet wird, da im Brennbetrieb die hohe Zündspannung nicht benötigt wird.
  • Auch ist vorteilhaft, wenn als Halbleiterschalter eine Kippdiode verwendet wird, die eine hohe Sperrspannung hat und erst bei Erreichen der hohen Zündspannung leitend wird. Derartige Kippdioden haben im gesperrten Zustand einen geringen Reststrom und sind beim Durchbruch in den leitenden Zustand sehr niederohmig.
  • Ein weiterer Vorteil ist, daß die Zündung mittels eines Lichtsensors überwacht wird. Solange die Lampe nicht brennt, steuert der Lichtsensor die Steuerschaltung an, um neue Zündimpulse zu generieren. Nach der Zündung der Gasentladungslampe unterdrückt der Lichtsensor die Erzeugung weiterer Zündimpulse.
  • Da bei einem Defekt, beispielsweise infolge eines Kurzschlusses oder einer Unterbrechung die Lampe nicht weiterbrennt, kann vorteilhaft das Signal des Lichtsensors zur Überwachung des Lampenkreises, Regelung der Lampenleistung bzw. der Lichtstärke bzw.zur Abschaltung der Hochspannung verwendet werden. Dies ist aus Sicherheitsgründen besonders bei einem Lampenwechsel vorteilhaft.
  • Durch die Verwendung eines Spartransformators, dessen Primärwicklung von einem Kondensator aufladbar ist, wird für die Erzeugung der Zündspannung ein besonders kostengünstiger Aufbau der Schaltungsanordnung erreicht.
  • Ein weiterer Vorteil ist auch darin zu sehen, daß anstelle des Transformators die Zündspule des Kraftfahrzeugmotors verwendet wird. Dadurch werden vorhandene Bauelemente mehrfach genutzt, so daß der Aufbau der Schaltung sehr kostengünstig wird.
  • Günstig ist auch die Verwendung einer Gasentladungslampe in einem Kraftfahrzeugscheinwerfer. Da die Zündung auch bei warmer Lampe gewährleistet ist, ist die Lampe auch zur Verwendung als Lichthupe verwendbar.
  • Es hat sich auch als günstig gezeigt, wenn dem Vorschaltgerät zur Unterstützung des Zündvorganges ein Kondensator vorgeschaltet ist, dessen Hochspannung mit einer Diode vom Generator entkoppelt ist.
  • Eine besonders einfache Schaltungsanordnung ergibt sich, wenn anstelle des Transformators ein zweiter Generator verwendet wird.
  • Weitere Vorteile und Verbesserungen der Erfindung sind der Beschreibung entnehmbar.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel, Figur 2 ein zweites Ausführungsbeispiel, Figur 3 ein drittes Ausführungsbeispiel und Figur 4 ein viertes Ausführungsbeispiel.
  • Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein erstes Ausführungsbeispiel dargestellt, bei dem eine Gasentladungslampe 1 über die Reihenschaltung eines Vorschaltgerätes 4 und eines Kondensators 3, dem Brennkreis 10 der Schaltungsanordnung, mit dem Spannungsausgang eines Wechselspannungsgenerators 2 verbunden ist. Der Wechselspannungsgenerator 2 ist mit seinem zweiten Ausgang mit der zweiten Elektrode der Gasentladungslampe 1 verbunden, die als Masseleitung weitergeführt wird. Parallel zu der Gasentladungslampe 1 ist eine Reihenschaltung angeordnet, die einen spannungsgesteuerten Schalter 5, die Sekundärwicklung 12 eines Transformators 7 sowie einen gesteuerten Schalter 9 aufweist. Die Primärwicklung 11 des Transformators 7 ist mit ihrem einen Anschluß mit der geschalteten Seite der Sekundärwicklung verbunden und mit ihrem zweiten Anschluß mit einem ersten Ausgang 13 einer Steuerschaltung 6 verbunden. Die Steuerschaltung 6 hat einen zweiten Ausgang 14, der auf den Steuereingang des gesteuerten Schalters 9 geführt ist, der zweckmäßigerweise als Halbleiterschalter ausgebildet ist. Die Steuerschaltung 6 wird von einem Lichtsensor 8 gesteuert, dessen Anordnung so gewählt ist, daß er die Zündung der Gasentladungslampe 1 erkennen kann. Dieser Schaltungsteil wird als Impulszündungsteil bezeichnet.
  • Die Spannungsversorgung des Lichtsensors 8, der Steuerschaltung 6 und des Generators 2 erfolgt über gemeinsame Leitungen, die durch die Anschlüsse 15 und 16 gebildet werden.
  • Im Folgenden wird die Wirkungsweise dieser Schaltung beschrieben.
  • Wie aus dem als Blockschaltbild dargestellten Stromlaufplan der Figur 1 ersichtlich ist, weist die Schaltungsanordnung im wesentlichen zwei Stromkreise für den Betrieb der Gasentladungslampe auf. Der erste Stromkreis wird durch den Generator 2, den Kondensator 3 und das Vorschaltgerät 4 in Verbindung mit der Gasentladungslampe 1 gebildet. In diesem Stromkreis liefert der Generator 2 die zur Aufrechterhaltung des Brennbetriebes der Gasentladungslampe 1 notwendige Brennspannung. Die notwendige Brennspannung beträgt je nach Lampentyp z.B. 60 bis 120 Volt. Die Arbeitsfrequenz des Generators 2 liegt vorteilhaft im Kilo-Hz-Bereich, weil dadurch die Bauteile sowie der Generator kleiner und kostengünstiger herstellbar sind und zusätzlich die Lichtausbeute der Gasentladungslampe in diesem Frequenzbereich besonders groß ist.
  • Da für die Zündung der Lampe jedoch mehrere Kilovolt (beispielsweise 5 bis 15 KV) benötigt werden, ist der Lampe ein Zündkreis parallel geschaltet, der im wesentlichen den spannungsgesteuerten Schalter 5, den Transformator 7 und den gesteuerten Schalter 9 aufweist.Zur Erzeugung der Zündspannung und Überwachung der Brennfunktion ist die Steuerschaltung 6 vorgesehen, die über den Lichtsensor 8 aktivierbar ist. Die Steuerschaltung 6 enthält Schaltelemente, Taktgeber, die Spannungsversorgung für den Transformator und Überwachungsglieder zur Funktionsüberwachung der Gasentladungslampe und Sicherheitsfunktionen.
  • Zur Zündung der Gasentladungslampe 1 wird der Schalter 9 zunächst geschlossen, so daß sich die Primärwicklung 11 des Transformators 7 über den ersten Ausgang der Steuerschaltung 6 aufladen kann. Nach dem Laden wird der Schalter 9 geöffnet, so daß in die Sekundärwicklung 12 eine Spannung induziert wird. Bei geeignetem Übersetzungsverhältnis der zwei Wicklungen ist die induzierte Spannung zur Zündung der Gasentladungslampe 1 ausreichend hoch. Der spannungsgesteuerte Schalter 5 ist zunächst bei geringer induzierter Spannung gesperrt. Steigt die induzierte Spannung über den Schwellwert des Schalters 2 an, dann wird er praktisch schlagartig leitfähig, so daß an den Brennelektroden eine hohe Spannungsamplitude zur Zündung der Gasentladungslampe zur Verfügung steht. In diesem Ausführungsbeispiel wurde als spannungsgesteuerter Schalter 5 eine Kippdiode verwendet. Kippdioden haben den Vorteil, daß sie unterhalb ihrer Schwellspannung, die an den Zündspannungsbedarf der Lampe angepaßt wird und beispielsweise bei 20000 Volt liegt, sehr hochohmig sind, so daß die durch Leckströme bedingten Verluste sehr gering sind. Wird die Schwellspannung überschritten, wird die Kippdiode sehr niederohmig, so daß sie die in dem Transformator 7 gespeicherte Energie auf die Gasentladungslampe 1 übertragen kann. Hierbei wird die Gasentladungslampe 1 durch das Vorschaltgerät 4 vom Wechselspannungsgenerator 2 und Kondensator 3 entkoppelt.
  • Parallel zum Zündkreis ist zur Unterstützung des Zündvorganges im Brennkreis der Kondensator 3 vorgesehen. Da der Kondensator 3 bei jedem noch nicht erfolgreichen Zündversuch weiter aufgeladen wird, kann er seine Energie während des Zündvorganges über das Vorschaltgerät ebenfalls auf die heiße Elektrode der Gasentladungslampe geben und den erfolgreichen letzten Zündversuch unterstützen. Insbesondere bei einer warmen Gasentladungslampe wird auch hierdurch das sichere Zünden unterstützt und die Ankopplung des Brennkreises begünstigt.
  • Dem Generator 2 ist auch eine Diode 42 nachschaltbar, von der ein Kondensator 41 gegen eine Anschlußklemme 15,16, vorzugsweise gegen Masse schaltbar ist (vgl. Figur 4).
  • In dem Ausführungsbeispiel wurde die Zündschaltung so dimensioniert, daß ein einzelner Zündimpuls etwa einige Mikrosekunden aufweist. Hat dieser Impuls zur Zündung der Lampe nicht ausgereicht, dann werden weitere Zündimpulse generiert, wobei sich bei jedem Zündimpuls die Spannung am Kondensator 3 wie auch an der Gasentladungslampe 1 kontinuierlich erhöht. Die Ladespannung des Kondensators 3 wird durch die während des Zündvorgangs vom spannungsgesteuerten Schalter 5 übertragene Zündenergie bestimmt. Die Ladespannung des Kondensators 3 wird kontinuierlich erhöht, da bei einem fruchtlosen Zündversuch der Kondensator nicht entladen wurde.
  • Nach der Zündung der Gasentladungslampe 1, die vom Lichtsensor 8 überwacht wird, hält die Steuerschaltung 6 den Schalter 9 geöffnet, so daß ein erneutes Aufladen der Primärwicklung 11 des Transformators 7 verhindert wird. Der spannungsgesteuerte Schalter 5 kehrt, wie auch nach jedem Zündimpuls, in seinen hochohmigen Zustand zurück und koppelt damit den Zündkreis von der Gasentladungslampe 1 ab. Der Brennbetrieb wird nun von dem Generator 2 aufrecht erhalten. Das Vorschaltgerät 4 bewirkt in Verbindung mit dem Kondensator 3 eine Strombegrenzung, da die Gasentladungslampe 1 während des Brennvorganges niederohmig ist. Eine Resonanzabstimmung zwischen dem Kondensator 3 und dem Vorschaltgerät 4, die in bekannten Zündschaltungen notwendig ist, ist hier nicht erforderlich. Anstelle des Transformators 7 sind auch Zündspulen oder entsprechende Übertrager eines Kraftfahrzeugmotors vorsehbar.
  • Als Lichtsensor 8 sind Fototransistoren oder Fotowiderstände verwendbar. Sie erkennen die optische Strahlung der Gasentladungslampe 1 und geben ein entsprechendes elektrisches Signal ab, das zum Steuern der Steuerschaltung 6 verwendbar ist. Die Steuerschaltung 6 weist weiterhin Schalteinrichtungen , beispielsweise Komparatoren zur Strommessung auf, die bei einer fehlenden Gasentladungslampe 1 oder einem Kurzschluß der Leitungen ein ungewolltes Zünden verhindern. Dieses ist aus Sicherheitsgründen erforderlich, wenn diese Schaltungsanordnung zum Betrieb des Scheinwerfers eines Kraftfahrzeuges verwendet wird.
  • Mit einem nicht dargestellten Regler kann die Steuerschaltung 6 den Brennstrom der Gasentladungslampe lichtabhängig regeln.
  • Als spannungsgesteuerter Schalter ist auch ein Thyristor oder eine Vorfunkenstrecke verwendbar. Vorfunkenstrecken haben jedoch den Nachteil, daß sie eine hohe Störstrahlung senden, die unter Umständen unerwünscht ist, zudem unterliegen sie einem Verschleiß. Dagegen hat die Verwendung einer Kippdiode den Vorteil, daß die Kippdiode bei Erreichen der Kippspannung hinreichend schnell, d.h. innerhalb einiger Nanosekunden, in den leitenden Zustand übergeht. Derartige Kippdioden sind bereits in der Patentanmeldung EP 88/00456 vorgeschlagen.
  • Ein zweites Ausführungsbeispiel der Schaltungsanordnung ist in Figur 2 dargestellt. Gegenüber der in Figur 1 dargestellten Schaltungsanordnung ist hier die Ansteuerung des Transformators 7 geändert. Der Primärwicklung 11 des Transformators 7 ist ein zweiter Kondensator 20 vorgeschaltet, der über eine Diode 21 vom Ausgang 13 der Steuerschaltung 6 aufgeladen wird. Zwischen dem Kondensator 20 und der Diode 21 ist ein Schalter 9 gegen Masse geschaltet. Nach dem Auflader des Kondensators 20 wird dieser Schalter 9 über den Ausgang 14 der Steuerschaltung 6 geschlossen, wodurch in die Sekundärwicklung 12 des Transformators 7 die Zündspannung induziert wird. Nach Erreichen der Kippspannung wird der spannungsgesteuerte Schalter 5 leitend und überträgt die im Transformator 7 gespeicherte Energie sehr schnell auf die Gasentladungslampe 1. Wie im ersten Ausführungsbeispiel ist die Schaltungsanordnung so dimensioniert, daß der Kondensator 3 mehrere Ladeimpulse erhalten kann, bis die Zündspannung für die Gasentladungslampe 1 erreicht ist. Nach der Zündung übernimmt der Generator 2 die Energieversorgung für die Gasentladungslampe 1, während der Transformator 7 abgeschaltet bleibt.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, gemäß der Figur 3 einen Hochspannungsgenerator 30, beispielsweise einen Zündübertrager zu verwenden, der über eine Diode 31 einen zur Gasentladungslampe 1 über den spannungsgesteuerten Schalter 5 parallel schaltbaren Kondensator 32 auflädt. Die im Kondensator 32 gespeicherte Energie schaltet bei Erreichen der Kippspannung den steuerbaren Schalter 5 zur Zündung der Gasentladungslampe 1 durch. Im übrigen arbeitet diese Schaltungsanordnung wie die zuvor beschriebenen Ausführungsbeispiele.
  • Die vorgeschlagenen Ausführungsbeispiele sind auch an einem Gleichspannungsnetz betreibbar, wenn die zur Verfügung stehende Gleichspannung, beispielsweise von der Batterie eines Kraftfahrzeuges, zur Erzeugung einer gepulsten Hochspannung getaktet wird. Derartige Zerhackerschaltungen sind bekannt und müssen nicht näher beschrieben werden.
  • Werden Gasentladungslampen 1 mit niedriger Brennspannung, beispielsweise für 12 Volt verwendet, dann ist der Generator 2 durch eine Batterie ersetzbar. In diesem Fall ist der Kondensator 3 durch einen gegen Masse geschalteten Kondensator zu ersetzen.

Claims (9)

  1. Schaltungsanordnung zum Betreiben einer Gasentladungslampe (1) an einem Spannungsgenerator (2) mit einer Induktivität (4) als Vorschaltgerät, mit einer Steuerschaltung (6) für den Zündvorgang der Gasentladungslampe (1), dadurch gekennzeichnet, daß die Steuerschaltung (6) über einen spannungsgesteuerten Schalter (5) mit der Gasentladungslampe (1) verbindbar ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein der Steuerschaltung (6) zugeordneten Zündtransformator (7) mit einer Primär- und einer Sekundärwicklung (11, 12) vorgesehen ist und daß die Sekundärwicklung (12) mittels des spannungsgesteuerten Schalters (5) mit der Gasentladungslampe (1) verbindbar ist.
  3. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Steuerschaltung (6) einen Generator (30) enthält, der einen Kondensator (32) auflädt, und daß der Kondensator (32) mittels des spannungsgesteuerten Schalters (5) mit der Gasentladungslampe (1) verbindbar ist.
  4. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß der Transformator (7) als Spartransformator geschaltet ist und daß dessen Primärwicklung (11) über einen zweiten Kondensator (20) angeschlossen ist.
  5. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß der Transformator (7) eine Zündspule ist.
  6. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der spannungsgesteuerte Schalter (5) ein Halbleiterschalter, vorzugsweise eine Triggerdiode ist.
  7. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Lichtsensor (8) vorgesehen ist, der das Licht der Gasentladungslampe (1) erfaßt und der bei der Zündung der Gasentladungslampe (1) auf die Steuerschaltung (6) einwirkt, um den Ladevorgang zu beenden.
  8. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuerschaltung (6) den Ladevorgang unterbricht, wenn die Gasentladungslampe (1) fehlt oder einen Kurzschluß aufweist.
  9. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung in einem Scheinwerfer eines Kraftfahrzeuges.
EP90911282A 1989-09-01 1990-08-04 Schaltungsanordnung zum betrieb einer gasentladungslampe Expired - Lifetime EP0489747B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3929029A DE3929029A1 (de) 1989-09-01 1989-09-01 Schaltungsanordnung zum betrieb einer gasentladungslampe
DE3929029 1989-09-01
PCT/DE1990/000600 WO1991003919A1 (de) 1989-09-01 1990-08-04 Schaltungsanordnung zum betrieb einer gasentladungslampe

Publications (2)

Publication Number Publication Date
EP0489747A1 EP0489747A1 (de) 1992-06-17
EP0489747B1 true EP0489747B1 (de) 1995-11-08

Family

ID=6388408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90911282A Expired - Lifetime EP0489747B1 (de) 1989-09-01 1990-08-04 Schaltungsanordnung zum betrieb einer gasentladungslampe

Country Status (10)

Country Link
US (1) US5367227A (de)
EP (1) EP0489747B1 (de)
JP (1) JPH05500727A (de)
KR (1) KR920704546A (de)
AU (1) AU630487B2 (de)
BR (1) BR9007620A (de)
CZ (1) CZ281990B6 (de)
DE (2) DE3929029A1 (de)
ES (1) ES2080150T3 (de)
WO (1) WO1991003919A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117288A1 (de) * 1991-05-27 1992-12-03 Hella Kg Hueck & Co Hochspannungs-zuenduebertrager zum zuenden und betreiben von wechselstrom-hochdruck-gasentladungslampen in kraftfahrzeugen
DE4117589A1 (de) * 1991-05-29 1992-12-03 Hella Kg Hueck & Co Vorschaltgeraet fuer hochdruck-gasentladungslampen in kraftfahrzeugen
DE4127970C1 (de) * 1991-08-23 1992-10-01 Robert Bosch Gmbh, 7000 Stuttgart, De
ITVR940055U1 (it) * 1994-09-14 1996-03-14 Apparecchiatura per lampade a scarica, con accensione e riaccensione istantanea con lampada calda, particolarmente per lampade illuminazio
US5449980A (en) * 1994-09-15 1995-09-12 General Electric Company Boosting of lamp-driving voltage during hot restrike
IL121819A (en) * 1997-09-22 2003-12-10 Elop Electrooptics Ind Ltd Circuit arrangement for igniting gas discharge flash tubes
DE10246011A1 (de) * 2002-10-02 2004-04-15 Chin-Fa Yen HID-Lichtemissionseinzelpunktleuchtrohr- Schaltvorrichtung das Verfahren derselben
NO20053519L (no) * 2005-07-18 2007-01-19 Thia Medica As Anvendelse av forbindelser som omfatter fettsyrer
US7456583B2 (en) * 2006-09-05 2008-11-25 General Electric Company Electrical circuit with dual stage resonant circuit for igniting a gas discharge lamp
US7460379B2 (en) * 2006-09-05 2008-12-02 General Electric Company Electrical circuit with voltage multiplier for facilitating ignition of a gas discharge lamp
DE102008004787A1 (de) * 2008-01-17 2009-07-23 Bag Electronics Gmbh Zündgerät mit zwei Eingangspolen
WO2014094016A2 (de) * 2012-12-21 2014-06-26 Tridonic Gmbh & Co Kg Erfassung eines led-moduls
DE102016120672B4 (de) * 2016-10-28 2018-07-19 Heraeus Noblelight Gmbh Lampensystem mit einer Gasentladungslampe und dafür angepasstes Betriebsverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092565A (en) * 1976-11-22 1978-05-30 General Electric Company Pulse circuit for gaseous discharge lamps
AT369609B (de) * 1980-09-11 1983-01-25 Elger Elektro Neon Schaltungsanordnung fuer den betrieb von gasentladungslampen
US4890041A (en) * 1988-03-10 1989-12-26 Hubbell Incorporated High wattage HID lamp circuit
US5021716A (en) * 1990-05-18 1991-06-04 Gte Products Corporation Forward inverter ballast circuit

Also Published As

Publication number Publication date
DE59009861D1 (de) 1995-12-14
KR920704546A (ko) 1992-12-19
DE3929029A1 (de) 1991-03-07
CS407490A3 (en) 1992-01-15
JPH05500727A (ja) 1993-02-12
AU6052890A (en) 1991-04-08
WO1991003919A1 (de) 1991-03-21
CZ281990B6 (cs) 1997-04-16
ES2080150T3 (es) 1996-02-01
AU630487B2 (en) 1992-10-29
US5367227A (en) 1994-11-22
BR9007620A (pt) 1992-07-07
EP0489747A1 (de) 1992-06-17

Similar Documents

Publication Publication Date Title
DE3108547C2 (de)
EP0489747B1 (de) Schaltungsanordnung zum betrieb einer gasentladungslampe
DE3811194A1 (de) Festkoerper-betriebsschaltung fuer eine gleichstrom-entladungslampe
DE2628509C2 (de) Kapazitätsentladungs-Zündsystem
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
EP0868115B1 (de) Schaltung zur Zündung einer HID-Lampe
DE1908091B2 (de) Zuendschaltung fuer das zuendsystem von brennkraftmaschinen
EP1054579A2 (de) Schaltungsanordnung, zugeordnetes elektrisches System sowie Entladungslampe mit derartiger Schaltungsanordnung und Verfahren zu ihrem Betrieb
WO2006108406A1 (de) Vorrichtung zum betreiben oder zünden einer hochdruckentladungslampe, lampensockel und beleuchtungssystem mit einer derartigen vorrichtung sowie verfahren zum betreiben einer hochdruckentladungslampe
DE2145089C3 (de) Kondensatorzündanlage für Brennkraftmaschinen
EP1924770A1 (de) Verfahren und vorrichtung zum entzünden eines brennbaren gasgemisches in einem verbrennungsmotor
EP1058488A1 (de) Schaltungsanordnung zum Zünden einer Lampe
EP1086609B1 (de) Zünder für eine gasentladungslampe, insbesondere hochdruck-gasentladungslampe für kraftfahrzeugscheinwerfer
US5621278A (en) Ignition apparatus
EP1056314B1 (de) Schaltung zum Betreiben einer Wechselstrom-Hochdruckgasentladungslampe für ein Kraftfahrzeug
DE19838051A1 (de) Elektronische Schaltung zur Pulserzeugung
DE1751892C3 (de) Elektrische Impulserzeugungseinrichtung
DE19608658C1 (de) Schaltungsanordnung zum Zünden und Betreiben einer Hochdruckgasentladungslampe
EP3436687B1 (de) Verfahren zum betreiben eines mit einem hochsetzsteller ausgestatteten zündsystems
EP1679942B1 (de) Zündgerät für eine Gasentladungslampe
DE1539228C3 (de)
DE10231511A1 (de) Zündspulensystem mit wenigstens zwei induktiven Spulen
DE2339783C3 (de) Zündvorrichtung für Brennkraftmaschinen
EP0660994B1 (de) Vorrichtung zum zünden von gasentladungslampen
DE2339783B2 (de) Zuendvorrichtung fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19941115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59009861

Country of ref document: DE

Date of ref document: 19951214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080150

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960112

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960814

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960830

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19970805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980824

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981030

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990830

EUG Se: european patent has lapsed

Ref document number: 90911282.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050804