EP1478834B1 - Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur - Google Patents

Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur Download PDF

Info

Publication number
EP1478834B1
EP1478834B1 EP04702313A EP04702313A EP1478834B1 EP 1478834 B1 EP1478834 B1 EP 1478834B1 EP 04702313 A EP04702313 A EP 04702313A EP 04702313 A EP04702313 A EP 04702313A EP 1478834 B1 EP1478834 B1 EP 1478834B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
lambda
control factor
lean
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04702313A
Other languages
German (de)
English (en)
Other versions
EP1478834A1 (fr
Inventor
Reza Aliakbarzadeh
Gerd RÖSEL
Milos Tichy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens VDO Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive AG filed Critical Siemens VDO Automotive AG
Publication of EP1478834A1 publication Critical patent/EP1478834A1/fr
Application granted granted Critical
Publication of EP1478834B1 publication Critical patent/EP1478834B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the invention relates to a method for setting a defined oxygen loading with binary lambda control for carrying out the exhaust gas catalyst diagnosis.
  • the invention further relates to a control device that can be used to set a defined oxygen loading.
  • catalysts Exhaust catalysts for motor vehicles, hereinafter referred to simply as catalysts, are subject to aging phenomena. According to legislation, it is necessary to carry out a review of the function of catalytic converters in each driving cycle. The reliable function of catalysts is carried out by determining the oxygen storage capacity of the catalyst. The catalyst diagnosis runs over several lambda control periods, which coincide with catalyst diagnostic cycles. In order to have as few scatters as possible of individual diagnostic cycles, it is important to have a specific oxygen loading of the catalyst which can be repeated in each of the control cycles caused by the control.
  • this defined oxygen charge can be achieved with a defined forced excitation.
  • cyclical deviations from the stoichiometric lambda desired value are set, wherein half periods alternate with lean and rich exhaust gas.
  • the oxygen storage of the catalyst is charged by storing excess oxygen, while the rich exhaust gas half-period empties the oxygen storage of the catalyst by consuming oxygen to oxidize exhaust components.
  • the instantaneous oxygen input is positive when excess oxygen is stored in the catalyst; he is negative, if the missing oxygen to oxidation reactions in the rich exhaust gas is removed from the catalyst (if it has been previously stored).
  • the control is based on feedback from the lambda probe that the exhaust gases correspond to a rich or lean mixture.
  • a lambda probe signal which indicates a fuel mixture that is too rich
  • the fuel quantity is continuously emaciated, with the oxygen used for oxidation reactions being removed from the catalyst. The emptying takes place until the lambda probe signal jumps over and indicates too lean a fuel mixture, wherein the excess oxygen is stored in the catalyst. Then there is a short dwell time with which slight lambda shifts, i. different reaction times of the lambda probe, can be compensated.
  • the duration of the control cycle and the amplitude are essentially determined by the system transport delay and the reaction time of the lambda probe.
  • the system delay is strongly dependent on the operating point of the engine.
  • the oxygen loading of the catalyst is subject to changes, which makes it difficult to determine the catalyst efficiency.
  • newer catalysts for meeting future emission limits eg ULEV, LEV II
  • have a higher oxygen storage capacity so that the catalyst efficiency diagnosis requires a higher oxygen loading than is self-adjusting in a control cycle.
  • a method of adjusting a defined oxygen loading to carry out the catalyst diagnosis The control of the catalyst causes control cycles.
  • the catalyst diagnosis is carried out at a predetermined oxygen loading per control cycle.
  • a fuel mixture is fat or lean adjustable according to a lambda control factor.
  • a rich or lean exhaust gas of the fuel mixture is detected, wherein upon detection of a lean exhaust gas of the fuel mixture, the lambda control factor is incrementally increased, and upon detection of a rich exhaust gas of the fuel mixture, the lambda control factor is incrementally reduced.
  • the lambda control factor is changed by a p-step value of the lambda control factor.
  • the lambda control factor during a first loading time to a minimum control factor value and after a detected change from a lean exhaust gas to a rich exhaust gas of the fuel mixture, the lambda control factor during a second loading time set a maximum controller factor value.
  • the minimum control factor is determined by a local minimization of the controller factor value of the current control cycle, the maximum controller factor by a local maximum of the controller factor value of the current control cycle.
  • the first and the second loading time are adjusted so that the oxygen loading in each control cycle reaches the specific oxygen loading, ie the predetermined oxygen input or oxygen discharge depending on the half-period of the control cycle.
  • the lambda control factor you can set the mixture rich or lean. If a rich exhaust gas is detected with the lambda probe, the lambda control factor is continuously reduced and thus the mixture is emaciated until the lambda probe detects a lean exhaust gas. This is followed by a residence time during which the lambda control factor is stopped in order to compensate for the difference in the probe switching times, or to realize a slight mixture shift, as in a standard lambda controller. Thereafter, an additional P-jump .DELTA.P also takes place in the leaning direction of the lambda control factor to the minimum control factor value, which results from the maximum difference to the lambda control factor mean value, so that the value of the predetermined oxygen charge is reached more quickly.
  • the P-jump is effected by the amount of incremental decreases and the additional P-jump ⁇ P in the direction of enrichment. Since a lean exhaust gas is detected at the lambda probe, the lambda control factor is now increased continuously and thus the fuel mixture is enriched until the lambda probe detects a rich exhaust gas. This is followed by a dwell time to compensate for the difference in the probe switching times, or mixture shift to realize. This is followed again by an additional P-jump in the direction of enrichment, which is limited by the maximum difference to the lambda factor mean, so that the oxygen discharge - corresponding to the oxygen input in the lean half period - realized faster.
  • the catalyst diagnosis it is important to be able to set the amplitude of the lambda oscillation by the additional P-jump, or the limitation of the maximum amplitude as a function of the operating point, so that the oxygen storage properties in the catalyst can be taken into account in the catalyst diagnosis.
  • the process according to the invention results in that at one enrichment half period - oxygen discharge from the catalyst -, i. the mixture is enriched, or a half-leaning period - oxygen input in the catalyst, i. the fuel mixture is emaciated, the fuel mixture after detecting a change between rich and lean exhaust still changed by a ⁇ P jump, or is set to a maximum difference to the lambda control factor average to the previously not yet reached predetermined oxygen load as fast as possible to achieve with defined lambda amplitude. Adjusting the lambda controller factor to the maximum controller factor value that depends on the predetermined oxygen load causes the predetermined determined oxygen load to be reached quickly after a change between rich and lean exhaust gas has been detected.
  • the lambda control factor is reset by the sum of the P-jumps (standard P-jump + ⁇ P-jump) carried out during the respective half-cycle.
  • the lambda control factor is now increased or decreased step by step, thus emacifying or enriching the fuel mixture.
  • the predetermined specific oxygen charge is determined by the maximum oxygen storage capacity of an aged catalyst. In this way, the catalyst efficiency diagnosis can be carried out even with an aged catalyst at a repeatable in each control cycle operating point-dependent oxygen loading of the catalyst.
  • the minimum or the maximum controller factor value is preferably determined by the difference between the lambda control factor and the lambda factor mean value and is predetermined by the oxygen storage rate of the catalytic converter.
  • the oxygen storage rate of the catalyst depends on the flow rate of the exhaust gases through the catalyst and the catalyst temperature and essentially describes what maximum amount of oxygen per unit time can diffuse into the catalyst and be bound.
  • the controller factor value is thus set to a minimum or maximum value at which the oxygen diffusion rate is not yet exceeded, and therefore measurable oxygen behind the catalyst, although the storage capacity has not been exceeded.
  • a controller for performing a controlled catalyst diagnostic.
  • the controller adjusts a certain maximum oxygen load per control cycle to carry out a catalyst diagnosis.
  • the control device regulates the composition of a fuel mixture, the regulation leading to control cycles.
  • the control device can be connected to an injection system to set the fuel mixture rich or lean according to a lambda control factor. Using a sensor, lean or rich exhaust gas is detected. The controller incrementally increases the lambda control factor with lean exhaust gas and decreases the lambda control factor incrementally with rich exhaust.
  • the control device sets the lambda control factor during a first loading time after a detected change from a rich exhaust gas to a lean exhaust gas of the fuel mixture to a minimum controller factor value, wherein after the first loading time, the controller factor value is set to an average value of the lambda controller factor.
  • the controller further sets the lambda control factor to a maximum controller factor value during a second loading time after a change from a lean exhaust gas to a rich exhaust gas of the fuel mixture has been detected. After expiration of the second loading time, the lambda control factor is changed to an average value of the lambda control factor by the control device.
  • the first and second loading times are set so that the oxygen loading, ie, the oxygen input or discharge in each control cycle, reaches the predetermined maximum positive or negative oxygen loading.
  • the control device has the advantage that it controls the fuel mixture so that the oxygen loading is the same for each control cycle, so that a reproducible oxygen loading over several control cycles allows a forementionedsunboxere and reproducible catalyst diagnosis.
  • the control device can preferably be operated in a diagnostic mode for performing the catalyst diagnosis and operated in a second operating mode, in which the control device regulates as previously known standard PI lambda controller.
  • the catalyst diagnosis is merely an operating mode of an already provided control device, so that a change of the overall system with a control device, injection system, engine and catalyst essentially does not have to be changed constructively.
  • FIG. 1 shows a functional diagram of an engine system.
  • the engine system has a Gemischbuchner 1, which provides an internal combustion engine 2, a fuel mixture of air and fuel.
  • the engine 2 burns the fuel mixture and releases exhaust gases supplied to a three-way catalyst 5.
  • the exhaust gas emitted by the internal combustion engine 2 is conducted via a lambda probe 4, which determines from the exhaust gas composition whether the mixture is richer or leaner than the stoichiometric fuel mixture.
  • the lambda probe 4 is connected to a control device 3, so that a measured value measured by the lambda probe 4 is available as an input variable for the control device.
  • the control device 3 is a binary controller, which only receives the information as input from the lambda probe, whether the exhaust gas corresponds to a too rich or too lean fuel mixture.
  • the control device 3 generates a control value, which is transmitted to the mixture former 1.
  • the manipulated variable is the lambda control factor, which indicates by what factor the basic fuel mixture ratio specified by an injection system (not shown) should be changed.
  • a catalyst efficiency diagnosis can be performed. For such an efficiency diagnosis, it is important that the lowest possible spread between individual diagnostic cycles is available. This can be achieved by charging the catalyst with the same amount of oxygen in each control cycle. While one can achieve the same oxygen loading in the control cycles with linear lambda control with a defined forced excitation, this is not possible with a binary lambda control.
  • a binary lambda control regulates the mixture composition via the lambda control factor based on a binary signal dependent on the lambda probe or the probe voltage U ⁇ , which indicates whether the fuel mixture is too rich or too lean, the control deviation being unknown.
  • FIG. 2 shows the time profile of the lambda control factor over time.
  • the controller 3 In a first period T1, the controller 3 is in normal operation, i. the lambda control is achieved by cyclically oscillating the lambda control factor by an average of about a lambda value of 1, i. corresponds to a stoichiometric mean.
  • the control cycles are referred to as a lean half-period when the lambda control factor is less than its average, and as the fifth-half period when the lambda control factor is greater than its average.
  • Lambda control is accomplished by incrementally increasing the lambda control factor in the phase in which the lambda probe reports lean exhaust gas, thereby increasingly enriching the fuel mixture, i. the fuel content in the fuel mixture is increasingly increased. This is represented by the stepwise increase of the lambda control factor over time in the first time period T1. Once it is detected by the lambda probe 4 that the fuel mixture is too rich, the stepwise increase of the lambda control factor is stopped.
  • a first residence time TDLY1 may be provided, while after detecting a change from the lean to the rich mixture and vice versa, the lambda control factor is maintained before being jumped back by a P jump.
  • the lambda control factor becomes continuous, i. gradually reduced so that the fuel mixture is emaciated.
  • the stepwise reduction of the lambda control factor is stopped and, after a second dwell time TDLY2, a P jump of the lambda control factor is made.
  • the second residence time TDLY2 may be different from the residence time TDLY1.
  • a second time segment T2 now shows the profile of the lambda control factor in a diagnostic mode in which the Functionality of the catalyst should be checked.
  • a constant oxygen charge is necessary for all control cycles. That is, the oxygen loading change should have substantially the same amount both in the lean half periods and in the fifth half periods. It does not matter if it is a positive or a negative oxygen change.
  • the control is substantially the same as in the normal mode as described above.
  • the lambda control factor is first kept constant after a dwell time TDLY and further emaciated by a ⁇ P jump after the dwell time.
  • the duration for which the maximum value for the lambda control factor is to be maintained depends on the oxygen load achieved in the relevant half-period. That the maximum value of the lambda control factor is maintained until a defined oxygen load has been reached in this control cycle.
  • m O 2 the oxygen loading
  • t M the time of the half-period
  • the lambda value of the fuel mixture
  • ( ⁇ 1 at stoichiometric average)
  • ⁇ L represents the air mass flow.
  • the factor of 23% results from the oxygen mass fraction in the air.
  • ⁇ ⁇ is to be positive during the lean half-period and negative during the rich half period.
  • FAC_LAM is the instantaneous multiplicative lambda controller factor
  • FAC_LAM_MV is its average over the entire lambda controller period.
  • the dwell time and the range of the stepwise change of the lambda control factor are unchanged in the diagnostic mode maintained.
  • the lambda control factor in the lean half period may be increased by a ⁇ P jump or decreased by a ⁇ P jump during the fifth-half period in order to increase the oxygen loading - positive or negative - faster to achieve catalyst efficiency diagnostics.
  • the length of time during which the maximum or minimum value of the lambda control factor is output by the controller 3 depends on the desired oxygen loading, i. the lambda control factor remains applied until the desired oxygen charge according to the above formula is reached.
  • the lambda control factor Upon reaching the desired oxygen load, the lambda control factor is reset by the sum of the lambda controller changes made during the incremental increases or decreases in the respective half-cycle and the additional P-jump ⁇ P.
  • the sum results from the sum of all incremental increases or decreases of the lambda control factor, and the additional increase or decrease to the maximum difference or the minimum value of the lambda control factor over the entire lambda control cycle.
  • the maximum or the minimum value of the lambda control factor results from the maximum diffusion rate of the oxygen into the active layer or washcoat of the catalyst into or out.
  • the maximum or the minimum value of the lambda control factor is thus determined by how quickly oxygen from the exhaust gas stream, which is passed through the catalyst, can be taken up or released into the active layer or washcoat.
  • the maximum or minimum control factor value thus results from a predetermined oxygen loading value. If the lambda control factor is set greater than the maximum value or less than the minimum value, this does not mean that more oxygen is absorbed or delivered. As a result, the catalyst is no longer able to buffer the ⁇ fluctuations caused by the control cycles relative to the output of the catalyst, so that no fluctuations can be detected there, although the oxygen storage capacity of the catalyst has not yet been exhausted.
  • the particular oxygen load used to perform the catalyst efficiency diagnostics corresponds to the oxygen storage capability of an aged catalyst that is just meeting efficiency requirements.
  • the efficiency diagnosis is carried out with the aid of a ⁇ monitor probe (not shown), which is also a lambda probe, wherein the monitor probe is mounted in the exhaust gas flow downstream of the catalytic converter 5.
  • the monitor probe detects whether a constant lambda value is reached or whether the lambda value varies according to the control cycles. If the lambda value measured by the monitor probe varies, the catalyst under test does not have sufficient oxygen storage capacity and a defective or aged catalyst is detected.
  • the oxygen loading calculation and setpoint adjustment also take into account the aging of the lambda probe and the resulting detection delay of the exhaust gas change in rich ⁇ lean. Prolongs the reaction time of the lambda probe by aging phenomena, the stepwise increase or decrease in the lambda control factor is carried out longer, so that even when detecting a change between a too rich and too lean a fuel mixture, a higher oxygen loading of the catalyst is achieved and a higher amplitude in the ⁇ control factor and ⁇ oscillation. Therefore, the amplitude of the lambda control factor becomes maximum difference to lambda control factor average limited, that is, the additional P-pitch ⁇ P is not fully realized.
  • the idea of the invention is to provide a method for an oxygen-loading-based, binary lambda control, wherein after the residence time a further jump of the lambda control factor value in the original direction is provided in order to achieve the increased oxygen loading more quickly.
  • the additional P-jump is limited so that it does not reach the maximum in the sum of the I component integrated over half-period Difference to the mean value of the lambda control factor may not exceed.
  • Oxygen load-based lambda control adjusts the times during which the maximum or minimum lambda control factor is maintained, or the amplitude increases, adaptively to the maximum and minimum lambda control factor values, respectively.
  • the lambda control factor is not set to a maximum or minimum value after detection of a change between a lean and rich fuel mixture, but that the lambda control factor is maintained until the predetermined oxygen charge is reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un procédé permettant de réaliser un diagnostic d'un catalyseur régulé, la régulation du catalyseur induisant des cycles de régulation. Le procédé selon l'invention consiste à effectuer le diagnostic du catalyseur avec une charge d'oxygène prédéterminée par cycle de régulation, à régler le mélange de carburant de sorte qu'il soit riche ou pauvre d'après un facteur de régulation lambda, à détecter si les gaz d'échappement sont riches ou pauvres, puis à augmenter ou réduire par incréments ledit facteur de régulation lambda selon que les gaz d'échappement sont pauvres ou riches, respectivement. Si les gaz d'échappement passent d'un état riche à un état maigre, ou inversement, le facteur de régulation lambda est modifié d'un degré P. Ce procédé se caractérise en ce que, en cas de détection d'un passage des gaz d'échappement d'un état riche à un état maigre, le facteur de régulation lambda est réglé sur une valeur minimale pendant une première phase de charge et en cas de détection d'un passage des gaz d'échappement d'un état maigre à un état riche, le facteur de régulation lambda est réglé sur une valeur maximale pendant une seconde phase de charge, la première et la seconde phase de charge étant définies de sorte que la charge d'oxygène atteigne la valeur prédéterminée dans chaque cycle de régulation.

Claims (5)

  1. Procédé pour la régulation d'une charge en oxygène définie avec régulation Lambda binaire pour l'exécution du diagnostic du catalyseur (5), la régulation du catalyseur (5) produisant des cycles de régulation, dans lequel
    - le diagnostic du catalyseur est entrepris avec une charge en oxygène définie prescrite par cycles de régulation,
    - un mélange de combustible peut être réglé de manière riche ou pauvre selon un facteur de régulation Lambda,
    - un gaz d'échappement riche ou pauvre est détecté,
    - pour un gaz d'échappement pauvre, le facteur de régulation Lambda est augmenté de manière incrémentielle, et
    - pour un gaz d'échappement riche, le facteur de régulation Lambda est réduit de manière incrémentielle,
    - après un passage détecté d'un gaz d'échappement riche en gaz d'échappement pauvre ou d'un gaz d'échappement pauvre en gaz d'échappement riche, le facteur de régulation est modifié d'un saut-p, caractérisé en ce qu'après un passage détecté d'un gaz d'échappement riche en gaz d'échappement pauvre, le facteur de régulation, pendant un premier temps de charge est placé sur une valeur de facteur de régulation minimale, qui représente un minimum local de la valeur de facteur de régulation du cycle de régulation actuel, et après un passage détecté d'un gaz d'échappement pauvre en gaz d'échappement riche, le facteur de régulation Lambda est placé pendant un second temps de charge sur une valeur maximale de facteur de régulation qui représente un maximum local de la valeur de facteur de régulation du cycle de régulation actuel, le premier temps de charge étant réglé de façon à ce que la charge en oxygène atteigne dans chaque cycle de régulation une alimentation en oxygène définie par la charge en oxygène prédéfinie, et le second temps de charge étant réglé de façon à ce que la charge en oxygène atteigne dans chaque cycle de régulation une sortie d'oxygène définie par la charge en oxygène prédéfinie.
  2. Procédé selon la revendication 1, caractérisé en ce que la charge en oxygène prédéfinie est déterminée par la capacité d'accumulation d'oxygène maximale d'un catalyseur ancien.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la valeur minimale ou maximale du facteur de régulation est déterminée par la différence entre le facteur de régulation Lambda et une valeur moyenne du facteur de régulation Lambda pour le cycle de régulation actuel, la différence étant prescrite par la capacité de réception d'oxygène du catalyseur.
  4. Dispositif de régulation (3) pour la régulation d'une charge en oxygène définie avec régulation binaire pour l'exécution du diagnostic du catalyseur, le dispositif de régulation effectuant le diagnostic de catalyseur avec une certaine charge en oxygène prescrite par cycles de régulation, le dispositif de régulation (3) réglant la composition d'un mélange de combustible avec des cycles de régulation, le dispositif de régulation (3) pouvant être relié à un préparateur de mélange (1) afin de régler de manière riche ou pauvre un mélange de combustible conformément à un facteur de régulation Lambda, un gaz d'échappement pauvre ou un gaz d'échappement riche pouvant être détecté à l'aide d'un capteur (4), le dispositif de régulation augmentant, pour un gaz d'échappement pauvre du mélange de combustible, le facteur de régulation Lambda de manière incrémentielle et, pour un gaz d'échappement riche du mélange de combustible, réduisant le facteur de régulation Lambda de manière incrémentielle, le dispositif de régulation (3) modifiant le facteur de régulation Lambda d'un saut-p, après qu'un passage d'un gaz d'échappement riche en gaz d'échappement pauvre ou d'un gaz d'échappement pauvre en gaz d'échappement riche du mélange de combustible a été constaté, caractérisé en ce que le dispositif de régulation (3) place le facteur de régulation Lambda pendant un premier temps de charge après un passage détecté d'un gaz d'échappement riche en gaz d'échappement pauvre du mélange de combustible sur une valeur de facteur de régulation minimale et place le facteur de régulation Lambda pendant un second temps de charge, après un passage détecté d'un gaz d'échappement pauvre en gaz d'échappement riche du mélange de combustible sur une valeur de facteur de régulation maximale, le premier et le second temps de charge étant déterminés de façon à ce que la charge en oxygène atteigne dans chaque cycle de régulation la charge en oxygène définie prescrite.
  5. Dispositif de régulation (3) selon la revendication 4, caractérisé en ce que le dispositif de régulation peut fonctionner en mode diagnostic pour l'exécution du diagnostic et dans un second mode de fonctionnement, dans lequel le dispositif de régulation (3) règle le catalyseur conformément à un état de fonctionnement normal.
EP04702313A 2003-02-19 2004-01-15 Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur Expired - Lifetime EP1478834B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10307010A DE10307010B3 (de) 2003-02-19 2003-02-19 Verfahren zur Einstellung einer definierten Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Abgaskatalysatordiagnose
DE10307010 2003-02-19
PCT/EP2004/000272 WO2004074664A1 (fr) 2003-02-19 2004-01-15 Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur

Publications (2)

Publication Number Publication Date
EP1478834A1 EP1478834A1 (fr) 2004-11-24
EP1478834B1 true EP1478834B1 (fr) 2007-12-26

Family

ID=32185988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04702313A Expired - Lifetime EP1478834B1 (fr) 2003-02-19 2004-01-15 Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur

Country Status (4)

Country Link
US (1) US7343734B2 (fr)
EP (1) EP1478834B1 (fr)
DE (2) DE10307010B3 (fr)
WO (1) WO2004074664A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032280A1 (de) 2009-07-08 2011-01-13 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061603B4 (de) * 2004-12-17 2008-05-15 Audi Ag Verfahren zur Bestimmung der dynamischen Speicherfähigkeit des Sauerstoffspeichers eines Abgaskatalysators
DE102004062408B4 (de) * 2004-12-23 2008-10-02 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine
DE102005014955B3 (de) 2005-04-01 2005-12-08 Audi Ag Verfahren zur Bestimmung des Lambdawertes stromauf des Abgaskatalysators einer Brennkraftmaschine
DE102005024872A1 (de) 2005-05-31 2006-12-14 Siemens Ag Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine
DE102005044729A1 (de) * 2005-09-19 2007-03-22 Volkswagen Ag Lambdaregelung mit Sauerstoffmengenbilanzierung
DE102005045888B3 (de) * 2005-09-26 2006-09-14 Siemens Ag Vorrichtung zum Betreiben einer Brennkraftmaschine
US7581390B2 (en) * 2006-04-26 2009-09-01 Cummins Inc. Method and system for improving sensor accuracy
JP4844257B2 (ja) * 2006-06-27 2011-12-28 トヨタ自動車株式会社 触媒劣化検出装置
US8065871B1 (en) 2007-01-02 2011-11-29 Cummins Ip, Inc Apparatus, system, and method for real-time diagnosis of a NOx-adsorption catalyst
DE102007005684B3 (de) * 2007-02-05 2008-04-10 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8516796B2 (en) * 2009-11-20 2013-08-27 GM Global Technology Operations LLC System and method for monitoring catalyst efficiency and post-catalyst oxygen sensor performance
US8756922B2 (en) 2011-06-10 2014-06-24 Cummins Ip, Inc. NOx adsorber catalyst condition evaluation apparatus and associated methods
US9599006B2 (en) 2011-08-30 2017-03-21 GM Global Technology Operations LLC Catalyst oxygen storage capacity adjustment systems and methods
DE102011087300A1 (de) * 2011-11-29 2013-05-29 Volkswagen Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
US8793976B2 (en) 2012-01-19 2014-08-05 GM Global Technology Operations LLC Sulfur accumulation monitoring systems and methods
US9771888B2 (en) 2013-10-18 2017-09-26 GM Global Technology Operations LLC System and method for controlling an engine based on an oxygen storage capability of a catalytic converter
US9650981B1 (en) 2015-12-28 2017-05-16 GM Global Technology Operations LLC Adjustment of measured oxygen storage capacity based on upstream O2 sensor performance
JP7110345B2 (ja) * 2018-07-03 2022-08-01 日立Astemo株式会社 制御装置
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
CN112282954B (zh) * 2020-11-02 2022-10-28 潍柴动力股份有限公司 氮氧传感器作弊故障检测方法及设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2328459A1 (de) 1973-01-31 1975-01-02 Bosch Gmbh Robert Einrichtung zur ueberwachung von katalytischen reaktoren in abgasentgiftungsanlagen von brennkraftmaschinen
US5325664A (en) * 1991-10-18 1994-07-05 Honda Giken Kogyo Kabushiki Kaisha System for determining deterioration of catalysts of internal combustion engines
FR2682993B1 (fr) 1991-10-28 1994-01-28 Siemens Automotive Sa Procede de surveillance de l'efficacite d'un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne.
DE4331153C2 (de) 1992-09-26 2001-02-01 Volkswagen Ag Verfahren zur Gewinnung von fehlerspezifischen Beurteilungskriterien eines Abgaskatalysators und einer Regel-Lambdasonde
GB9315918D0 (en) * 1993-07-31 1993-09-15 Lucas Ind Plc Method of and apparatus for monitoring operation of a catalyst
JP3374569B2 (ja) * 1995-01-10 2003-02-04 株式会社日立製作所 排ガス浄化触媒および浄化方法
JP3380366B2 (ja) * 1995-05-22 2003-02-24 株式会社日立製作所 エンジン排気ガス浄化装置の診断装置
DE19606652B4 (de) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE19633481A1 (de) * 1996-08-20 1998-03-05 Porsche Ag Brennkraftmaschine mit Lambda-Regelung und Störglied
JP3549147B2 (ja) * 1997-11-25 2004-08-04 本田技研工業株式会社 天然ガス用内燃機関の触媒劣化検出装置
IT1305375B1 (it) * 1998-08-25 2001-05-04 Magneti Marelli Spa Metodo di controllo del titolo della miscela aria / combustibilealimentata ad un motore endotermico
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde
DE10017931A1 (de) * 2000-04-11 2001-12-06 Siemens Ag Verfahren zur Diagnose einer Abgasreinigungsanlage einer lambdageregelten Brennkraftmaschine
DE10103772C2 (de) * 2001-01-27 2003-05-08 Omg Ag & Co Kg Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
US6694243B2 (en) * 2001-02-27 2004-02-17 General Motors Corporation Method and apparatus for determining oxygen storage capacity time of a catalytic converter
US6631611B2 (en) * 2001-05-30 2003-10-14 General Motors Corporation Methodology of robust initialization of catalyst for consistent oxygen storage capacity measurement
JP2004176710A (ja) * 2002-10-01 2004-06-24 Toyota Motor Corp 動力出力装置及びハイブリッド型の動力出力装置、それらの制御方法並びにハイブリッド車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032280A1 (de) 2009-07-08 2011-01-13 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009032280B4 (de) * 2009-07-08 2012-03-08 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
US7343734B2 (en) 2008-03-18
WO2004074664A1 (fr) 2004-09-02
DE502004005778D1 (de) 2008-02-07
US20050252196A1 (en) 2005-11-17
EP1478834A1 (fr) 2004-11-24
DE10307010B3 (de) 2004-05-27

Similar Documents

Publication Publication Date Title
EP1478834B1 (fr) Procede pour regler une charge d'oxygene definie a l'aide d'une regulation lambda binaire en vue d'effectuer un diagnostic d'un catalyseur
DE19953601C2 (de) Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE69003459T2 (de) System zum Bestimmen von Fehlern einer Sauerstoffmesszelle und zum Kontrollieren des Luft-/Brennstoff-Verhältnisses.
DE4339299C2 (de) Vorrichtung und Verfahren zur periodischen Überwachung des Katalysator-Wrrkungsgrades an einer Brennkraftmaschine
DE60115303T2 (de) Steuersystem für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine
EP1272746B1 (fr) Procede pour effectuer le diagnostic d'une unite d'epuration de gaz d'echappement d'un moteur a combustion interne a regulation lambda
DE69617232T2 (de) Vorrichtung und verfahren zur bestimmung der sauerstoffpufferkapazität in einem katalysator
EP1336728B1 (fr) Procédé et dispositif pour régler le rapport air-carburant d'un moteur à combustion
DE3500594A1 (de) Zumesssystem fuer eine brennkraftmaschine zur beeinflussung des betriebsgemisches
DE19612212B4 (de) Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor
DE69422127T2 (de) Verfahren zur Regelung des Luft/Kraftstoffverhältnisses einer Brennkraftmaschine
DE19928968C2 (de) Steuereinrichtung und Verfahren zum Steuern einer Abgasemission einer Brennkraftmaschine
DE102004009615B4 (de) Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
DE69707996T2 (de) Vorrichtung zum Feststellen der Verschlechterung eines Katalysators einer Brennkraftmaschine
EP0546318A1 (fr) Méthode et dispositif pour la détermination du rendement de conversion d'un catalyseur
DE102005044335B4 (de) Verfahren zum Steuern des einer Brennkraftmaschine zugeführten Kraftstoff-/Luftverhältnisses
DE102018216980A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE102016219689A1 (de) Verfahren und Steuereinrichtung zur Regelung einer Sauerstoff-Beladung eines Dreiwege-Katalysators
DE19501150A1 (de) Verfahren zum Steuern des Luft-Kraftstoffverhältnisses bei einem Verbrennungsmotor und Steuerungsvorrichtung hierzu
DE10361286B4 (de) Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators
DE4024212A1 (de) Verfahren zur stetigen lambdaregelung einer brennkraftmaschine mit katalysator
DE102018251725A1 (de) Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102004060125B4 (de) Verfahren zur Steuerung der Be- und Entladung des Sauerstoffspeichers eines Abgaskatalysators
DE102004061603B4 (de) Verfahren zur Bestimmung der dynamischen Speicherfähigkeit des Sauerstoffspeichers eines Abgaskatalysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VDO AUTOMOTIVE AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004005778

Country of ref document: DE

Date of ref document: 20080207

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VDO AUTOMOTIVE AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080305

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090115

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200131

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004005778

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004005778

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005778

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803