EP0481975B1 - Procede et dispositif de reglage de la valeur lambda - Google Patents

Procede et dispositif de reglage de la valeur lambda Download PDF

Info

Publication number
EP0481975B1
EP0481975B1 EP89905392A EP89905392A EP0481975B1 EP 0481975 B1 EP0481975 B1 EP 0481975B1 EP 89905392 A EP89905392 A EP 89905392A EP 89905392 A EP89905392 A EP 89905392A EP 0481975 B1 EP0481975 B1 EP 0481975B1
Authority
EP
European Patent Office
Prior art keywords
control
lambda
lambda value
value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89905392A
Other languages
German (de)
English (en)
Other versions
EP0481975A1 (fr
Inventor
Winfried Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0481975A1 publication Critical patent/EP0481975A1/fr
Application granted granted Critical
Publication of EP0481975B1 publication Critical patent/EP0481975B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Definitions

  • the invention relates to a method and a device for setting the lambda value for the air / fuel mixture to be supplied to an internal combustion engine.
  • the lambda values of a fuel mixture are regulated in order to set optimal conversion conditions for a catalytic converter which is arranged in the exhaust gas duct of an internal combustion engine.
  • the conversion takes place only in a narrow range of lambda values. Where the center of the range is best depends on the operating status. This is because the different pollutants, i.e. carbon monoxide, hydrocarbons and nitrogen oxides, occur in different concentrations in different operating states and because the usual catalysts convert these pollutants best into non-harmful gases at different lambda values. For example, nitrogen oxides are optimally converted at lambda values that are richer than the stoichiometric value, while carbon monoxide and hydrocarbons are better converted in the lean range. Since the main focus is on the removal of nitrogen oxides, catalysts are mainly operated in the slightly rich range.
  • the concentration of carbon monoxide is based essentially on inhomogeneous mixture distribution and on fluctuations in the mixture composition from cycle to cycle.
  • the effects mentioned also influence the emission of hydrocarbons, which moreover depends strongly on the combustion temperature, and increases with decreasing combustion temperature. In contrast, the emission of nitrogen oxides decreases with decreasing combustion temperature.
  • the mixture distribution and fluctuations thereof as well as the respective combustion temperature depend on the speed and the load.
  • the different pollutant composition in different operating states therefore requires different lambda values to be set in the different operating states.
  • Different lambda values can be set by changing at least one control parameter of the means used for the two-point control. This measure is described in DE 25 45 759 A1 (US-4,210,106). In practical applications, e.g. B. an extended integration time in the bold direction stored in a characteristic or a map addressable via values of operating variables.
  • DE-A1-32 24 347 discloses a "device for reducing exhaust gas pollutant components of an internal combustion engine", each with an O2 probe before and after the catalyst.
  • the downstream probe serves as a guide probe in order to readjust an average lambda value in the event of deviations from the optimal composition of the air-fuel ratio. This can be achieved by modifying the control parameters.
  • the invention is based on the object of specifying a method for regulating the lambda value with which the desired average lambda value can be set with great accuracy for all operating states.
  • the invention is also based on the object of specifying a device for carrying out such a method.
  • the method according to the invention is characterized in that it not only determines the current actual lambda value with the aid of whose two-point control takes place, but also uses the mean lambda value as the actual lambda measurement value, which is used with a predetermined lambda measurement setpoint to form a measurement deviation it is compared on the basis of which measurement deviation at least one control parameter is changed in such a way that an actual lambda measurement value should occur which reduces the measurement deviation mentioned.
  • a control parameter is therefore no longer only determined as a function of values of operating variables in the respective operating state in order to achieve a certain average lambda value at which the catalytic converter converts optimally, but it is additionally monitored whether the desired value is actually achieved and if not , the specified control parameter is changed in such a way that the actual lambda measurement value actually desired for optimal conversion should occur.
  • the actual lambda measurement value which is the mean lambda value, can either be determined by averaging the oscillating lambda value as supplied by the lambda probe used for control, or the lambda value behind the catalytic converter can be measured with a second probe will.
  • the actual lambda measurement value is preferably determined with such a probe if such a probe is present anyway is, e.g. B. to monitor the catalyst activity. If there is no second probe behind the catalytic converter, it is generally more advantageous to form the actual lambda measurement value by averaging the lambda value used for control.
  • Fig. 4 The main functional flow in Fig. 4 is as follows. Depending on the values of the speed n and the load L, preliminary fuel injection times TIV are determined by a pilot control 10. These are converted into injection times TI by a link 11, which will be discussed in more detail below an injection device 14 arranged in the intake manifold 12 of an internal combustion engine 13. The fuel quantity injected into the intake air flow results in a specific lambda value, which is measured as the actual lambda control value by a lambda probe 16 arranged in the exhaust gas duct 15 of the internal combustion engine 13. This actual lambda control value is compared with a lambda control setpoint, which is supplied by a means 17 for outputting the setpoint. 4 that this value should be a reference voltage UREF of 450 mV.
  • a lambda control 19 determines a manipulated value in the form of a control factor FR, by which the provisional injection time TIV is multiplied in the link 11. If the actual lambda control value remains below the lambda control setpoint, this means that the mixture burned in the internal combustion engine 13 is too lean. A control factor FR> 1 is then output, whereby a longer actual injection time TI is formed from the preliminary injection time TIV.
  • FIGS. 1a - 3a Possible courses of the actual lambda control value are shown in FIGS. 1a - 3a and associated courses of control factors FR in FIGS. 1b - 3b.
  • FIG. 1 begins with a point in time at which the actual lambda control value, hereinafter referred to as the probe voltage, drops from rich to lean, ie from a value that indicates a mixture that is richer than a mixture corresponds, which leads to the reference voltage UREF, to a mixture that is leaner.
  • the probe voltage passes through the reference voltage in leaps and bounds. The same applies to the return from lean to rich.
  • the lambda control 19 reverses the integration direction for gaining the control factor FR from the control deviation, so that the control factor is increased from values below 1.
  • the time between the reversal of the direction of integration and reaching the control factor 1 is shown in FIG.
  • the control factor is not symmetrical by the value 1, but oscillates symmetrically around a value slightly less than 1.
  • the mean lambda value is therefore slightly lean.
  • the jump behavior of the probe leads to a shift into lean, in which the measured value jumps faster from lean to rich when the mixture changes abruptly than with a reverse change.
  • the direction of integration is not immediately reversed from enriching to emaciating, but it is further enriched over a delay time TV before the jump in the probe voltage follows the control direction.
  • the control factor FR is therefore in the range of values> 1 during the time period TT + 2TV + TF.
  • the range for values ⁇ 1 remains unchanged over the time period TT + TM.
  • the measure leads to an averaged control factor> 1, which is shown in FIG. 2b by a dash-dotted line.
  • a means 21 for setting the size of the upward jump PAUF a means 22 for setting the size of a downward jump PAB
  • a means 23 for setting the upward integration time IAUF and a means 24 for Setting the downward integration time IAB shown.
  • the means 21 and 22 for setting the jump sizes only dashed lines are drawn to the lambda control 19. This is because, in practice, these quantities are only changed with the delay time TV in exceptional cases. This is related to the vibration behavior of the entire controlled system. As explained with reference to FIGS. 2 and 3, the introduction of a delay time leads to an increased oscillation period, while the introduction of an upward jump and correspondingly a downward jump leads to a shortening of the oscillation period.
  • a pilot control adaptation 25 and a compensation 26 are also shown in FIG. 4.
  • the latter serves to influence the influence of measured quantities on the injection time, e.g. B. to compensate for the influence of the battery voltage.
  • the pilot control adaptation serves to compensate for the influence of unmeasured disturbance variables, e.g. B. Air pressure or temperature fluctuations.
  • control value in the example the control factor FR
  • the lambda value oscillate around respective average values.
  • At least one control parameter, in the example the delay time TV is changed depending on the respective operating state in such a way that an average lambda value for optimal pollutant conversion should stop. In practice, however, this is not always achieved, which leads to poorer exhaust gas quality than is desired.
  • Very good exhaust gas quality in all operating states can be achieved with the aid of a lambda measuring probe 28 arranged behind the catalytic converter 27, a means 29 for outputting the measurement setpoint, a measured value comparison step 30 and a controller adaptation 31.
  • the measured value comparison step 30 the actual lambda measurement value, as supplied by the lambda measurement probe 28, is compared with the lambda measurement setpoint from the means 29 for outputting the measurement setpoint to form a measurement deviation.
  • the measurement deviation is fed to the controller adaptation 31. If the measurement deviation is negative, that is to say the actual lambda measurement value is greater than the desired lambda measurement value, this is a sign that the average lambda value as it occurs behind the catalytic converter 27 is too rich.
  • This humiliation step can be a fixed step size or a step size determined according to a predefined calculation method, e.g. B. have a step size proportional to the measurement deviation. Which step size is best used depends on the vibration behavior of the entire controlled system.
  • Fig. 4 not only is a solid line of influence drawn from the controller adaptation 31 to the means 20 for setting the delay time TV, but there are also dashed lines between the controller adaptation 31 and the means for setting the upward jump PAUF, the means 22 for setting the downward jump PAB , the means 23 for setting the upward integration time IAUF, the means 24 for setting the downward integration time IAB and the means 29 for measuring setpoint output.
  • the line to the means 21 for setting the upward jump PAUF is dashed, since in the example it is assumed that the delay time TV is changed in order to set the desired average lambda value.
  • the integration times IAUF and IAB are expediently not used to set the desired average lambda value, since, as explained above, these variables are typically changed to set a constant amplitude of the control oscillation at different speeds. The clarity of the regulation is made more difficult if these variables are changed depending on different values. In the event of special conditions, however, changing the integration times, depending on the measurement deviation, can be particularly useful.
  • the average lambda value can also be changed by shifting the reference voltage for the two-point control. Due to the jumping behavior of the lambda probe 16, however, there are only slight displacement options.
  • the average lambda value is not determined by measurement downstream of the catalytic converter 27, but rather by an averaging 32, the actual lambda measurement value is determined from the actual lambda controller value by the lambda probe 16 by averaging.
  • the averaging takes place e.g. B. by averaging over an entire oscillation of the lambda controller actual value, that is, for. B. from a jump from lean to rich to the next jump from lean to rich.
  • the means 29 for outputting the measurement setpoint value preferably has a memory in which lambda measurement setpoint values are stored in an addressable manner via values of operating variables.
  • the setpoints are determined in such a way that they correspond to the mean lambda value which leads to optimal pollutant conversion in the respective operating state.
  • Addressing operating variables are preferably the speed n and a variable dependent on the load L, for. B. the accelerator pedal position, the throttle valve angle or the intake air mass.
  • the setpoints can also be determined on characteristic curves or by calculations based on a formula.
  • All of the means, method steps and memory mentioned are preferably formed by the hardware and software of a microcomputer, as is typically used in automotive electronics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Selon un procédé de réglage de la valeur lambda, on ne se limite pas à mesurer la valeur réelle de réglage lambda au moyen d'une sonde lambda à réactions brusques, afin de déterminer des écarts de réglage, mais on utilise en outre la valeur lambda pondérée comme valeur réelle de mesure lambda, que l'on compare avec une valeur de consigne de mesure lambda. On détermine au préalable la valeur de consigne de mesure lambda en fonction de différentes valeurs des paramètres de fonctionnement, de sorte qu'elle corresponde dans toutes les conditions de fonctionnement à la valeur lambda qui assure une conversion optimale des polluants. Lorsque la valeur réelle de mesure lambda diffère de la valeur prédéterminée, on modifie au moins un paramètre de la régulation à deux positions de façon à obtenir la valeur voulue. Ce procédé et son dispositif d'application permettent ainsi d'ajuster les caractéristiques d'une régulation à deux positions dans toutes les conditions de fonctionnement de façon à obtenir la valeur lambda pondérée voulue qui assure une conversion optimale des polluants.

Claims (6)

  1. Procédé pour régler la valeur lambda d'un mélange air/carburant devant être alimenté à un moteur à combustion interne, à l'aide :
    - d'un moyen (18, 19) pour la régulation par plus ou moins avec des paramètres de réglage prédéfinis, auquel doit être amené pour la formation de l'écart de réglage le signal d'une sonde lambda de réglage, qui a un comportement discontinu, tandis que
    - pour l'état de fonctionnement respectivement présent, une valeur de consigne de mesure lambda (29) est déterminée.
    - une valeur lambda moyenne est utilisée comme valeur réelle de mesure lambda.
    - l'écart de mesure entre la valeur de consigne de mesure lambda et la valeur réelle de mesure lambda est calculée (30).
    - et au moins un paramètre de réglage dépendant de l'écart de mesure est modifié, de façon à ce que s'établisse une valeur réelle de mesure lambda, qui réduise l'écart de mesure précité, et tandis que
    - en tant qu'au moins un paramètre de réglage une temporisation est prévue qui, dans le cas de régulation par plus ou moins, devient efficace après le renversement de l'écart de réglage, et
    - la temporisation est réalisée de façon asymétrique.
  2. Procédé selon la revendication 1, caractérisé en ce que la valeur lambda moyenne est déterminée par mesure avec une sonde lambda de mesure (28) derrière un catalyseur.
  3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que le paramètre de réglage modifiable est modifié par étapes, dont l'ampleur est proportionnelle à l'écart de mesure.
  4. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que le paramètre de réglage modifiable est modifié selon des étapes d'une ampleur fixe prédéfinie.
  5. Dispositif pour le réglage de la valeur lambda d'un mélange air/carburant pour alimenter un moteur à combustion interne à l'aide :
    - d'un moyen (18, 19) pour la régulation par plus ou moins avec des paramètres de réglage prédéfinis, auquel doit être amené pour la formation de l'écart de réglage le signal d'une sonde lambda de réglage qui a un comportement discontinu.
    - avec des moyens qui, pour l'état de fonctionnement respectivement présent, déterminent une valeur de consigne de mesure lambda (29), tandis que
    - une valeur moyenne lambda est utilisée en tant que valeur de mesure lambda
    - avec des moyens qui calculent l'écart de mesure entre la valeur de consigne de mesure lambda et la valeur réelle de mesure lambda (30)
    - et avec des moyens qui modifient au moins un paramètre de réglage en fonction de l'écart de mesure, de façon qu'il s'établisse une valeur réelle de mesure lambda qui réduit l'écart de mesure précité, et
    - en tant qu'au moins un paramètre de réglage une temporisation est prévue qui, dans le cas de la régulation par plus ou moins, devient efficace après le renversement de l'écart de réglage, et
    - avec des moyens qui réalisent la temporisation de façon asymétrique.
  6. Dispositif selon la revendication 5, caractérisé en ce qu'un moyen (29) pour la détermination des valeurs de consigne de mesure lambda comporte une mémoire, qui mémorise des valeurs de consigne de mesure lambda susceptibles d'être adressées par l'intermédiaire de valeurs de grandeurs de fonctionnement.
EP89905392A 1988-05-14 1989-05-10 Procede et dispositif de reglage de la valeur lambda Expired - Lifetime EP0481975B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3816558A DE3816558A1 (de) 1988-05-14 1988-05-14 Verfahren und vorrichtung zur lambdaregelung
DE3816558 1988-05-14

Publications (2)

Publication Number Publication Date
EP0481975A1 EP0481975A1 (fr) 1992-04-29
EP0481975B1 true EP0481975B1 (fr) 1993-10-06

Family

ID=6354413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89905392A Expired - Lifetime EP0481975B1 (fr) 1988-05-14 1989-05-10 Procede et dispositif de reglage de la valeur lambda

Country Status (5)

Country Link
US (1) US5117631A (fr)
EP (1) EP0481975B1 (fr)
JP (1) JP3030040B2 (fr)
DE (2) DE3816558A1 (fr)
WO (1) WO1989011030A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0137138B1 (ko) * 1988-11-09 1998-04-25 랄프 베렌스;게오르그 뮐러 람다 제어장치 및 그 방법
US5335493A (en) * 1990-01-24 1994-08-09 Nissan Motor Co., Ltd. Dual sensor type air fuel ratio control system for internal combustion engine
JPH0833127B2 (ja) * 1990-05-01 1996-03-29 株式会社ユニシアジェックス 内燃機関の空燃比制御装置
JPH04321740A (ja) * 1991-04-19 1992-11-11 Mitsubishi Electric Corp エンジンの空燃比制御装置
JPH04339147A (ja) * 1991-05-13 1992-11-26 Honda Motor Co Ltd 内燃エンジンの空燃比制御装置
DE4125154C2 (de) * 1991-07-30 2001-02-22 Bosch Gmbh Robert Verfahren und Einrichtung zur Lambdasonden-Überwachung bei einer Brennkraftmaschine
DE4140618A1 (de) * 1991-12-10 1993-06-17 Bosch Gmbh Robert Verfahren und vorrichtung zur ermittlung der konvertierungsfaehigkeit eines katalysators
US5255512A (en) * 1992-11-03 1993-10-26 Ford Motor Company Air fuel ratio feedback control
US5359852A (en) * 1993-09-07 1994-11-01 Ford Motor Company Air fuel ratio feedback control
US5392599A (en) * 1994-01-10 1995-02-28 Ford Motor Company Engine air/fuel control with adaptive correction of ego sensor output
JP3422393B2 (ja) * 1995-02-24 2003-06-30 本田技研工業株式会社 内燃機関の空燃比制御装置
US5813390A (en) * 1995-04-11 1998-09-29 Yamaha Hatsudoki Kabushiki Kaisha Engine feedback control embodying learning
DE19545694C2 (de) * 1995-12-07 2001-07-26 Mannesmann Vdo Ag Verfahren zur Regelung des Kraftstoff-Luft-Verhältnisses einer Brennkraftmaschine
DE19610170B4 (de) * 1996-03-15 2004-04-22 Robert Bosch Gmbh Lambda-Regelungsverfahren
DE19752965C2 (de) * 1997-11-28 2002-06-13 Siemens Ag Verfahren zur Überwachung des Abgasreinigungssystems einer fremdgezündeten Brennkraftmaschine
DE19842425C2 (de) * 1998-09-16 2003-10-02 Siemens Ag Verfahren zur Korrektur der Kennlinie einer linearen Lambda-Sonde
JP3484088B2 (ja) * 1998-12-17 2004-01-06 本田技研工業株式会社 プラントの制御装置
DE10025034A1 (de) * 2000-05-20 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zum Betreiben einer Abgasreinigungsvorrichtung an einem Otto-Motor
DE10330092A1 (de) * 2003-07-03 2005-01-27 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102005059894B4 (de) 2005-12-15 2019-07-25 Robert Bosch Gmbh Verfahren zur Messung der Sauerstoffspeicherfähigkeit einer Abgasreinigungsanlage
DE102010022683A1 (de) 2010-06-04 2011-04-21 Daimler Ag Verfahren zum Betreiben einer an eine Brennkraftmaschine angeschlossenen Abgasreinigungsanlage
US10107214B2 (en) 2013-10-31 2018-10-23 Robert Bosch Gmbh Control system and method using exhaust gas temperatures to adjust an air/fuel mixture for an internal combustion engine
JP7452975B2 (ja) * 2019-10-16 2024-03-19 日本特殊陶業株式会社 空燃比制御システム及び空燃比制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300507A (en) * 1975-02-25 1981-11-17 The Bendix Corporation System controlling any air/fuel ratio with stoichiometric sensor and asymmetrical integration
US4112880A (en) * 1975-12-27 1978-09-12 Nissan Motor Company, Limited Method of and mixture control system for varying the mixture control point relative to a fixed reference
JPS5853661A (ja) * 1981-09-28 1983-03-30 Toyota Motor Corp エンジンの空燃比制御装置
DE3224347A1 (de) * 1982-06-30 1983-08-04 Daimler-Benz Ag, 7000 Stuttgart Einrichtung zum verringern von abgas-schadstoffkomponenten einer brennkraftmaschine
US4739614A (en) * 1985-02-22 1988-04-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
DE3539395A1 (de) * 1985-11-07 1987-05-14 Bosch Gmbh Robert Verfahren und einrichtung zur adaption der gemischsteuerung bei brennkraftmaschinen
JPS62261627A (ja) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp 内燃機関のアイドル回転数制御装置
US4840027A (en) * 1986-10-13 1989-06-20 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics

Also Published As

Publication number Publication date
JP3030040B2 (ja) 2000-04-10
WO1989011030A1 (fr) 1989-11-16
JPH03504261A (ja) 1991-09-19
EP0481975A1 (fr) 1992-04-29
DE3816558A1 (de) 1989-11-16
DE58905859D1 (de) 1993-11-11
US5117631A (en) 1992-06-02

Similar Documents

Publication Publication Date Title
EP0481975B1 (fr) Procede et dispositif de reglage de la valeur lambda
DE10103772C2 (de) Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
DE4190939C2 (de) Ein Verfahren und ein Gerät zum Steuern des Luft-Kraftstoff-Verhältnisses eines Motors mit innerer Verbrennung
DE19606652B4 (de) Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE3700401C2 (fr)
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
DE102011085115B4 (de) Verfahren und Vorrichtung zur Adaption einer Lambdaregelung
DE60115303T2 (de) Steuersystem für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine
EP0442873B1 (fr) Procede et dispositif pour le reglage de la valeur de lambda
EP1478834B1 (fr) Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur
DE102016220850B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE4234102C2 (de) Einrichtung und Verfahren zum Feststellen einer Verschlechterung eines Dreiwegekatalysators
DE102012019907B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasreinigungseinrichtung sowie entsprechende Brennkraftmaschine
DE19711295A1 (de) System zur Ermittlung einer Verschlechterung eines Katalysators zur Abgasreinigung
DE3500594A1 (de) Zumesssystem fuer eine brennkraftmaschine zur beeinflussung des betriebsgemisches
DE3837984A1 (de) Verfahren und vorrichtung zur lambdaregelung
DE102004009615B4 (de) Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
WO1989012737A1 (fr) Procede et dispositif de regulation lambda a sondes multiples
DE3108577A1 (de) Steuersystem fuer das kraftstoff-luftverhaeltnis einer verbrennungskraftmaschine
DE4024212C2 (de) Verfahren zur stetigen Lambdaregelung einer Brennkraftmaschine mit Katalysator
WO2007073997A1 (fr) Procede de regulation lambda pour moteur a combustion
DE3825945C2 (de) Vorrichtung zur Verbesserung nachteiliger Wirkungen von Ablagerungen innerhalb einer Brennkraftmaschine auf die Motorregelung
DE102004017886B3 (de) Verfahren und Vorrichtung zur Lambdaregelung einer Brennkraftmaschine mit Abgaskatalysator
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE4039124A1 (de) Regelsystem fuer das luft/kraftstoff-verhaeltnis einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 19921030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 58905859

Country of ref document: DE

Date of ref document: 19931111

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010528

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010731

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST