EP0484993B1 - Verfahren zum Regeln des Anfahrens einer Vergasung fester Brennstoffe im Wirbelzustand - Google Patents

Verfahren zum Regeln des Anfahrens einer Vergasung fester Brennstoffe im Wirbelzustand Download PDF

Info

Publication number
EP0484993B1
EP0484993B1 EP91202539A EP91202539A EP0484993B1 EP 0484993 B1 EP0484993 B1 EP 0484993B1 EP 91202539 A EP91202539 A EP 91202539A EP 91202539 A EP91202539 A EP 91202539A EP 0484993 B1 EP0484993 B1 EP 0484993B1
Authority
EP
European Patent Office
Prior art keywords
temperature
reactor
oxygen
gasification
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91202539A
Other languages
English (en)
French (fr)
Other versions
EP0484993A1 (de
Inventor
Gerhard Schmitt
Horst Mielke
Peter Dr. Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0484993A1 publication Critical patent/EP0484993A1/de
Application granted granted Critical
Publication of EP0484993B1 publication Critical patent/EP0484993B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • C10J3/487Swirling or cyclonic gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/04Powdered fuel injection

Definitions

  • the invention relates to a method for regulating the start-up of gasification of solid, fine-grained fuels with oxygen-containing gas and water vapor in the fluidized state in a gasification reactor, which has an outlet duct for product gas at the upper end and an ash outlet in the lower region.
  • the gasification works at a pressure of 1 to 100 bar.
  • the invention has for its object to start the gasification reactor easily controllable, wherein the reactor can be structurally simple. According to the invention, this is achieved in the process mentioned at the outset by burning an ash and fine-grained fuel-containing solid mixture in the reactor in the heating-up phase with the supply of oxygen-containing gas in the vortex state while supplying oxygen-containing gas and thereby the temperature in the reactor up to about the target temperature of the gasification increased that at the end of the heating phase in a subsequent inerting phase, the supply of oxygen-containing gas is reduced, an inert gas is passed into the reactor, the free oxygen content in the product gas is practically reduced to zero and the temperature is kept practically constant, and that after the Inerting phase passes into the gasification, with oxygen or oxygen-containing gas and possibly water vapor conducts into the reactor, increases the fuel supply and keeps the target gasification temperature in the range from 600 to 1500 ° C, measured in the upper region of the reactor or in the discharge duct, practically constant after a set time and, if the temperature is too low, reduces the
  • the temperature is gradually increased. In the case of a reactor with brick lining, temperature increases of approximately 40 to 120 ° C. per hour are recommended. If the temperature is too high, the supply of solid fuel is reduced and if the temperature is too low, the supply of solid fuel is increased, because there is an excess of stoichiometric oxygen in the gasification reactor. For economic reasons in particular, it is advantageous to pass air into the reactor as an oxygen-containing gas in the heating phase. For example, when the heating-up phase has ended and the target temperature of the gasification has been reached, the supply of oxygen-containing gas is reduced and, in an inerting phase, an increasing amount of inert gas is introduced into the reactor. The total amount of gas supplied remains mostly constant. This inert gas is usually recycled product gas, nitrogen or carbon dioxide.
  • the gasification can begin.
  • a gasifying agent mixture is passed into the reactor, which mainly consists of oxygen (for example also air) and more or less water vapor.
  • inert gas eg N2 or CO2
  • the reactor is given more fuel and reduces the proportion of ashes fed to zero. If the fuel, eg lignite, itself contains a lot of water, the proportion of water vapor in the gasifying agent mixture can be reduced and possibly omitted entirely.
  • the temperature is kept constant with a fluctuation range of ⁇ 40 ° C, which is done by regulating the fuel supply.
  • the supply of water vapor can be varied, which is possible both in the heating phase and during inerting and gasification.
  • solid fuels are gasified in the vortex state, which are fed in by a conveyor (2).
  • Coal, lignite or peat can be used as solid fuels.
  • the fuels or inert material are fed from a storage bunker (3) via a metering device (4), for example a rotary valve.
  • a container (6) for the fuels to be gasified Above the storage bunker (3) there is a container (6) for the fuels to be gasified and a container (7) for inert material, especially ash or sand.
  • the following explanations speak of the fact that the fuel to be gasified is coal and the inert material is ash.
  • the reactor (1) has a distribution chamber (9) for gases and / or water vapor which flow in through the line (10). These fluids enter the reactor (1) through a grate (11).
  • a branch line (12) with a valve (13) enables the metered supply of these fluids simultaneously into an area above the grate (11).
  • a circulating fluidized bed forms in the reactor (1), a mixture of product gas and solids passing through the exhaust duct (15) into a cyclone (16) and being separated there.
  • the product gas flows through line (17) to a waste heat boiler (18) and is available in line (19) for further use. Since the product gas is rich in the components H2 and CO, it can e.g. be processed into synthesis gas.
  • a water vapor line (26), an oxygen line (27), an air line (28) and an inert gas line (29) are connected to the collecting line (10).
  • Each of these lines (26) to (29) has a control valve (30) and a measuring device (31) for determining the amount flowing through.
  • the control valves (30) are actuated by a control unit (35) via signal lines (32); the quantity flowing through the respective line is communicated to the control unit (35) by a signal line (33) from the measuring device (31).
  • a temperature measuring device (34) detects the temperature in the exhaust duct (15) and this information passes through the signal line (36) into the control unit (35). From here, the temperature is regulated by semi-automatic or fully automatic control in a manner to be described.
  • the supply of coal to the reactor (1) is regulated via the control line (37). Details of the possibilities of how this regulation takes place are explained with the aid of FIGS. 2a and 2b.
  • Fig. 2a the vertical axis (T) indicates the temperature (e.g. in ° C), the horizontal axis (t) is the same for Figs. 2a and 2b the time axis (values e.g. in hours).
  • the vertical axis (M) of Fig. 2b relates to quantities (e.g. in kg / h) of substances which are fed to the reactor (1) as a function of time.
  • the solid line (a) represents the course of the air supply through line (28), line (b) belongs to the inert gas supplied through line (29), the dash-dotted line (c) belongs to the coal feed and the dotted line (d ) belongs to the water vapor that flows through line (26).
  • ash is placed in the reactor (1), swirled with hot air and later a start-up burner (40) is started.
  • Gaseous or liquid fuel for example natural gas or heating oil, is fed to this burner (40) through line (41) and air is fed in through line (42).
  • the temperature measured in the measuring device (34) gradually increases until, at time (A), coal is fed from the bunker (3) in a metered amount via the cellular wheel sluice (4) to the reactor (1).
  • the coal swirled by the air supply burns with excess oxygen in the reactor, as a result of which the temperature is further increased.
  • the start-up burner (40) can be switched off and the proportion of ash supplied is almost zero.
  • the setpoint temperature can be specified in the control unit (35) by manual control or by automatic calculation.
  • the temperature rise in the heating phase continues until the setpoint of the gasification temperature is reached or slightly exceeded.
  • the inerting phase now begins to make the oxygen content in the product gas disappear.
  • the supply of air through line (28) to the reactor (1) is reduced at constant temperature and at the same time the amount of inert gas is increased. It is ensured that the total amount of air and inert gas remains approximately constant.
  • the time (C) denotes the point at which the oxygen content in the product gas has decreased to 0 and the inerting phase has ended.
  • An analyzer determines the oxygen content in the product gas of the channel (15).
  • the reactor (1) is ideally provided with constant amounts of coal, water vapor and oxygen (for example in the form of air) supplied, for example, 1 kg of water vapor is used per Nm3 of oxygen. If lignite or peat is gasified, which is very watery, the supply of water vapor can be reduced or possibly completely eliminated.
  • the temperature is regulated by regulating the coal supply via the cellular wheel sluice (4), the reactor (1) being given more coal if the temperature is too high and less coal if the temperature is too low. It is advisable to keep the temperature constant during the gasification with a fluctuation range of ⁇ 40 ° C and preferably ⁇ 30 ° C.
  • the reactor (1) has a diameter of 2.5 m and a height above the grate (11) of 15 m.
  • the coal to be gasified is a coal mixture with a lower calorific value of 5579 kcal / kg, a water content of 24% by weight and an ash content of 8.3% by weight.
  • the coal has the following elementary analysis (water and ash free):
  • the combustion and gasification takes place without technically pure oxygen only with air, nitrogen and water vapor.
  • the supply of secondary air through line (12) is dispensed with.
  • the gas composition in channel (15) at different times is:

Description

  • Die Erfindung betrifft ein Verfahren zum Regeln des Anfahrens einer Vergasung fester, feinkörniger Brennstoffe mit sauerstoffhaltigem Gas und Wasserdampf im Wirbelzustand in einem Vergasungsreaktor, der am oberen Ende einen Abzugskanal für Produktgas und im unteren Bereich einen Ascheabzug aufweist. Die Vergasung arbeitet bei einem Druck von 1 bis 100 bar.
  • Ein Verfahren dieser Art ist im US-Patent 4 594 967 beschrieben. Hierbei wirken mehrere Abschnitte des Wirbelbettes in steuerbarer Weise zusammen. Das Anfahren erfolgt zunächst mit Hilfe eines Aufheizbrenners, danach gibt man dem Brennstoff Sauerstoff in unterstöchiometrischer Menge zu, bis man den stationären Vergasungszustand erreicht hat.
  • Der Erfindung liegt die Aufgabe zugrunde, den Vergasungsreaktor leicht regelbar anzufahren, wobei der Reaktor baulich einfach ausgestaltet sein kann. Erfindungsgemäß gelingt dies beim eingangs genannten Verfahren dadurch, daß man im Reaktor in der Aufheizphase vor der Vergasung ein Asche und feinkörnige Brennstoffe enthaltendes Feststoffgemisch unter Zufuhr von sauerstoffhaltigem Gas bei überstöchiometrischem Sauerstoffangebot im Wirbelzustand verbrennt und dabei die Temperatur im Reaktor bis etwa auf die Solltemperatur der Vergasung erhöht, daß man am Ende der Aufheizphase in einer anschließenden Inertisierungsphase die Zufuhr von sauerstoffhaltigem Gas verringert, ein Inertgas in den Reaktor leitet, den Gehalt an freiem Sauerstoff im Produktgas praktisch auf Null reduziert und dabei die Temperatur praktisch konstant hält, und daß man nach der Inertisierungsphase in die Vergasung übergeht, wobei man Sauerstoff oder sauerstoffhaltiges Gas und ggf. Wasserdampf in den Reaktor leitet, die Brennstoffzufuhr erhöht und die im Bereich von 600 bis 1500°C liegende, im oberen Bereich des Reaktors oder im Abzugskanal gemessene Solltemperatur der Vergasung nach einer Einstellzeit praktisch konstant hält und bei zu niedriger Temperatur die Zufuhr an festem Brennstoff verringert und bei zu hoher Temperatur die Zufuhr an Brennstoff steigert. Im stationären Vergasungsbetrieb vermeidet man das Absinken der Temperatur, da sonst das Produktgas unerwünschte Schwelprodukte enthalten würde.
  • In der Aufheizphase steigert man die Temperatur allmählich. Bei einem Reaktor mit Ausmauerung empfehlen sich Temperatursteigerungen pro Stunde von etwa 40 bis 120°C. Bei zu hoher Temperatur wird die Zufuhr von festem Brennstoff verringert und bei zu niedriger Temperatur die Zufuhr von festem Brennstoff gesteigert, weil ein überstöchiometrisches Sauerstoffangebot im Vergasungsreaktor vorhanden ist. Vor allem aus ökonomischen Gründen ist es vorteilhaft, in der Aufheizphase Luft als sauerstoffhaltiges Gas in den Reaktor zu leiten. Etwa dann, wenn die Aufheizphase beendet und die Solltemperatur der Vergasung erreicht ist, verringert man die Zufuhr an sauerstoffhaltigem Gas und leitet in einer Inertisierungsphase in zunehmender Menge Inertgas in den Reaktor. Die dabei insgesamt zugeführte Gasmenge bleibt zumeist ungefähr konstant. Bei diesem Inertgas handelt es sich üblicherweise um zurückgeführtes Produktgas, Stickstoff oder Kohlendioxid.
  • Wenn während der Inertisierungsphase im Reaktor genügend mit Inertgas gespült worden ist, damit der Sauerstoffgehalt im Produktgas verschwindet, kann die Vergasung beginnen. Hierbei leitet man ein Vergasungsmittelgemisch in den Reaktor, das hauptsächlich aus Sauerstoff (z.B.. auch Luft) und mehr oder weniger Wasserdampf bestent. Zu Beginn der Vergasung, in der Einstellzeit, wird man dem Reaktor abnehmende Mengen an Inertgas (z.B. N₂ oder CO₂) zuführen. Gleichzeitig gibt man dem Reaktor mehr Brennstoff auf und verringert den Anteil der zugeführten Asche bis auf Null. Falls der Brennstoff, z.B. Braunkohle, selbst viel Wasser enthält, kann man den Anteil des Wasserdampfs im Vergasungsmittelgemisch verringern und eventuell ganz weglassen. Wenn die Vergasung den stationären Zustand erreicht hat, wird die Temperatur mit einem Schwankungsbereich von ± 40°C konstant gehalten, was durch Regeln der Brennstoffzufuhr geschieht.
  • Als zusätzliche Maßnahme zum Regeln der Temperatur im Reaktor kann man die Zufuhr von Wasserdampf variieren, was sowohl in der Aufheizphase als auch beim Inertisieren und beim Vergasen möglich ist.
  • Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt:
  • Fig. 1
    die Vergasungsanlage in schematischer Darstellung,
    Fig. 2a
    den Temperaturverlauf beim Anfahren und
    Fig. 2b
    eine Möglichkeit der Einstellung der Brennstoff- und Betriebsmittelzufuhr beim Anfahren.
  • Im Reaktor (1) der Fig. 1 werden feste Brennstoffe im Wirbelzustand vergast, die durch eine Fördereinrichtung (2) eingespeist werden. Als feste Brennstoffe können z.B. Kohle, Braunkohle oder Torf verwendet werden. Aus einem Vorratsbunker (3) werden die Brennstoffe oder auch Inertmaterial über eine Dosiereinrichtung (4), z.B. eine Zellenradschleuse, herangeführt. Über dem Vorratsbunker (3) befindet sich ein Behälter (6) für die zu vergasenden Brennstoffe sowie ein Behälter (7) für Inertmaterial, insbesonder Asche oder Sand. Zur Vereinfachung wird in den nachfolgenden Erläuterungen davon gesprochen, daß es sich beim zu vergasenden Brennstoff um Kohle und beim Inertmaterial um Asche handelt.
  • Im unteren Bereich weist der Reaktor (1) eine Verteilkammer (9) für Gase und/oder Wasserdampf auf, die durch die Leitung (10) einströmen. Durch einen Rost (11) treten diese Fluide in den Reaktor (1) ein. Eine Abzweigleitung (12) mit einem Ventil (13) ermöglicht die dosierte Zufuhr dieser Fluide gleichzeitig auch in einen Bereich oberhalb des Rostes (11).
  • Im stationären Vergasungszustand bildet sich im Reaktor (1) eine zirkulierende Wirbelschicht aus, wobei ein Gemisch aus Produktgas und Feststoffen durch den Abzugskanal (15) in einen Zyklon (16) gelangt und dort getrennt wird. Das Produktgas strömt durch die Leitung (17) zu einem Abhitzekessel (18) und steht in der Leitung (19) zur weiteren Verwendung zur Verfügung. Da das Produktgas reich an den Komponenten H₂ und CO ist, kann es z.B. zu Synthesegas aufgearbeitet werden.
  • Im Zyklon (16) abgeschiedene Feststoffe fließen in der Leitung (20) zurück zum Reaktor (1). Asche mit geringem Restgehalt an Kohlenstoff gelangt durch ein Rohr (22), das zentral durch die Verteilkammer (9) geführt ist, in die Aschekammer (23) und wird periodisch durch die Leitung (24) abgezogen.
  • Mit der Sammelleitung (10) sind eine Wasserdampfleitung (26), eine Sauerstoffleitung (27), eine Luftleitung (28) und eine Inertgasleitung (29) verbunden. Jede dieser Leitungen (26) bis (29) weist ein Regelventil (30) und eine Meßeinrichtung (31) zum Bestimmen der durchfließenden Menge auf. Von einem Steuergerät (35) aus werden die Regelventile (30) über Signalleitungen (32) betätigt, die durch die jeweilige Leitung fließende Menge wird vom Meßgerät (31) aus durch eine Signalleiung (33) dem Steuergerät (35) mitgeteilt. Eine Temperaturmeßeinrichtung (34) stellt die Temperatur im Abzugskanal (15) fest und diese Information gelangt durch die Signalleitung (36) in das Steuergerät (35). Von hier aus erfolgt durch halbautomatische oder vollautomatische Steuerung in noch zu beschreibender Weise die Regelung der Temperatur. Hierbei wird die Zufuhr von Kohle zum Reaktor (1) über die Steuerleitung (37) geregelt. Einzelheiten der Möglichkeiten, wie diese Regelung erfolgt, werden mit Hilfe der Fig. 2a und 2b erläutert.
  • In Fig. 2a gibt die vertikale Achse (T) die Temperatur (z.B. in °C) an, die horizontale Achse (t) ist übereinstimmend für Fig. 2a und 2b die Zeitachse (Werte z.B. in Stunden). Die vertikale Achse (M) der Fig. 2b betrifft Mengen (z.B. in kg/h) von Stoffen, die dem Reaktor (1) zeitabhängig zugeführt werden. Die durchgezogene Linie (a) gibt den Verlauf der Luftzufuhr durch die Leitung (28) wieder, Linie (b) gehört zu dem durch die Leitung (29) herangeführten Inertgas, die strichpunktierte Linie (c) gehört zur Kohleeinspeisung und die punktierte Linie (d) gehört zum Wasserdampf, der durch die Leitung (26) strömt.
  • Für die erste Erwärmung gibt man Asche in den Reaktor (1), verwirbelt diese mit Heißluft und setzt später einen Anfahrbrenner (40) in Betrieb. Diesem Brenner (40) führt man gasförmigen oder flüssigen Brennstoff, z.B. Erdgas oder Heizöl, durch die Leitung (41) zu und speist Luft durch die Leitung (42) ein. Die in der Meßeinrichtung (34) gemessene Temperatur steigt dadurch allmählich an, bis man dann beim Zeitpunkt (A) Kohle aus dem Bunker (3) in dosierter Menge über die Zellenradschleuse (4) dem Reaktor (1) zuführt. In der nun beginnenden Aufheizphase mit Kohlezufuhr verbrennt die durch Luftzufuhr verwirbelte Kohle bei Sauerstoffüberschuß im Reaktor, wodurch die Temperatur weiter gesteigert wird. Der Anfahrbrenner (40) kann abgeschaltet werden und der Anteil an zugeführter Asche geht gegen Null. Bei zu steilem Temperaturanstieg verringert man die Zufuhr an Kohle zum Reaktor und erhöht sie dann, wenn der Temperaturanstieg unter dem gewünschten Verlauf zurückbleibt. Zur Korrektur einer zu hohen Temperatur kann auch Wasserdampf in den Reaktor geleitet werden. Der Sollwert der Temperatur kann im Steuergerät (35) durch manuelle Regelung oder aber durch automatische Berechnung vorgegeben sein.
  • Der Temperaturanstieg in der Aufheizphase erfolgt so lange, bis der Sollwert der Vergasungstemperatur erreicht oder leicht überschritten ist. In Fig. 2a ist dies der Zeitpunkt (B). Nunmehr setzt die Inertisierungsphase ein, um den Sauerstoffgehalt im Produktgas verschwinden zu lassen. Bei konstanter Temperatur wird hierfür die Zufuhr von Luft durch die Leitung (28) zum Reaktor (1) verringert und gleichzeitig die Menge an Inertgas erhöht. Dabei sorgt man dafür, daß die Gesamtmenge an Luft und Inertgas etwa konstant bleibt. In Fig. 2a bezeichnet der Zeitpunkt (C) die Stelle, bei welcher der Sauerstoffgehalt im Produktgas bis auf 0 abgenommen hat und die Inertisierungsphase zu Ende ist. Ein nicht dargestelltes Analysengerät stellt den Sauerstoffgehalt im Produktgas des Kanals (15) fest.
  • Nun kann der Vergasungsbetrieb begonnen werden, dafür ist zunächst eine als Einstellzeit bezeichnete Startphase nötig, die zwischen den Punkten (C) und (D) liegt. Hierbei wird die Zufuhr von Kohle und von sauerstoffhaltigem Gas gesteigert, während man die Inertgaszufuhr allmählich abschaltet. Schließlich können wachsende Mengen an Wasserdampf in die Vergasung geleitet werden, vgl. die punktierte Linie (d) in Fig. 2b. Diese Regelungen können automatisch oder von Hand vorgenommen werden. Gleichzeitig wird dafür gesorgt, daß die Temperatur entweder praktisch konstant bleibt oder in der Einstellzeit nur wenig absinkt und dann konstant bleibt, vgl. die Linien (m) und (n) in Fig. 2a.
  • Im stationären Vergasungsbetrieb, der zum Zeitpunkt (D) beginnt, werden dem Reaktor (1) im Idealfall gleichbleibende Mengen an Kohle, Wasserdampf und Sauerstoff (z.B. in Form von Luft) zugeführt, wobei man beispielsweise pro Nm³ Sauerstoff 1 kg Wasserdampf einsetzt. Wenn Braunkohle oder Torf vergast werden, die sehr wasserhaltig sind, kann die Zufuhr von Wasserdampf verringert werden oder eventuell ganz entfallen.
  • Im Vergasungsbetrieb erfolgt die Temperaturregelung durch Regeln der Kohlezufuhr über die Zellenradschleuse (4), wobei man dem Reaktor (1) bei zu hoher Temperatur mehr Kohle und bei zu niedriger Temperatur weniger Kohle aufgibt. Es empfiehlt sich, die Temperatur während der Vergasung mit einem Schwankungsbereich von ± 40°C und vorzugsweise ± 30°C konstant zu halten.
  • Beispiel
  • In einer der Zeichnung entsprechenden Anlage werden pro Stunde 21318 kg Kohle vergast. Der Reaktor (1) hat einen Durchmesser von 2,5 m und eine Höhe über dem Rost (11) von 15 m. Bei der zu vergasenden Kohle handelt es sich um ein Kohlegemisch mit einem unteren Heizwert von 5579 kcal/kg, einem Wassergehalt von 24 Gew.-% und einem Aschegehalt von 8,3 Gew.-%. Die Kohle weist folgende Elementaranalyse auf (wasser- und aschefrei):
    Figure imgb0001
  • Die Verbrennung und Vergasung erfolgt ohne technisch reinem Sauerstoff nur mit Luft, Stickstoff und Wasserdampf. Auf die Zufuhr von Sekundärluft durch die Leitung (12) wird verzichtet.
  • Zum ersten Anwärmen bis etwa 350°C wird Heißluft von 420°C in den Reaktor geleitet, der in steigender Menge bis zu 1000 kg Asche enthält. Danach tritt zusätzlich der Brenner (40) in Tätigkeit, dem man in steigender Menge bis zu 361 kg/h Heizöl zuführt. Nach 8 Stunden des Anwärmens wird im Kanal (15) die Temperatur von 600°C erreicht, bei welcher die Zufuhr von Kohle in den Reaktor beginnt; dies entspricht dem Punkt (A) der Fig. 2a und 2b. In der nachfolgenden Tabelle werden die dem Reaktor zu verschiedenen Zeiten zugeführten Kohle- und Betriebsmittelmengen (in kg/h) angegeben, zusammen mit den Temperaturen im Kanal (15). Die Punkte (A) bis (D) beziehen sich auf Fig. 2a und 2b, auch ist der zeitliche Verlauf der Stoffmengen, die dem Reaktor zugeführt werden, Fig. 2b zu entnehmen.
    Figure imgb0002
  • Im Kanal (15) beträgt die Gaszusammensetzung zu verschiedenen Zeiten:
    Figure imgb0003
  • Zum Zeitpunkt (D), d.h. bei Beginn des stationären Vergasungsbetriebs, wird ein Produktgas mit folgender Zusammensetzung erzeugt:
  • CH₄
       2,5 Vol.-%
    H₂
       14,7 Vol.-%
    CO
       20,8 Vol.-%
    CO₂
       7,0 Vol.-%
    N₂
       48,8 Vol.-%
    H₂O
       6,2 Vol.-%
  • Zum Regeln der Temperatur im Bereich zwischen den Zeitpunkten (A) und (B), während 38767 Nm³/h Verbrennungsluft aufgewendet werden, ist zu berücksichtigen, daß bei einer Erhöhung bzw. Erniedrigung der Temperatur um 10°C gegenüber dem Sollwert die Kohlezufuhr um 20 kg/h verringert bzw. erhöht werden muß, um wieder auf den Sollwert zu kommen. Während der stationären Vergasung bei einer Solltemperatur von 920°C, einer Kohlemenge von 21318 kg/h und einer Luftmenge von 38767 kg/h ist bei einer Änderung der Temperatur um 10°C die Kohlezufuhr um 150 kg/h zu verändern, um wieder die Solltemperatur zu erreichen.

Claims (6)

  1. Verfahren zum Regeln des Anfahrens einer Vergasung fester, feinkörniger Brennstoffe mit sauerstoffhaltigem Gas und Wasserdampf im Wirbelzustand in einem Vergasungsreaktor, der am oberen Ende einen Abzugskanal für Produktgas und im unteren Bereich einen Ascheabzug aufweist, dadurch gekennzeichnet, daß man im Reaktor in der Aufheizphase vor der Vergasung ein Asche und feinkörnige Brennstoffe enthaltendes Feststoffgemisch unter Zufuhr von sauerstoffhaltigem Gas bei überstöchiometrischem Sauerstoffangebot im Wirbelzustand verbrennt und dabei die Temperatur im Reaktor bis etwa auf die Solltemperatur der Vergasung erhöht, daß man am Ende der Aufheizphase in einer anschließenden Inertisierungsphase die Zufuhr von sauerstoffhaltigem Gas verringert, ein Inertgas in den Reaktor leitet, den Gehalt an freiem Sauerstoff im Produktgas praktisch auf Null reduziert und dabei die Temperatur praktisch konstant hält, und daß man nach der Inertisierungsphase in die Vergasung übergeht, wobei man Sauerstoff oder sauerstoffhaltiges Gas und ggf. Wasserdampf in den Reaktor leitet, die Brennstoffzufuhr erhöht und die im Bereich von 600 bis 1500°C liegende, im oberen Bereich des Reaktors oder im Abzugskanal gemessene Solltemperatur der Vergasung nach einer Einstellzeit praktisch konstant hält und bei zu niedriger Temperatur die Zufuhr an festem Brennstoff verringert und bei zu hoher Temperatur die Zufuhr an Brennstoff steigert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in der Aufheizphase die Temperatur allmählich steigert, bei zu hoher Temperatur die Zufuhr von festem Brennstoff verringert und bei zu niedriger Temperatur die Zufuhr von festem Brennstoff steigert.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man während der Vergasung nach der Einstellzeit die Temperatur mit einem Schwankungsbereich von ± 40°C konstant hält.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in der Aufheizphase Luft als sauerstoffhaltiges Gas in den Reaktor leitet.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man während der Inertisierungsphase Stickstoff, Kohlendioxid oder Produktgas als Inertgas verwendet.
  6. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß man während der Inertisierungsphase die Gesamtmenge an sauerstoffhaltigem Gas und Inertgas praktisch konstant hält.
EP91202539A 1990-11-07 1991-10-01 Verfahren zum Regeln des Anfahrens einer Vergasung fester Brennstoffe im Wirbelzustand Expired - Lifetime EP0484993B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4035293A DE4035293C1 (de) 1990-11-07 1990-11-07
DE4035293 1990-11-07

Publications (2)

Publication Number Publication Date
EP0484993A1 EP0484993A1 (de) 1992-05-13
EP0484993B1 true EP0484993B1 (de) 1994-01-05

Family

ID=6417759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91202539A Expired - Lifetime EP0484993B1 (de) 1990-11-07 1991-10-01 Verfahren zum Regeln des Anfahrens einer Vergasung fester Brennstoffe im Wirbelzustand

Country Status (5)

Country Link
US (1) US5145491A (de)
EP (1) EP0484993B1 (de)
AU (1) AU641055B2 (de)
DE (2) DE4035293C1 (de)
ZA (1) ZA918838B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340459C1 (de) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Verfahren zum Betreiben eines Wirbelschichtreaktors zum Vergasen von kohlenstoffhaltigen Einsatzstoffen
US5455011A (en) * 1994-02-28 1995-10-03 The Babcock & Wilcox Company System and method for heating and gasification of residual waste liquor
US5516345A (en) * 1994-06-30 1996-05-14 Iowa State University Research Foundation, Inc. Latent heat-ballasted gasifier method
KR100391121B1 (ko) * 2000-12-11 2003-07-16 김현영 고분자 유기물의 가스화 방법 및 장치
US8821832B2 (en) 2003-06-27 2014-09-02 UltraCell, L.L.C. Fuel processor for use with portable fuel cells
US20060156627A1 (en) * 2003-06-27 2006-07-20 Ultracell Corporation Fuel processor for use with portable fuel cells
US7604673B2 (en) * 2003-06-27 2009-10-20 Ultracell Corporation Annular fuel processor and methods
KR100637340B1 (ko) * 2004-04-09 2006-10-23 김현영 고온 개질기
CA2683237C (en) 2006-04-11 2016-08-09 Thermo Technologies, Llc Methods and apparatus for solid carbonaceous materials synthesis gas generation
DE202006020601U1 (de) * 2006-06-28 2009-03-05 Siemens Aktiengesellschaft Vorrichtung für Flugstrom-Vergasungsreaktoren hoher Leistung mit Kombinationsbrenner und Mehrbrenneranordnung
US20110179762A1 (en) * 2006-09-11 2011-07-28 Hyun Yong Kim Gasification reactor and gas turbine cycle in igcc system
KR101010520B1 (ko) 2007-11-21 2011-01-24 두산중공업 주식회사 가스화기 운전 제어시스템 및 그의 제어방법
NL2002330C2 (nl) * 2008-12-15 2010-06-16 Essent En Produktie B V Vergassen van vaste brandstoffen in een circulerend wervelbed.
CA2828806C (en) * 2011-03-17 2014-04-22 Nexterra Systems Corp. Direct-fired systems and methods
US20120255301A1 (en) 2011-04-06 2012-10-11 Bell Peter S System for generating power from a syngas fermentation process
US8945507B2 (en) 2011-04-21 2015-02-03 Kellogg Brown & Root Llc Systems and methods for operating a gasifier
US8673181B2 (en) 2011-08-11 2014-03-18 Kellogg Brown & Root Llc Systems and methods for starting up a gasifier
JP5804888B2 (ja) 2011-10-19 2015-11-04 三菱日立パワーシステムズ株式会社 ガスタービン発電プラントの制御方法、ガスタービン発電プラント、炭素含有燃料ガス化炉の制御方法及び炭素含有燃料ガス化炉
US9388980B2 (en) 2011-12-15 2016-07-12 Kellogg Brown + Root LLC Systems and methods for gasifying a hydrocarbon feedstock
US9574770B2 (en) 2012-04-17 2017-02-21 Alter Nrg Corp. Start-up torch
CN103773506B (zh) * 2014-01-28 2015-01-07 广州贝龙火地生物质能源设备科技有限责任公司 生物质双裂解一体炉

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE257280C (de) *
DE2703921C3 (de) * 1977-01-31 1980-09-11 Basf Ag, 6700 Ludwigshafen Verfahren zur Inbetriebnahme oder Herstellung der Betriebsbereitschaft eines Reaktors für die partielle Oxidation von schwerflüchtigen flüssigen oder festen Brennstoffen
SE406366B (sv) * 1977-06-23 1979-02-05 Stal Laval Turbin Ab Virvelbeddsbrennkammare
US4255135A (en) * 1979-11-05 1981-03-10 Caterpillar Tractor Co. Apparatus for preheating a rotatable fluidizable bed
US4353712A (en) * 1980-07-14 1982-10-12 Texaco Inc. Start-up method for partial oxidation process
US4378974A (en) * 1982-06-09 1983-04-05 Allis-Chalmers Corporation Start-up method for coal gasification plant
US4594967A (en) * 1985-03-11 1986-06-17 Foster Wheeler Energy Corporation Circulating solids fluidized bed reactor and method of operating same
DD257280A1 (de) * 1987-01-30 1988-06-08 Bezirksdirektion Fuer Strassen Kombinierter zyklon-wirbelschicht-reaktor
GB2202234B (en) * 1987-03-16 1991-09-18 Shell Int Research Method for starting up a partial combustion process
DE3727146C1 (de) * 1987-08-14 1988-09-22 Rheinische Braunkohlenw Ag Verfahren zum Anfahren eines Vergasers
US5014632A (en) * 1988-08-16 1991-05-14 A. Ahlstrom Corporation Distributor plate in a fluidized bed reactor

Also Published As

Publication number Publication date
DE59100812D1 (de) 1994-02-17
US5145491A (en) 1992-09-08
ZA918838B (en) 1993-05-07
DE4035293C1 (de) 1992-01-02
AU8699491A (en) 1992-05-14
EP0484993A1 (de) 1992-05-13
AU641055B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
EP0484993B1 (de) Verfahren zum Regeln des Anfahrens einer Vergasung fester Brennstoffe im Wirbelzustand
DE102006030079B4 (de) Verfahren zur Inbetriebnahme von Flugstrom-Vergasungsreaktoren hoher Leistung mit Kombinationsbrenner und Mehrbrenneranordnung
DE2831027C2 (de) Verfahren und Vorrichtung zur Flugstromvergasung
DE2819419C3 (de) Betriebsverfahren zur Produktgas-Mengensteuerung eines staubbetriebenen Schwachgasgenerators
DE3335544A1 (de) Reaktorvorrichtung zur erzeugung von generatorgas aus brennbaren abfallprodukten
DE2529802A1 (de) Vorrichtung zum vergasen von kohle u.dgl.
DE2654662A1 (de) Verfahren und vorrichtung zur teilverbrennung von kohlestaub
DE2061829C2 (de) Verfahren zur thermischen Behandlung feinkörniger Feststoffe in einem Wirbelbett mit Innenverbrennung
DE2813227C2 (de) Reaktor zur kontinuierlichen thermischen Behandlung von verunreinigten kohlenstoffhaltigen Adsorptionsmitteln
EP2310477B1 (de) Verfahren und vorrichtung zum anfahren von mit brennstaub betriebenen vergasungsreaktoren
EP2356200B1 (de) Verfahren zum thermochemischen vergasen fester brennstoffe
DE2342079A1 (de) Einrichtung zur vergasung feinverteilter, insbesondere fester brennstoffe
DE2738932A1 (de) Verfahren zur druckvergasung fester brennstoffe
DE2718539A1 (de) Verfahren zur vergasung feinverteilter, asche enthaltender brennstoffe
DE2741805A1 (de) Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material
DE3151477C2 (de) Schachtvergaser zur kontinuierlichen Erzeugung von Brenngas aus organischem Material
DE1152783B (de) Brenner zur thermischen Umsetzung von gasfoermigen und/oder dampffoermigen bzw. fluessigen Kohlenwasserstoffen und/oder sonstigen Brenngasen mit sauerstoffhaltigen Gasen und Verfahren zum Betrieb des Brenners
EP0257019A2 (de) Vergasungsreaktor für die Herstellung brennbarer Gase aus Abfällen
DE1931166A1 (de) Vergasung von Kohle mit hohem Feuchtigkeitsgehalt
WO2010006353A2 (de) Verfahren und vorrichtung zur bereitstellung einer konstanten produktgasmenge aus einer wirbelschicht-gaserzeugungsanlage
DE1023844B (de) Verfahren zum Inberuehrungbringen von Gasen mit kohleartigen Feststoffen
DE1401882C (de) Verfahren zur Veraschung von Klar schlamm und Wirbelschichtofen zur Durch fuhrung desselben
CH678973A5 (de)
CH440527A (de) Verfahren zur Verbrennung von Klärschlamm unter Verwendung eines Wirbelschichtofens
DE102011083850A1 (de) Pneumatische Brennstoffzuführung von einem Dosiergefäß zu einem Vergasungsreaktor mit hohem Differenzdruck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920612

17Q First examination report despatched

Effective date: 19921104

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REF Corresponds to:

Ref document number: 59100812

Country of ref document: DE

Date of ref document: 19940217

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20030926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051001