EP0485285A1 - Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu - Google Patents

Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu Download PDF

Info

Publication number
EP0485285A1
EP0485285A1 EP91402973A EP91402973A EP0485285A1 EP 0485285 A1 EP0485285 A1 EP 0485285A1 EP 91402973 A EP91402973 A EP 91402973A EP 91402973 A EP91402973 A EP 91402973A EP 0485285 A1 EP0485285 A1 EP 0485285A1
Authority
EP
European Patent Office
Prior art keywords
layer
bistable
conductive material
cathodoluminescent
electrooptical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91402973A
Other languages
English (en)
French (fr)
Other versions
EP0485285B1 (de
Inventor
Thierry Leroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0485285A1 publication Critical patent/EP0485285A1/de
Application granted granted Critical
Publication of EP0485285B1 publication Critical patent/EP0485285B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources

Definitions

  • the present invention relates to a bistable electrooptical device, a screen comprising such a device and a method of implementing this screen. It applies in particular to display and visualization but also to optical logic systems such as optical computers.
  • Bistable electrooptical devices are known, such as those described in the document "Electro-optic applications of ferroelectric liquid crystals to optical computing" written by M.A. Handschy et al. and published in the journal Ferroelectrics 1988, vol.85, pp.279-289 published by Gordon and Breach Science publishers SA These include a liquid crystal cell attached to a layer of photoconductive material, the whole being controlled by an external luminous flux.
  • the liquid crystal cell may be transparent or opaque and may or may not transmit the control light beam.
  • the resistivity of the photoconductive material is reduced while when the transmission is substantially zero, the resistivity becomes very high.
  • the transition from one to the other of the conductive or insulating states is carried out according to a hysteresis curve: at a given light flux, there may exist two states of transmission of the cell associated with the photoconductor such that the photoconductive material can be in either state (conductive or insulating). Logical information can thus be recorded.
  • Optical computer memories work with such devices although these perform poorly. Indeed, the switching time of such a bistable device is long (a few milliseconds) which prohibits the carrying out of logic operations at high frequencies.
  • the object of the present invention is to provide a bistable electro-optical device with rapid tilting time, of the order of a microsecond.
  • a device according to the invention has the advantage of a simple embodiment using well-controlled manufacturing techniques.
  • the present invention relates to a bistable electrooptical device comprising: first and second substrates, means for hermetically sealing the first and second substrates together so as to produce a vacuum enclosure, contained in said enclosure, at least one bistable element comprising: on the one hand, supported by the first substrate: a first layer of conductive material, a layer of photoconductive material, a layer of cathodoluminescent material, on the other hand, a means for exciting said cathodoluminescent material.
  • the first substrate and the first layer of conductive material are transparent.
  • a bistable element comprises a second layer of conductive material, the first and the second layers of conductive material being separated and deposited on the first substrate, the layer of photoconductive material at least partially covering the first and second layers of conductive material so as to electrically connect these layers of conductive material, the layers of conductive material and of photoconductive material forming a substantially coplanar structure covered by the layer of cathodoluminescent material.
  • the second layer of conductive material may optionally be transparent.
  • an insulating layer is interposed between the substantially coplanar structure and the layer of cathodoluminescent material, this insulating layer being provided with an opening pierced at the level of the second layer of conductive material so that an electrical contact is established between the second layer of conductive material and the layer of cathodoluminescent material.
  • This insulating layer makes it possible to isolate the first layer of conductive material and the layer of cathodoluminescent material, when the photoconductive material does not completely cover the first layer of conductive material.
  • the first layer of conductive material is deposited on the first substrate, the layer of photoconductive material covering at least partially the first layer of conductive material, these layers forming a stacked structure covered by the layer of cathodoluminescent material , and in that said bistable element comprises means for electrically isolating the first layer of conductive material from the layer of cathodoluminescent material.
  • said means for electrically isolating the first layer of conductive material from the layer of cathodoluminescent material may consist of an extension of the layer of photoconductive material completely covering the first layer of conductive material.
  • Said means for electrically insulating the first layer of conductive material from the layer of cathodoluminescent material may consist of an insulating layer covering the stacked structure, when the layer of photoconductive material partially covers the first layer of conductive material, this insulating layer being provided an opening at the layer of photoconductive material so as to ensure electrical contact between the layer of photoconductive material and the layer of cathodoluminescent material.
  • the stacking structure comprises a second layer of conductive material covering at least partially the layer of photoconductive material.
  • This second layer can be partially arranged on the substrate.
  • the bistable device has two operating modes detailed below, one with constant or zero excitation light flux, the other at constant excitation voltage.
  • the device comprises a light source arranged for example outside the enclosure.
  • the external light source is advantageously placed on the side of the first substrate, the latter as well as the layer of first conductive material which must then be transparent. Furthermore, when the device of the invention is used in a display screen, the light emitted by the cathodoluminescent material is advantageously transmitted through layers interposed between this material and the first substrate, the assembly having to be transparent.
  • Various means for exciting the cathodoluminescent material can be used: one can cite in particular a source of electrons with emissive cathodes with microtips, a source of electrons with semiconductor diodes having a metal-insulating metal structure or any other source of electrons.
  • the device comprises several bistable elements
  • a single layer of cathodoluminescent material is common to all the bistable elements.
  • the device comprises several bistable elements
  • these elements can be arranged in a matrix. This arrangement allows multiplexed operation of the bistable elements, which can facilitate control of the device.
  • the first layers of conductive material are advantageously connected together in parallel conductive columns and the excitation means is controlled along parallel lines.
  • Another object of the present invention consists in taking advantage of the bistability of the previous device and therefore the possibility of memorizing a state in order to produce a flat display screen advantageously multiplexed, very bright.
  • the present invention therefore relates to a flat screen comprising a bistable device comprising several bistable elements arranged in rows and in columns, each bistable element of a line and a column forming a pixel of the screen.
  • the number of lines of such a screen is not limited. Large screens can be produced while retaining simplicity of control.
  • the signals corresponding to the information to be displayed are delivered on the conductive columns produced by the first layers of conductive material connected to each other. These conductive columns are anodes; they have much lower capacities (by a factor of 500 to 1000) than cathodes to which these signals are usually applied.
  • the capacitive power required to control the screen is reduced accordingly. Indeed, the sources of electrons have limited thicknesses and therefore high capacities whereas a bistable element taking into account the thickness of vacuum has a lower capacity.
  • the present invention also relates to a method for the implementation of such a screen.
  • the process consists in: successively address the lines of pixels, when addressing a line, bring all the pixels of this line in a state "off", then turn on the pixels of this line to be, maintain the pixels of the unaddressed lines in that of the states taken during the previous addressing.
  • Figure 1 schematically shows a sectional view of a bistable electrooptical device according to the invention.
  • This device comprises a first substrate 10 possibly transparent, for example made of glass, and a second substrate 12, for example made of glass too.
  • a seal 14 for example made of fusible glass hermetically seals the first and second substrates 10, 12 between them so as to obtain an enclosure in which a high vacuum is produced (for example, 10 mm Hg).
  • the device comprises, contained in said enclosure, several bistable elements 16 arranged in a matrix along lines and columns.
  • Each bistable element 16 comprises, supported by the first substrate, a series of layers forming a stacking structure.
  • a first layer 18 of conductive material, possibly transparent, for example of indium tin oxide (ITO) is deposited on the substrate 10; this layer 18 has a thickness of for example 500 ⁇ ; a layer of photoconductive material 20, for example formed of a stack of n+-doped amorphous silicon (a-Si-n+), of amorphous silicon (a-Si) and of amorphous silicon doped n+ (a-Si-n +), completely covers the first layer of conductive material 18; this layer 20 has for example a thickness of 1 to 2 ⁇ m.
  • ITO indium tin oxide
  • a second layer of transparent conductive material 24 is deposited so as to make contact between the layer of photoconductive material 20 and the layer of cathodoluminescent material 22. This contact defines the active area of each bistable element.
  • This layer 24 has for example a thickness of 500 to 1000 ⁇ .
  • This layer ensures good ohmic contact between the photoconductive material and the cathodoluminescent material 22.
  • cathodolumiscent material 22 is common to all the bistable elements. In this way, the deposition of this layer is simplified.
  • the first layers of conductive material 18 are interconnected to form conductive columns. In this way, it is possible to carry out a multiplexed control of the bistable elements 16 if the excitation means is controllable online.
  • the layer 24 is etched so that the contacts between the layer 20 and the layer 22 thus produced define separate bistable elements.
  • FIG. 2B schematically represents an alternative embodiment of a bistable element in a stacking arrangement.
  • an insulating layer 23 covers the layer of photoconductive material 20.
  • This insulating layer 23 has an opening 25 clearing the base of the layer of photoconductive material 20 so as to ensure electrical contact between the layer 20 and the layer of photoluminescent material 22.
  • FIG. 3 schematically represents an alternative embodiment of a bistable element.
  • the layers are arranged in a substantially coplanar structure.
  • the first layer of conductive material 18 as well as the second layer of conductive material 24 are deposited on the first substrate 10; the layer of photoconductive material 20 completely covers the conductive material 18 and partially the layer 24.
  • the layer of cathodoluminescent material 22 covers the coplanar structure 18, 20, 24, while having no contact with the layer 18 and contact with the layer 24.
  • a bistable element 16 also comprises a means 26 for exciting the layer of cathodoluminescent material 22.
  • This means 26 is a source of electrons supported by the second substrate 12.
  • the means 26 allows an excitation of the successive lines of bistable elements.
  • FIG. 4 schematically represents a first embodiment of a means 26 for exciting the cathodoluminescent layer. It is a source of electrons with microtip emissive cathodes. A description of such a source of electrons is found, for example, in French patent application No. 2,623,013.
  • conductive lines 28 are deposited on the substrate 12. These lines support microtips 30 capable of emitting electrons. They are covered with an insulating layer 32 pierced with orifices 34 at the locations of the microtips 30.
  • lines are formed on the grid while the microtips rest on a common conductive layer.
  • FIG. 5 schematically represents a second embodiment of a means for exciting the cathodoluminescent layer. It is a diode electron source with a metal-insulator-metal structure, called MIM (or MDM for metal-dielectric-metal).
  • MIM metal-insulator-metal structure
  • metal conductive lines 38 rest on the substrate 12. Each conductive line 38 is covered with a thin dielectric layer 40.
  • the dielectric (insulating) layers 40 are covered by a single metallic film 42.
  • the MIM structure forms a diode capable of emitting electrons.
  • FIG. 6 schematically represents a third exemplary embodiment of a means for exciting the cathodoluminescent layer. It is a source of electrons with semiconductor diodes. A description of such a source of electrons is found in the aforementioned book.
  • Sources with a semiconductor-metal structure and sources with p-n junctions belong to the category of semiconductor diode sources.
  • FIG 6 there is shown by way of nonlimiting example a source of electrons to semiconductor-metal structure.
  • Lines of semiconductor material 44 rest on the substrate 12. These lines 44 are covered by a metallic layer 46.
  • control means 48 which can be seen in FIG. 1.
  • This control means 48 is connected to the electrodes (18, 28, 36 or 18, 38, 42 or 18, 44, 46) which must be via contacts leaving the enclosure.
  • the layers of conductive material 18 act as an anode; the lines drawn in the electron sources are cathodes.
  • FIG. 7 representing an output light flux Fs emitted by the cathodoluminescent material (or what amounts to the same an acceleration voltage Va of the electrons emitted by the source of electrons) as a function of the voltage Vak applied between the anode and the cathode at the intersection of which the considered bistable element is located.
  • the current emitted by the electron source 26 (fig. 1) is kept fixed by application of an adequate control voltage.
  • This voltage is applied between the grid 36 and the cathode 28 considered for a source of electrons with emissive cathodes with microtips (fig. 4), between the metallic film 42 and the metallic layer 38 constituting the cathode considered for a MIM structure (fig. .5), or between the metal layer 46 and the semiconductor layer 44 constituting the cathode considered for a semiconductor structure (fig. 6).
  • the electrons emitted by the electron source are more or less accelerated according to the value of the potential difference Vak applied between the anode and the cathode considered.
  • Vak When Vak is decreased from a value greater than V1 (part B of the curve), the voltage Va substantially retains its maximum value and then drops sharply to its minimum value when Vak becomes below a threshold Vo approximately equal to 90 V .
  • the curve describing the output light flux Fs is identical to that describing the behavior of Va. Indeed, when the acceleration voltage is low, the cathodoluminescent material emits little light and the conductivity of the photoconductive material is low.
  • the phenomenon is similar but in reverse, when Vak decreases.
  • the curve describes a hysteresis cycle comprising an operating zone between V0 and V1 with two stable states.
  • the input luminous flux, external luminous flux directed towards the photoconductive material is considered to be constant or zero.
  • this input light flux is delivered by a light source 50 arranged outside the enclosure containing the bistable elements.
  • This light source is controlled by the control means 48.
  • the different bistable elements can be illuminated independently of each other advantageously from the substrate 10.
  • Such a light source 50 can for example be produced by one or more lasers or one or more other bistable elements for example.
  • the conductivity of the photoconductive material is varied by subjecting it to an increasingly intense input light flux Fe.
  • a threshold F1 part C of the curve
  • the conductivity is minimal and therefore as before, the voltage Vak is practically entirely brought back to the terminals of the photoconductive material for a low acceleration voltage.
  • the output luminous flux Fs is therefore minimal.
  • the conductivity is maximum; the voltage across the photoconductive material is negligible and the acceleration voltage becomes maximum: the output light flux Fs is maximum.
  • the curve therefore describes a hysteresis cycle comprising an operating zone between Fo and F1 with two stable states.
  • the changeover from one to the other of the stable states is obtained in a time of the order of a microsecond. It is thus possible to produce fast optoelectronic memories, competitive with electronic systems and simple to produce.
  • a device according to the invention allows the production of a flat display screen.
  • FIG. 9 Such a screen is shown diagrammatically in FIG. 9. It takes up the elements of the bistable electrooptical device described above and the references adopted are identical to those of FIG. 1. In the rest of the description, it will be considered that this screen is observed from the side of substrate 10.
  • the screen is matrix; the bistable elements 16 are arranged in rows and columns: each bistable element corresponds to a pixel on the screen.
  • the first layers of conductive material 18 are connected together to form conductive columns and the electron sources are controlled online, a bistable element being defined at the intersection of the lines and the columns.
  • FIG. 10 Another coplanar structure than that of FIG. 3 is shown diagrammatically in section in FIG. 10.
  • the first and second layers of conductive material 18, 24 are deposited on the first substrate 10: the first layer 18 as we have seen, in the form of a conductive column, the second 24 defining the dimensions of the pixel, this second layer being transparent.
  • the first and second layers of conductive material 18, 24 are interconnected by a layer of photoconductive material 20 partially covering them.
  • a layer of insulating material 23 covers this coplanar arrangement with the exception of a location corresponding to an opening 25 and situated at the level of the second conductive layer 24.
  • This coplanar arrangement is covered by a deposit of cathodoluminescent material 22 which has electrical contact with the only second layer 24.
  • FIG. 11 schematically represents a section of another stacking structure than those represented in FIGS. 1, 2A and 2B.
  • the first layer of conductive material 18, deposited on the substrate 10, is covered by a layer of photoconductive material 20.
  • a second layer of conductive material 24 has a part 24A which at least partially covers the layer of photoconductive material 20 and another part resting on the substrate 10 whose geometry defines the dimensions of the pixel.
  • the structure is covered by a layer of cathodoluminescent material 22.
  • the electron source 26 (fig. 9) is able to excite the successive lines of pixels on the screen under the action of the control means 48.
  • control means 48 delivers control signals to the conductive columns to switch the pixels of this line on or off.
  • FIGS. 12A to 12E schematically represent timing diagrams for controlling the state of a pixel on the screen. In these diagrams, the amplitude scales of the potentials are not respected.
  • the control of the screen is carried out at constant light flux and constant electron current.
  • the conductivity of the photoconductive material of the pixel in question is varied by varying the difference in potentials applied between the anode and the cathode (namely the conductive column associated with the pixel and for example the conductive line of an electron source with cathodes microtip transmitters, the pixel considered being placed at the intersection of this line and this column).
  • the electron acceleration voltage is minimum and the pixel is in an extinct state.
  • the acceleration voltage of the electrons is maximum and the pixel is in an on state.
  • FIG. 12A represents the potential Vl applied to a cathode (line) as a function of time.
  • a given line is addressed every frame time Tt.
  • the addressing time of a line T1 is divided into two periods: a first period Te devoted to erasing the state of the pixels of the addressed line (all the pixels are brought to an extinct state), a second period Ta of addressing itself during which the pixels are carried in the state which they must take.
  • Vl takes a value -VlN, with VlN for example equal to 80 V; during Ta, Vl takes a value -VlB with VlB for example equal to 100 V. Vl takes the value -Vr the rest of the time with Vr for example equal to 95 V.
  • FIG. 12B schematically represents the potential VcB applied to a conductive column to obtain a pixel in an on state.
  • the potential VcB takes the value -Vc.
  • the values Vc and VlN are chosen such that VlN ⁇ Vc is less than Vo lower threshold value of the bistable element (fig. 7). As we saw previously, Vo can be equal to 90 V. VlN being chosen equal to 80 V, Vc is for example equal to 4 V.
  • VcB takes the value Vc.
  • FIG. 12C schematically represents the difference in potentials Vak between anode and cathode for carrying a pixel in an on state.
  • Vak takes the value VlN - Vc, that is to say in the example described 76 V which is much lower than Vo, the photoconductive material has a minimum conductivity causing an acceleration voltage minimum of excitation electrons; the output luminous flux is negligible: whatever its previous state (represented by dotted lines in FIG. 12C), the pixel is brought to an extinct state.
  • Vak takes the value VlB + Vc, that is to say in the example described 104 V which is much higher than the threshold value V1 (FIG. 7).
  • VlB + Vc the threshold value
  • FIG. 12D schematically represents the potential VcN applied to a conductive column to get a pixel in an off state.
  • the potential VcN takes the value Vc then the value -Vc during the addressing period.
  • FIG. 12E schematically represents the difference in potentials Vak between anode and cathode to carry a pixel in an extinct state whatever its previous state represented by dotted lines in FIG. 12E.
  • Vak takes the value VlN + Vc, that is to say in the example described 84 V which is much lower than Vo: the pixel is brought to an extinct state.
  • Vak takes the value VlB - Vc, that is to say in the example described 96 V, which is much less than V1: the pixel remains in the previous state, namely extinct .
  • N is the number of lines of a screen, thanks to this memorization, a lit state of a pixel is maintained N times longer than in a usual screen where the lit state is only maintained in the period of addressing of the corresponding line. We therefore obtain a screen much brighter than in the prior art.
  • the invention is in no way limited to the embodiments more specifically described and shown; on the contrary, it admits all variants.
  • other types of electron sources can be used or, for a screen, other implementation methods are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
EP91402973A 1990-11-08 1991-11-06 Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu Expired - Lifetime EP0485285B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9013871A FR2669124B1 (fr) 1990-11-08 1990-11-08 Dispositif electrooptique bistable, ecran comportant un tel dispositif et procede de mise en óoeuvre de cet ecran.
FR9013871 1990-11-08

Publications (2)

Publication Number Publication Date
EP0485285A1 true EP0485285A1 (de) 1992-05-13
EP0485285B1 EP0485285B1 (de) 1996-02-28

Family

ID=9401984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91402973A Expired - Lifetime EP0485285B1 (de) 1990-11-08 1991-11-06 Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu

Country Status (5)

Country Link
US (1) US5278544A (de)
EP (1) EP0485285B1 (de)
JP (1) JP2803417B2 (de)
DE (1) DE69117437T2 (de)
FR (1) FR2669124B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623944A1 (de) * 1993-05-05 1994-11-09 AT&T Corp. Flache Bildwiedergabeanordnung und Herstellungsverfahren
EP0657914A1 (de) * 1993-12-08 1995-06-14 Commissariat A L'energie Atomique Anode mit elektrisch leitende Streifen die individuel adressierbar sind

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019005A1 (de) * 1991-04-19 1992-10-29 Hertz Inst Heinrich Elektronenoptisches bild-endgerät auf der basis einer kaltkathode
KR0156032B1 (ko) * 1993-05-28 1998-10-15 호소야 레이지 전자방출소자 및 그 전자방출소자를 이용한 화상표시장치, 화상표시 장치의 구동장치, 화상표시장치의 화상표시 구동회로
US5940163A (en) * 1994-07-19 1999-08-17 Electro Plasma Inc. Photon coupled color flat panel display and method of manufacture
US5786663A (en) * 1994-12-01 1998-07-28 Commissariat A L'energie Atomique Electron collector having independently controllable conductive strips
FR2732160B1 (fr) * 1995-03-22 1997-06-13 Pixtech Sa Anode d'ecran plat de visualisation a bandes resistives
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5949395A (en) * 1995-12-21 1999-09-07 Telegen Corporation Flat-panel matrix-type light emissive display
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
TW420964B (en) * 1998-02-25 2001-02-01 Toppan Printing Co Ltd Organic electroluminescence display substrate, method of manufacturing it and organic electroluminescent display element
JP2004272159A (ja) * 2003-03-12 2004-09-30 Pioneer Electronic Corp ディスプレイ装置及び表示パネルの駆動方法
JP2005149865A (ja) * 2003-11-14 2005-06-09 Nippon Hoso Kyokai <Nhk> 電界放出装置、電界放出基板、駆動装置およびディスプレイ
JP2005294158A (ja) * 2004-04-02 2005-10-20 Toshiba Corp 画像表示装置
KR20060124486A (ko) * 2005-05-31 2006-12-05 삼성에스디아이 주식회사 전자방출표시장치 및 그의 구동방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103973A (de) * 1974-01-12 1975-08-16
US3982158A (en) * 1974-07-15 1976-09-21 Hughes Aircraft Company Power distribution control system
US4140941A (en) * 1976-03-02 1979-02-20 Ise Electronics Corporation Cathode-ray display panel
JPS52107771A (en) * 1976-03-08 1977-09-09 Toshiba Corp Panel display and its driving system
JPS553169A (en) * 1978-06-22 1980-01-10 Matsushita Electric Ind Co Ltd Character display unit
FR2561019B1 (fr) * 1984-03-09 1987-07-17 Etude Surfaces Lab Procede de realisation d'ecrans de visualisation plats et ecrans plats obtenus par la mise en oeuvre dudit procede
FR2568394B1 (fr) * 1984-07-27 1988-02-12 Commissariat Energie Atomique Dispositif de visualisation par cathodoluminescence excitee par emission de champ
IE850536L (en) * 1985-03-04 1986-09-04 Robillard Jean J A Displaying information
US4801850A (en) * 1987-07-28 1989-01-31 Xerox Corporation High brightness vacuum fluorescent display (VFD) devices
US4924148A (en) * 1988-06-24 1990-05-08 Tektronix, Inc. High brightness panel display device
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INFORMATION DISPLAY. vol. 5, no. 1, Janvier 1989, NEW YORK US pages 17 - 19; I. BRODIE: 'Advanced technology: flat cold-cathode CRTs' *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623944A1 (de) * 1993-05-05 1994-11-09 AT&T Corp. Flache Bildwiedergabeanordnung und Herstellungsverfahren
US5498925A (en) * 1993-05-05 1996-03-12 At&T Corp. Flat panel display apparatus, and method of making same
EP0657914A1 (de) * 1993-12-08 1995-06-14 Commissariat A L'energie Atomique Anode mit elektrisch leitende Streifen die individuel adressierbar sind
FR2713823A1 (fr) * 1993-12-08 1995-06-16 Commissariat Energie Atomique Collecteur d'électrons comportant des bandes conductrices commandables indépendamment.

Also Published As

Publication number Publication date
FR2669124B1 (fr) 1993-01-22
JP2803417B2 (ja) 1998-09-24
DE69117437D1 (de) 1996-04-04
EP0485285B1 (de) 1996-02-28
FR2669124A1 (fr) 1992-05-15
DE69117437T2 (de) 1996-09-05
JPH0688975A (ja) 1994-03-29
US5278544A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
EP0485285B1 (de) Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu
FR2593343A1 (fr) Matrice d&#39;elements photosensibles et son procede de fabrication, procede de lecture associe, et application de cette matrice a la prise de vue d&#39;images
FR2488013A1 (fr) Dispositif a matrice d&#39;elements actifs
EP0209535B1 (de) Selbstspeichernde anzeigeeinrichtung mit dünnfilmelektrolumineszenz- und fotoleiterschichten
EP0704877A1 (de) Elektrischer Schutz von einer Anode eines flachen Bildschirms
EP0246945B1 (de) Elektro-optischer Anzeigeschirm und sein Herstellungsverfahren
FR2530851A1 (fr) Appareil de visualisation plan pour televiseurs et terminaux
EP0506528B1 (de) Matrix-Ansteuerungsstruktur für Anzeigeschirm
EP0082052B1 (de) Elektrochrome Anzeigevorrichtung mit thermoelektrischer Ansteuerung
EP0197992B1 (de) Anzeigevorrichtung mit aktiver matrix, angesteuert durch transistorenpaare
EP0965224B1 (de) Verfahren zur steuerung einer lichtempfindlichen vorrichtung mit schwacher remanenz und lichtempfindliche vorrichtung zur durchführung des verfahrens
EP1456831B1 (de) Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt
EP0392918B1 (de) Elektrolumineszenzanzeigebildschirm mit Speicher und mit besonderer Elektrodenkonfiguration
EP0292376A1 (de) Elektrolumineszenzanzeigeeinrichtung mit Speichereffekt und mit Halbton
EP0014608A1 (de) Elektrooptische Anzeigevorrichtung
EP1419541A2 (de) Bildanzeigevorrichtungspaneele hergestellt aus einer matrix von elektrolumineszenten zellen mit speichereffekt
FR2551902A1 (fr) Ecran de visualisation a adressage par elements non lineaires et son procede de fabrication
EP0106717B1 (de) Anzeigevorrichtung mit aktiver Steuerung mittels eines Fotoleiters
EP0734043A1 (de) Doppel-Gate-Flaches Bildschirm
WO1989009960A1 (fr) Dispositif de visualisation et d&#39;ecriture
FR2846794A1 (fr) Panneau organique electroluminescent bi-stable ou chaque cellule comprend une diode de shockley
EP0268522A1 (de) Matrixanzeigeeinrichtung und Verfahren zur Steuerung derselben
EP0688009A1 (de) Multiplexbetriebener Bildschirm mit aktiver Matrix
FR2561423A1 (fr) Dispositif de visualisation a commande electrique
FR2557339A1 (fr) Dispositif d&#39;affichage comportant des cellules a cristaux liquides et des moyens d&#39;adressage ameliores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19921015

17Q First examination report despatched

Effective date: 19950310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 69117437

Country of ref document: DE

Date of ref document: 19960404

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961128

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981104

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051106