EP0488545B1 - Debitmètre sanguin à ultrasons et effet Doppler - Google Patents

Debitmètre sanguin à ultrasons et effet Doppler Download PDF

Info

Publication number
EP0488545B1
EP0488545B1 EP91310381A EP91310381A EP0488545B1 EP 0488545 B1 EP0488545 B1 EP 0488545B1 EP 91310381 A EP91310381 A EP 91310381A EP 91310381 A EP91310381 A EP 91310381A EP 0488545 B1 EP0488545 B1 EP 0488545B1
Authority
EP
European Patent Office
Prior art keywords
signal
doppler
flow meter
circuit
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91310381A
Other languages
German (de)
English (en)
Other versions
EP0488545A3 (en
EP0488545A2 (fr
Inventor
Morio Nishigaki
Hiroshi Fukukita
Hisashi Hagiwara
Junichiro Ninomiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP0488545A2 publication Critical patent/EP0488545A2/fr
Publication of EP0488545A3 publication Critical patent/EP0488545A3/en
Application granted granted Critical
Publication of EP0488545B1 publication Critical patent/EP0488545B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present or when only weak signals are present, or caused by the presence of noise signals, e.g. squelch systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/303Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters using a switching device

Definitions

  • the present invention relates to an ultrasonic Doppler blood-flow meter used in the medical field and capable of simultaneously displaying data of a desired blood-stream in a living body and a B-mode diagnostic image in real time.
  • the ultrasonic Doppler blood-flow meter utilizes a phenomenon that an ultrasonic pulse signal transmitted into a living body undergoes a frequency deviation due to the Doppler effect occurring when the pulse signal is reflected by a moving object such as a blood stream and it is so constructed as to measure a speed of the blood stream acting as a reflector by detecting a Doppler deviated frequency and to permit easy observation, from the body surface, of a blood stream speed distribution in the living body by displaying a result of the measurement.
  • Conventional ultrasonic Doppler blood-flow meters will now be described with reference to the accompanying drawings.
  • Fig. 1 is a functional block diagram showing a conventional ultrasonic Doppler blood-flow meter.
  • a probe 1 converts a pulse signal into an ultrasonic pulse signal, transmits the ultrasonic pulse signal into a living body 14 and converts an ultrasonic wave reflected and received from the inside of the living body into an electrical signal.
  • a drive circuit 2 transmits the pulse signal to the probe 1 to drive it.
  • a transmission timing circuit 3 generates a timing signal for the drive circuit 2 to generate pulses.
  • a receiving circuit 4 amplifies an echo signal received from the probe 1.
  • a phase detector 5 performs phase detection of the echo signal delivered from the receiving circuit by using reference signals.
  • a reference signal generation circuit 6 generates a reference signal to which frequency and phase of the reference signals used for the phase detection in the phase detector 5 are referenced.
  • a gate signal generation circuit 7 generates a gate signal during an interval of time corresponding to a propagation time required for the ultrasonic wave to propagate between the transmitting/receiving surface of the probe 1 and a portion to be examined.
  • Analog switches 8a and 8b enable phase-detected signals from the phase detector 5 to be passed during only an interval or duration of the gate signal generated by the gate signal generation circuit 7.
  • Integrators 9a and 9b integrate the phase-detected signals having passed through the analog switches 8a and 8b to determine the summation of the phase-detected signals.
  • a Doppler deviated signal can be obtained.
  • Sample-and-hold circuits 10a and 10b hold a result of an integral operation until a result of the next integral operation is obtained, in order to permit resetting to be done before the integrators 9a and 9b perform integral operations.
  • High-pass filters 11a and 11b remove a signal component of less than several of tens of Hz or several of hundreds of Hz, that is, a clutter component from the Doppler deviated signals produced by the integrators 9a and 9b.
  • a frequency analyzer 12 analyzes the frequency of the Doppler deviated signals passed through the high-pass filters 11a and 11b.
  • a display unit 13 displays results of frequency analysis.
  • An electrical pulse signal generated by the drive circuit 2 using a timing signal generated from the transmission timing circuit 3 as a trigger is converted by the probe 1 into an ultrasonic pulse signal which in turn is transmitted into the living body 14 acting as an object to be examined.
  • the ultrasonic pulse signal propagates within the living body and it is reflected at a portion at which the acoustic impedance changes to reach the probe 1 and converted into an electric signal.
  • the thus obtained echo signal is amplified by the receiving circuit 4 to a suitable extent and then applied to the phase detector 5 so as to undergo phase detection.
  • E in equation (3) is multiplied with each of the signals Vx and Vy in equations (1) and (2) and there result the following equations (4) and (5):
  • E ⁇ Vx A 2 ⁇ cos ⁇ wt + A 2 ⁇ cos(2+ ⁇ )wt
  • E ⁇ Vy A 2 ⁇ sin ⁇ wt + A 2 ⁇ sin(2+ ⁇ )wt
  • the first term is of a low frequency of about several of kHz or less and the second term is of a high frequency of several of MHz. Accordingly, when the analog switches 8a and 8b are turned on during only a sampling volume obtained from these signals and signals confined within this interval are integrated by the integrators 9a and 9b, the second term are extinguished and a value of the first term which is proportional to a deviation at an instant can be obtained.
  • the data is held by the sample-and-hold circuits 10a and 10b so that a stepped signal representative of a descrete-time Doppler deviated signal.
  • the thus obtained Doppler deviated signal contains blood flow data and a component called a clutter as well which is due to an echo from a tissue of living body such as a vascular wall, the clutter component being as large as about 40dB of the blood flow component. Therefore, for the sake of expanding the dynamic range of the frequency analyzer 12, elimination of the influence due to an echo from a living body tissue is of significance.
  • the frequency of Doppler deviated signal of the echo from living body tissue is in general several of tens of Hz or less and is lower than that of the blood flow component. Therefore, by removing low frequencies by means of the high-pass filters 11a and 11b, the influence of the echo from living body tissue can be eliminated.
  • the thus obtained Doppler deviated signal is subjected to frequency conversion by means of the frequency analyzer 12 and then displayed on the display unit 13.
  • the integrators 9a and 9b are applied with the coexistence of a strong Doppler deviated signal due to the echo from living body tissue and a weak Doppler deviated signal due to the blood flow and therefore, when the weak Doppler deviated signal due to the blood flow is amplified at a large gain, the integrators 9a and 9b are inconveniently saturated by the Doppler deviated signal stemming from the living body tissue. When saturated, the Doppler deviated signal of blood flow at that portion are extinguished and in addition, the waveform is distorted to generate unwanted frequency components.
  • Fig. 3 shows an example of a specific circuit arrangement of the analog switch 8a or 8b, integrator 9a or 9b, DC feed back circuit 15a or 15b and sample-and-hold circuit 10a or 10b.
  • the integrator 9a or 9b includes a resistor (R1) 101, a capacitor (Co) 102, an operational amplifier (OP1) 103 and an analog switch 104 and the DC feedback circuit 15a or 15b includes a resistor (R2) 105, a resistor (Rf) 106, a capacitor (Cf) 107, an operational amplifier (OP2) 108 and an analog switch 109.
  • Denoted by 110 is a feedback gain control circuit.
  • the sample-and-hold circuit 10a or 10b has the function to amplify at a gain of -A times.
  • a signal subjected to phase detection by means of the phase detector 5 in a similar manner to that in the foregoing conventional example is passed through the analog switch 8a or 8b which is turned on during a gate interval t1 - t2 and stored in the capacitor 102 of the integrator 9a or 9b. Since the analog switch 104 is turned on by a RESET signal in advance of the gate interval, a value resulting from integral during only the gate interval is obtained. When the gate interval ends, the integrated value of the integrator 9a or 9b is held in the sample-and-hold circuit 10a or 10b and at the same time -A times amplified thereby and then applied to the DC feedback circuit 15a or 15b through the analog switch 109. On-time tf of the analog switch 109 is determined in accordance with a cut-off frequency fc of the entire circuitry of Fig. 3.
  • the DC feedback circuit 15a or 15b is an integrator, namely, a kind of low-pass filter.
  • the input signal to the DC feedback, circuit 15a or 15b is inverted in phase by being -A times amplified by means of the sample-and-hold circuit 10a or 10b and therefore the output signal from the DC feedback circuit 15a or 15b corresponds to a phase inversion of a DC component and an extremely low-frequency component of the output signal of the integrator 9a or 9b.
  • the output signal of the sample-and-hold circuit 10a or 10b is applied to the DC feedback circuit 15a or 15b but similar results can be obtained by applying the output signal of the integrator 9a or 9b to the DC feedback circuit 15a or 15b.
  • sequence of switching between the B mode and the Doppler mode can be conceived in various ways but a scheme in which the sequence of the B mode and Doppler mode is alternately switched at each TX pulse, hereinafter called an alternate scheme, is generally employed.
  • an alternate scheme a scheme in which the sequence of the B mode and Doppler mode is alternately switched at each TX pulse, hereinafter called an alternate scheme.
  • the sampling interval of the Doppler deviated signal is doubled, raising a problem that the maximum blood flow speed measurable without aliasing is halved.
  • a different scheme from the alternate scheme has been contrived in which switching between the B mode and Doppler mode is effected at intervals of several of tens or several of hundreds of TX pulses.
  • This latter scheme will hereinafter be called a chopper scheme.
  • the sampling interval remains unchanged but the Doppler spectrum is interrupted during the B-mode period and some compensation is needed.
  • Fig. 5 shows an example of output waveform of the sample-and-hold circuit in the simultaneous Doppler type based on the chopper scheme.
  • the sample-and-hold circuit delivers an output signal as shown at E0 when the DC feedback circuit is not provided.
  • This waveform contains a small-amplitude Doppler deviated signal of blood stream superposed on a large-amplitude Doppler deviated signal of living body tissue but its value is zero during B-mode period because of the absence of any input signal.
  • a Doppler signal develops, causing a large jump of signal at an instant of switching.
  • an output signal Eo of the sample-and-hold circuit delivered out thereof when the DC feedback circuit is provided unwanted frequency components due to the jump of signal are generated.
  • control of changing the gate position, gate width, amplitude of transmission pulse and mu-factor of receiving amplifier is carried out by placing the ultrasonic Doppler blood-flow meter in operated condition while monitoring the status of an object to be examined in living body.
  • discontinuity takes place between data before change and data after change.
  • the gate position or gate width is changed, the position or magnitude of sample volume changes and when the transmission pulse output signal or mu-factor of receiving amplifier is changed, the amplitude of signal changes.
  • unwanted frequency components are generated owing to the jump of signal taking place at the discontinuous plane.
  • the Doppler signal abruptly develops when a freeze of the operation of the apparatus is released, and the resulting jump of signal gives rise to occurrence of unwanted frequency components.
  • EP-A-0202920 Another prior art meter similar to the one described above is disclosed in EP-A-0202920.
  • An object of the present invention is to solve the conventional problems and to provide an ultrasonic Doppler blood-flow meter which can suppress the occurrence of unwanted frequency components by suppressing the jump of signal to thereby produce images of high quality.
  • an ultrasonic Doppler blood-flow meter comprising:
  • the control means may be arranged to change the feedback amount of the DC feedback circuit in synchronism with the timing for switching between the B-mode transmission/reception sequence and the Doppler mode sequence.
  • Control means can be provided which, when the gate position, gate width, amplitude of transmission pulse or mu-factor of receiving circuit is changed, changes the feedback amount by which a Doppler deviated signal developing immediately after completion of the changing is negatively fed back by means of the DC feedback circuit, or which similarly changes the feedback amount of the DC feedback circuit immediately after releasing a freeze of the apparatus.
  • While the feedback amount of the DC feedback circuit is controlled in the manner as above, operation carried out by frequency analysis means to analyze the frequency of the Doppler deviated signal delivered out of the integrator is interrupted.
  • the whole of a Doppler mode signal can be fed back negatively to the input of the integrator by means of the DC feedback circuit by an amount of a jump developing at the commencement of the Doppler mode, thereby cancelling out the jump of signal at the commencement of the Doppler mode.
  • the gate width, the transmission pulse output signal or the mu-factor of receiving circuit is changed or when the freeze of the apparatus is released, the occurrence of unwanted frequencies can also be suppressed by suppressing the jump of signal through control of the feedback amount.
  • the present embodiment particularly has an integrator and a DC feedback circuit which are different from those of the prior art example described in connection with Figs. 2 and 3 and therefore the structurally differing components are illustrated here with the omission of the remaining components.
  • Fig. 6 is a circuit diagram showing the essential part of an ultrasonic Doppler blood-flow meter according to the first embodiment of the invention.
  • an analog switch 8a or 8b an integrator 9a or 9b, a sample-and-hold circuit 10a or 10b, a DC feedback circuit 15a or 15b, a sequence control circuit 16 for B mode/Doppler mode, a feedback amount adjuster circuit 17 and a resistor (R1) 31.
  • the integrator 9a or 9b includes a capacitor (Co) 32, a capacitor (Co') 33, an operational amplifier (OP1) 34 and analog switches 35 and 36.
  • the DC feedback circuit 15a or 15b includes an amplifier 37 of -A times amplification, a resistor (Rf) 38, a resistor (R2) 39, a capacitor (Cf) 40 an operational amplifier (OP2) 41 and analog switches 42 and 43.
  • the analog switch 43 of the DC feedback circuit 15a or 15b is turned on under the control of the sequence control circuit 16 to make null the charge on the capacitor (Cf) 40.
  • the analog switch 43 is turned off under the direction of the sequence control circuit 16.
  • a gate signal G is applied to the analog switch 8a or 8b to render it on, so that a phase-detected output signal is integrated by the integrator 9a or 9b.
  • the integrated value stored in the capacitor (Co') 33 is a value not subjected to feedback and therefore this integrated value is not fetched into the sample-and-hold circuit 10a or 10b but it is -A times amplified by the amplifier 37 of the DC feedback circuit 15a or 15b and subsequently when the analog switch 42 is turned on at time t2 under the control of the sequence control circuit 16 by way of the feedback amount adjuster circuit 17, it is inputted to the capacitor (Cf) 40 and operational amplifier (OP2) 41.
  • Charge stored in the DC feedback circuit 15a or 15b has the same magnitude as that required for cancelling out the integrated value of the integrator 9a or 9b at time tl.
  • the Doppler deviated signal is in most part an echo signal from living body tissue which is of DC or ultra-low frequency and therefore the integrated value at time t1 is nearly equal to an integrated value at time t3 at which the gate is subsequently turned on following time t1. Accordingly, the integrated value of the phase-detected output signal at time t3 is almost cancelled out by DC feedback based on the integrated value at time t2.
  • the feedback amount to the DC feedback circuit 15a or 15b recovers a value for ordinary Doppler mode and the integrated value is fetched and held in the sample-and-hold circuit 10a or 10b.
  • the gate position is moved by indicating an area of interest in a B-mode image by means of a gate marker while displaying a Doppler spectrum in real time.
  • the analog switch 8a or 8b for gating When the position of the gate marker is moved, the analog switch 8a or 8b for gating is actuated in the ordinary manner in the prior art but contrarily, in the present embodiment, the gating analog switch 8a or 8b is kept to be off under the control of the control circuit 16 to prevent passage of signal during movement of the gate. Immediately after completion of movement of the gate, the gating analog switch 8a or 8b is turned on as usual under the control of the control circuit 16, allowing the integrator 9a or 9b to integrate data of phase-detected output signal. Since there is a time delay between the phase-detected signal immediately after gate movement and that immediately before gate movement, these two signals are mutually discontinuous.
  • the circuit shown in Fig. 6 is not limited to the aforementioned suppression of the jump of signal due to the discontinuity of the Doppler mode in the simultaneous Doppler type but is also applicable to the movement of gate position also conditioned by the discontinuity of signal, whereby the B-mode period in fig. 7 can substitute directly for the gate moving period and a Doppler deviated signal immediately after completion of the gate movement can be fed back negatively to the input of the integrator 9a or 9b to prevent the occurrence of unwanted frequency components when the gate movement is carried out.
  • the frequency analyzer 12 is so controlled by the control circuit 16 as not to perform operations, thus preventing unwanted spectrum data from being displayed on the display unit 13.
  • Fig 8 is a circuit diagram showing the essential part of an ultrasonic Doppler blood-flow meter according to the second embodiment of the invention.
  • the present embodiment is so constructed that the integrated value of an integrator 9a or 9b is fetched and held in a sample-and-hold circuit 10a or 10b and thereafter inputted to a DC feedback circuit 15a or 15b.
  • the sample-and-hold circuit 10a or 10b holds an integrated value of a signal not subjected to feedback at time t1 and therefore during delivery of the integrated value from the sample-and-hold circuit 10a or 10b, an analog switch 44 is turned off under the control of a sequence control circuit 16 to prevent the signal from being applied to the succeeding stage.
  • the remaining components are the same as those of the first embodiment.
  • Fig. 9 is a circuit diagram showing the essential part of an ultrasonic Doppler blood-flow meter according to the third embodiment of the invention.
  • the feedback amount to the DC feedback circuit 15a or 15b is changed by changing the length of time interval tf during which the analog switch is turned on but the present embodiment is so constructed that the feedback amount is adjusted by changing the resistance of a variable input resistor (Rf) 45 of a DC feedback circuit 15a or 15b.
  • Rf variable input resistor
  • Fig. 10 is a functional block diagram showing an ultrasonic Doppler blood-flow meter according to the fourth embodiment of the invention.
  • the present embodiment is directed to prevention of generation of unwanted frequency components when the gate position is changed.
  • Fig. 10 there are seen the same components as those of the foregoing embodiments including a probe 1, a drive circuit 2, a transmission timing circuit 3, a receiving circuit 4, a phase detector 5, a reference signal generator 6, a gate signal generation circuit 7, analog switches 8a and 8b, integrators 9a and 9b, sample-and-hold circuits 10a and 10b, high-pass filters 11a and 11b, a frequency analyzer 12, a display unit 13, DC feedback circuits 15a and 15b and a Doppler sequence controller 16.
  • the present embodiment further comprises a trackball 18 for inputting gate positions, a decoder 19 for the trackball and a main controller 20.
  • a pulse signal generated by the drive circuit 2 using a signal generated from the transmission timing circuit 3 as a trigger is converted by the probe 1 into an ultrasonic pulse signal which in turn is transmitted into a living body 14.
  • the ultrasonic pulse signal is then reflected at a portion of living body 14 at which the acoustic impedance changes.
  • the reflected signal is converted by the probe 1 into an electrical signal which in turn is amplified by the receiving circuit 4 to a suitable extent and is then subjected to phase detection by the phase detector 5.
  • the above operation is the same as that of the first embodiment. Further, provided that the gate position is not changed, the operation of the componets following the analog switches 8a and 8b is the same as that of the first embodiment.
  • a change in gate position is inputted by means of the trackball 18 and a rotation angle of the trackball is converted by the decoder 19 into data representative of gate position change.
  • the main controller 209 receiving the gate position change data sends to the Doppler sequence controller 16 information to the effect that the gate position is shifted, so that the Doppler sequence controller 16 performs the same control as that carried out in the B mode in the serial Doppler type to prevent display of unnecessary images.
  • the main controller 20 receiving gate position data from the decoder 19 causes the transmission timing circuit 3 and receiving circuit 4 to change the beam direction and at the same time sends new gate position data to the Doppler sequence controller 16. Then, the Doppler sequence controller 16 sends the gate position data to the gate signal generation circuit 7 which in turn permits the same sequence control as that carried out at the termination of the B mode in the previously-described first embodiment. In this manner, the generation of unwanted frequency components concomitant with gate movement can be prevented.
  • Fig. 11 is a functional block diagram showing an ultrasonic Doppler blood-flow meter according to the fifth embodiment of the invention.
  • the present embodiment is directed to prevention of the occurrence of unwanted frequency components when the gate width is changed.
  • the present embodiment differs from the fourth embodiment shown in Fig. 10 in that a gate width input switch 21 for setting gate widths is provided as shown in Fig. 11.
  • the remaining components are the same as those of the fourth embodiment, which are designated by identifical reference numerals, and will not be described here.
  • the present embodiment having the above construction operates in a different manner from the fourth embodiment as will be described below.
  • the gate width change is sent to a main controller 20 through a decoder 19.
  • the main controller 20 sends to a Doppler sequence controller 16 information to the effect that the gate width is changed, so that the Doppler sequence controller 16 prevents display of unnecessary images and at the same time controls integrators 9a and 9b, sample-and-hold circuits 10a and 10b and DC feedback circuits 15a and 15b similarly to control carried out at the termination of B mode in the serial Doppler type.
  • Fig. 12 is a functional block diagram showing an ultrasonic blood-flow meter according to the sixth embodiment of the invention.
  • the present embodiment is directed to prevention of generation of unwanted frequency components when the receiving gain is changed.
  • the present embodiment differs from the fourth embodiment shown in Fig. 10 in that a switch 22 for setting receiving gains is provided as shown in Fig 12.
  • the remaining components are the same as those of the fourth embodiment, which are designated by identical reference numerals, and will not be described herein.
  • the present embodiment having the above construction operates in a different manner from the fourth embodiment as will be described below.
  • the receiving gain can be changed by the receiving circuit 4 but the recent trend is such that an analog switch as shown in Fig. 13 is used in a gain change section and is transferred remotely from the operator section.
  • Fig. 13 there are provided an operational amplifier 50, an analog switch 51 and resistors 52a to 52e.
  • the analog switch 51 controllable through a control line of 2 bits is responsive to a digital signal to discretely adjust the gain.
  • the receiving gain is changed discretely and therefore discontinuity takes place in a Doppler deviated signal at a timing that the receiving gain is switched over, resulting in display of unwanted spectra.
  • a gate signal generation circuit 7 receives receiving gain change data through decoder 19, main controller 20 and Doppler sequence controller 16 and causes analog switches 8a and 8b to be normally turned off in order that an output signal delivered out of a phase detector 5 during the gain change is cut, and the Doppler sequence controller 16 stops a frequency analyzer 12 from producing an output signal so as to prevent unwanted display.
  • the present embodiment operates similarly to the foregoing first embodiment.
  • Fig. 14 is a functional block diagram showing an ultrasonic Doppler blood-flow meter according to the seventh embodiment of the invention.
  • the present embodiment contemplates prevention of the occurrence of unwanted frequency components when the transmission output is changed.
  • the present embodiment differs from the fourth embodiment shown in Fig. 10 in that a transmission output adjusting switch 23 for adjusting the transmission output is provided as shown in Fig. 14.
  • the remaining components are the same as those of the fourth embodiment, which are designated by identical reference numerals, and will not be described here.
  • the present embodiment having the above construction operates in a different manner from the fourth embodiment as will be described below.
  • a pulse signal is generated by a drive circuit 2 which uses a signal from a transmission timing circuit 3 as a trigger, and the delivery of the pulse signal is controlled by a value inputted by means of the switch 23.
  • a gate signal generation circuit 7 receives transmission output change data through decoder 19, main controller 20 and Doppler sequence controller 16 and normally turns off analog switches 8a and 8b in order to cut an output signal delivered out of a phase detector 5 during the change of transmission output and at the same time the Doppler sequence controller 16 stops a frequency analyzer 12 from delivering an output signal to prevent unnecessary display.
  • the present embodiment operates similarly to the foregoing first embodiment.
  • Fig. 15 is a functional block diagram showing an ultrasonic blood-flow meter according to the eighth embodiment of the invention.
  • the present embodiment contemplates prevention of the occurrence of unwanted frequency components when a freeze of the apparatus is released.
  • the present embodiment differs from the fourth embodiment shown in Fig. 10 in that a freeze switch 24 for setting and release of freeze is provided as shown in Fig. 15.
  • the remaining components are the same as those of the fourth embodiment, which are designated by identical reference numerals, and will not be described herein.
  • the present embodiment having the above construction operates in a different manner from the fourth embodiment as will be described below.
  • the fourth to eighth embodiments have been described as using the circuit of the first embodiment but they may be realized with the circuits of the second and third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Claims (8)

  1. Débitmètre sanguin à effet Doppler à ultrasons, comprenant
    des moyens (1,2,3,4) pour émettre un signal impulsionnel ulrasonore dans un corps vivant (14) et recevoir un signal d'écho réfléchi dans ledit corps vivant;
    un moyen détecteur de phase (5) pour détecter la phase du signal d'écho;
    un moyen (7,8a;8b) pour sélectionner une partie d'un signal dont la phase a été détectée, appliqué à une porte;
    un intégrateur (9a;9b) pour intégrer le signal sélectionné dont la phase a été détectée;
    un circuit de contre-réaction de courant continu (15a;15b) pour réinjecter négativement à l'entrée dudit intégrateur une composante continue et une composante à fréquence basse contenues dans un signal ayant subi une déviation Doppler, produit à partir dudit intégrateur; et
    un moyen de commande (16,17) pour commander le taux de contre-réaction dudit circuit de contre-réaction de courant continu,
    caractérisé en ce que ledit intégrateur comprend deux condensateurs, dont l'un est en fonctionnement pendant le mode Doppler ordinaire et dont l'autre est en fonctionnement temporairement après la survenue d'une discontinuité dans le signal d'entrée, le taux de contre-réaction étant commandé de manière à maintenir la suppression de la composante continue du signal dont la phase a été détectée.
  2. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (10,17) est agencé de manière à commander la contre-réaction du circuit de contre-réaction de courant continu en synchronisme avec la cadence de commutation entre la séquence d'émission/réception du mode B et la séquence du mode Doppler.
  3. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (16,18,19,20) est agencé de manière à commander le taux de contre-réaction dudit circuit de contre-réaction de courant continu de sorte qu'il soit différent pour différentes positions de porte tandis que l'appareil reste dans la séquence du mode Doppler.
  4. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (16,19,20,21) est agencé de manière à modifier le taux de contre-réaction dudit circuit de contre-réaction de courant continu de façon à éviter une réponse transitoire causée par un changement de la largeur de porte tandis que l'appareil reste dans le mode Doppler.
  5. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (16,19,20,22) est agencé de manière a commander, lorsque le facteur mu d'un moyen amplificateur (4) est modifié, le taux contre-réaction dudit circuit de contre-réaction de courant continu à l'entrée dudit intégrateur de sorte que le taux de contre-réaction soit différent pendant le temps où le facteur mu dudit moyen amplificateur (4) est modifié et pendant le temps qui fait immédiatement suite à la modification du facteur mu, ledit moyen amplificateur précédant ledit moyen de détection de phase (5) et pouvant être actionné pour modifier son facteur mu de façon échelonnée .
  6. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (16,19,20,23) est agencé de manière à commander, lorsque le signal de sortie d'émission est modifié, le taux de contre-réaction dudit circuit de contre-réaction de courant continu à l'entrée dudit intégrateur de sorte que le taux de contre-réaction soit différent pendant le temps où le signal de sortie d'émission est modifié et pendant le temps qui fait immédiatement suite à la modification du signal de sortie d'émission.
  7. Débitmètre sanguin à effet Doppler à ultrasons selon la revendication 1, dans lequel le moyen de commande (16,20,24) est agencé de manière à modifier, lorsqu'une interruption de la séquence est supprimée, le taux de contre-réaction dudit circuit de contre-réaction de courant continu à l'entrée dudit intégrateur immédiatement après la suppression de l'interruption.
  8. Débitmètre sanguin à effet Doppler à ultrasons selon l'une quelconque des revendications 1 à 7, dans lequel un circuit échantillonneur (10a;10b) est prévu à la suite dudit intégrateur et le signal de sortie dudit intégrateur est maintenu par ledit circuit échantilonneur et fourni à l'entrée dudit circuit de contre-réaction de courant continu.
EP91310381A 1990-11-30 1991-11-11 Debitmètre sanguin à ultrasons et effet Doppler Expired - Lifetime EP0488545B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP338225/90 1990-11-30
JP33822590 1990-11-30
JP243068/90 1991-09-24
JP3243068A JP2615519B2 (ja) 1990-11-30 1991-09-24 超音波ドプラ血流計

Publications (3)

Publication Number Publication Date
EP0488545A2 EP0488545A2 (fr) 1992-06-03
EP0488545A3 EP0488545A3 (en) 1993-03-03
EP0488545B1 true EP0488545B1 (fr) 1996-07-03

Family

ID=26536074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91310381A Expired - Lifetime EP0488545B1 (fr) 1990-11-30 1991-11-11 Debitmètre sanguin à ultrasons et effet Doppler

Country Status (4)

Country Link
US (1) US5261407A (fr)
EP (1) EP0488545B1 (fr)
JP (1) JP2615519B2 (fr)
DE (1) DE69120637T2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631395B1 (fr) * 1993-06-28 1999-03-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA Circuit de traitement de signaux comportant un étage d'entrée à gain variable
GB0030449D0 (en) * 2000-12-13 2001-01-24 Deltex Guernsey Ltd Improvements in or relating to doppler haemodynamic monitors
US7806828B2 (en) * 2002-02-05 2010-10-05 Inceptio Medical Technologies, Lc Multiplanar ultrasonic vascular sensor assembly and apparatus for movably affixing a sensor assembly to a body
US6755789B2 (en) * 2002-02-05 2004-06-29 Inceptio Medical Technologies, Llc Ultrasonic vascular imaging system and method of blood vessel cannulation
JP4779692B2 (ja) * 2006-02-17 2011-09-28 セイコーエプソン株式会社 発振回路及び物理量トランスデューサ
JP5472914B2 (ja) * 2010-05-19 2014-04-16 株式会社東芝 超音波診断装置
JP6212922B2 (ja) * 2013-04-23 2017-10-18 株式会社リコー チョッパ増幅装置
JP6245853B2 (ja) * 2013-06-11 2017-12-13 東芝メディカルシステムズ株式会社 超音波診断装置
US9642525B2 (en) 2013-11-22 2017-05-09 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with retinal vascularization monitoring system
CN108594238B (zh) * 2018-03-21 2021-10-01 哈尔滨工程大学 基于瞬态信号的水声换能器电声性能校准装置及校准方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106158A (en) * 1980-01-29 1981-08-24 Tokyo Keiki Co Ltd Speedometer
US4407293A (en) * 1981-04-24 1983-10-04 Diasonics, Inc. Ultrasound imaging apparatus for providing simultaneous B-scan and Doppler data
JPS5920149A (ja) * 1982-07-28 1984-02-01 富士通株式会社 超音波パルスドプラ血流計
JPS6055934A (ja) * 1983-09-08 1985-04-01 松下電器産業株式会社 超音波血流計
JPH0614930B2 (ja) * 1985-02-19 1994-03-02 株式会社日立メデイコ 超音波診断装置
JPS62155836A (ja) * 1985-12-27 1987-07-10 松下電器産業株式会社 超音波ドツプラ血流計
DE3689698T2 (de) * 1985-05-20 1994-07-21 Matsushita Electric Ind Co Ltd Blutgeschwindigkeitsmesser nach dem Ultraschall-Doppler-Prinzip.
JPS63317792A (ja) * 1987-06-22 1988-12-26 Yokogawa Medical Syst Ltd パルスドプラ装置
JPH01270859A (ja) * 1988-04-22 1989-10-30 Matsushita Electric Ind Co Ltd 超音波ドップラ血流計および血流速度測定法

Also Published As

Publication number Publication date
EP0488545A3 (en) 1993-03-03
US5261407A (en) 1993-11-16
JP2615519B2 (ja) 1997-05-28
EP0488545A2 (fr) 1992-06-03
DE69120637T2 (de) 1997-01-30
JPH053870A (ja) 1993-01-14
DE69120637D1 (de) 1996-08-08

Similar Documents

Publication Publication Date Title
US4848355A (en) Ultrasonic doppler blood flowmeter
EP0947853B1 (fr) Procédé et appareil pour imagerie d'écoulement améliorée dans un système d'échographie ultra-sonore du type B
EP1067400B1 (fr) Méthode et appareil de l'échographie Doppler à ultrasons à l'aide d'un convertisseur d'images spectrales dans lequel on utilise un filtre à signaux de paroi adaptatif
US5177691A (en) Measuring velocity of a target by Doppler shift, using improvements in calculating discrete Fourier transform
EP0383288B1 (fr) Appareil diagnostique à ultrasons pour caractériser un tissu par analyse de rayonnement rétrodiffusé
EP0488545B1 (fr) Debitmètre sanguin à ultrasons et effet Doppler
JPH0866398A (ja) 生体内血液流の速度−時間スペクトル決定方法
US6039692A (en) Method and apparatus for processing ultrasound signals
JPS5836528A (ja) 超音波パルスドツプラ血流測定装置
JPS6219854B2 (fr)
EP0628285B1 (fr) Appareil ultrasonique de mesure de l'écoulement sanguin
JPH01314552A (ja) 超音波ドップラ血流計
JPS6237980B2 (fr)
US6361498B1 (en) Contrast agent imaging with suppression of nonlinear tissue response
JP2807131B2 (ja) 超音波診断装置
EP0430093A2 (fr) Système d'imagerie doppler employant des ultrasons avec annuleur de signaux et contre-réaction analogique
JPH0431261B2 (fr)
JP3691874B2 (ja) 超音波診断装置
JPH0588136B2 (fr)
JPH0536407Y2 (fr)
JPH0414023B2 (fr)
JPS61265131A (ja) 超音波ドツプラ血流計
JPH04193269A (ja) 超音波ドプラ血流計
JPH0414022B2 (fr)
JPH0430838A (ja) ドプラ断層超音波診断装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FUKUKITA, HIROSHI

Inventor name: HAGIWARA, HISASHI

Inventor name: NISHIGAKI, MORIO

Inventor name: NINOMIYA, JUNICHIRO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19930324

17Q First examination report despatched

Effective date: 19941027

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69120637

Country of ref document: DE

Date of ref document: 19960808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051103

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051108

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051109

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130