EP1478834B1 - Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose - Google Patents
Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose Download PDFInfo
- Publication number
- EP1478834B1 EP1478834B1 EP04702313A EP04702313A EP1478834B1 EP 1478834 B1 EP1478834 B1 EP 1478834B1 EP 04702313 A EP04702313 A EP 04702313A EP 04702313 A EP04702313 A EP 04702313A EP 1478834 B1 EP1478834 B1 EP 1478834B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- lambda
- control factor
- lean
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 109
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 109
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 107
- 239000003054 catalyst Substances 0.000 title claims abstract description 75
- 239000007789 gas Substances 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000033228 biological regulation Effects 0.000 title claims description 5
- 239000000203 mixture Substances 0.000 claims abstract description 62
- 239000000446 fuel Substances 0.000 claims abstract description 49
- 230000008859 change Effects 0.000 claims abstract description 27
- 238000003745 diagnosis Methods 0.000 claims abstract description 23
- 230000003247 decreasing effect Effects 0.000 claims abstract description 4
- 230000007423 decrease Effects 0.000 claims description 7
- 230000032683 aging Effects 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000000523 sample Substances 0.000 description 31
- 230000001419 dependent effect Effects 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/0295—Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1495—Detection of abnormalities in the air/fuel ratio feedback system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0814—Oxygen storage amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0816—Oxygen storage capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
Definitions
- the invention relates to a method for setting a defined oxygen loading with binary lambda control for carrying out the exhaust gas catalyst diagnosis.
- the invention further relates to a control device that can be used to set a defined oxygen loading.
- catalysts Exhaust catalysts for motor vehicles, hereinafter referred to simply as catalysts, are subject to aging phenomena. According to legislation, it is necessary to carry out a review of the function of catalytic converters in each driving cycle. The reliable function of catalysts is carried out by determining the oxygen storage capacity of the catalyst. The catalyst diagnosis runs over several lambda control periods, which coincide with catalyst diagnostic cycles. In order to have as few scatters as possible of individual diagnostic cycles, it is important to have a specific oxygen loading of the catalyst which can be repeated in each of the control cycles caused by the control.
- this defined oxygen charge can be achieved with a defined forced excitation.
- cyclical deviations from the stoichiometric lambda desired value are set, wherein half periods alternate with lean and rich exhaust gas.
- the oxygen storage of the catalyst is charged by storing excess oxygen, while the rich exhaust gas half-period empties the oxygen storage of the catalyst by consuming oxygen to oxidize exhaust components.
- the instantaneous oxygen input is positive when excess oxygen is stored in the catalyst; he is negative, if the missing oxygen to oxidation reactions in the rich exhaust gas is removed from the catalyst (if it has been previously stored).
- the control is based on feedback from the lambda probe that the exhaust gases correspond to a rich or lean mixture.
- a lambda probe signal which indicates a fuel mixture that is too rich
- the fuel quantity is continuously emaciated, with the oxygen used for oxidation reactions being removed from the catalyst. The emptying takes place until the lambda probe signal jumps over and indicates too lean a fuel mixture, wherein the excess oxygen is stored in the catalyst. Then there is a short dwell time with which slight lambda shifts, i. different reaction times of the lambda probe, can be compensated.
- the duration of the control cycle and the amplitude are essentially determined by the system transport delay and the reaction time of the lambda probe.
- the system delay is strongly dependent on the operating point of the engine.
- the oxygen loading of the catalyst is subject to changes, which makes it difficult to determine the catalyst efficiency.
- newer catalysts for meeting future emission limits eg ULEV, LEV II
- have a higher oxygen storage capacity so that the catalyst efficiency diagnosis requires a higher oxygen loading than is self-adjusting in a control cycle.
- a method of adjusting a defined oxygen loading to carry out the catalyst diagnosis The control of the catalyst causes control cycles.
- the catalyst diagnosis is carried out at a predetermined oxygen loading per control cycle.
- a fuel mixture is fat or lean adjustable according to a lambda control factor.
- a rich or lean exhaust gas of the fuel mixture is detected, wherein upon detection of a lean exhaust gas of the fuel mixture, the lambda control factor is incrementally increased, and upon detection of a rich exhaust gas of the fuel mixture, the lambda control factor is incrementally reduced.
- the lambda control factor is changed by a p-step value of the lambda control factor.
- the lambda control factor during a first loading time to a minimum control factor value and after a detected change from a lean exhaust gas to a rich exhaust gas of the fuel mixture, the lambda control factor during a second loading time set a maximum controller factor value.
- the minimum control factor is determined by a local minimization of the controller factor value of the current control cycle, the maximum controller factor by a local maximum of the controller factor value of the current control cycle.
- the first and the second loading time are adjusted so that the oxygen loading in each control cycle reaches the specific oxygen loading, ie the predetermined oxygen input or oxygen discharge depending on the half-period of the control cycle.
- the lambda control factor you can set the mixture rich or lean. If a rich exhaust gas is detected with the lambda probe, the lambda control factor is continuously reduced and thus the mixture is emaciated until the lambda probe detects a lean exhaust gas. This is followed by a residence time during which the lambda control factor is stopped in order to compensate for the difference in the probe switching times, or to realize a slight mixture shift, as in a standard lambda controller. Thereafter, an additional P-jump .DELTA.P also takes place in the leaning direction of the lambda control factor to the minimum control factor value, which results from the maximum difference to the lambda control factor mean value, so that the value of the predetermined oxygen charge is reached more quickly.
- the P-jump is effected by the amount of incremental decreases and the additional P-jump ⁇ P in the direction of enrichment. Since a lean exhaust gas is detected at the lambda probe, the lambda control factor is now increased continuously and thus the fuel mixture is enriched until the lambda probe detects a rich exhaust gas. This is followed by a dwell time to compensate for the difference in the probe switching times, or mixture shift to realize. This is followed again by an additional P-jump in the direction of enrichment, which is limited by the maximum difference to the lambda factor mean, so that the oxygen discharge - corresponding to the oxygen input in the lean half period - realized faster.
- the catalyst diagnosis it is important to be able to set the amplitude of the lambda oscillation by the additional P-jump, or the limitation of the maximum amplitude as a function of the operating point, so that the oxygen storage properties in the catalyst can be taken into account in the catalyst diagnosis.
- the process according to the invention results in that at one enrichment half period - oxygen discharge from the catalyst -, i. the mixture is enriched, or a half-leaning period - oxygen input in the catalyst, i. the fuel mixture is emaciated, the fuel mixture after detecting a change between rich and lean exhaust still changed by a ⁇ P jump, or is set to a maximum difference to the lambda control factor average to the previously not yet reached predetermined oxygen load as fast as possible to achieve with defined lambda amplitude. Adjusting the lambda controller factor to the maximum controller factor value that depends on the predetermined oxygen load causes the predetermined determined oxygen load to be reached quickly after a change between rich and lean exhaust gas has been detected.
- the lambda control factor is reset by the sum of the P-jumps (standard P-jump + ⁇ P-jump) carried out during the respective half-cycle.
- the lambda control factor is now increased or decreased step by step, thus emacifying or enriching the fuel mixture.
- the predetermined specific oxygen charge is determined by the maximum oxygen storage capacity of an aged catalyst. In this way, the catalyst efficiency diagnosis can be carried out even with an aged catalyst at a repeatable in each control cycle operating point-dependent oxygen loading of the catalyst.
- the minimum or the maximum controller factor value is preferably determined by the difference between the lambda control factor and the lambda factor mean value and is predetermined by the oxygen storage rate of the catalytic converter.
- the oxygen storage rate of the catalyst depends on the flow rate of the exhaust gases through the catalyst and the catalyst temperature and essentially describes what maximum amount of oxygen per unit time can diffuse into the catalyst and be bound.
- the controller factor value is thus set to a minimum or maximum value at which the oxygen diffusion rate is not yet exceeded, and therefore measurable oxygen behind the catalyst, although the storage capacity has not been exceeded.
- a controller for performing a controlled catalyst diagnostic.
- the controller adjusts a certain maximum oxygen load per control cycle to carry out a catalyst diagnosis.
- the control device regulates the composition of a fuel mixture, the regulation leading to control cycles.
- the control device can be connected to an injection system to set the fuel mixture rich or lean according to a lambda control factor. Using a sensor, lean or rich exhaust gas is detected. The controller incrementally increases the lambda control factor with lean exhaust gas and decreases the lambda control factor incrementally with rich exhaust.
- the control device sets the lambda control factor during a first loading time after a detected change from a rich exhaust gas to a lean exhaust gas of the fuel mixture to a minimum controller factor value, wherein after the first loading time, the controller factor value is set to an average value of the lambda controller factor.
- the controller further sets the lambda control factor to a maximum controller factor value during a second loading time after a change from a lean exhaust gas to a rich exhaust gas of the fuel mixture has been detected. After expiration of the second loading time, the lambda control factor is changed to an average value of the lambda control factor by the control device.
- the first and second loading times are set so that the oxygen loading, ie, the oxygen input or discharge in each control cycle, reaches the predetermined maximum positive or negative oxygen loading.
- the control device has the advantage that it controls the fuel mixture so that the oxygen loading is the same for each control cycle, so that a reproducible oxygen loading over several control cycles allows a forementionedsunboxere and reproducible catalyst diagnosis.
- the control device can preferably be operated in a diagnostic mode for performing the catalyst diagnosis and operated in a second operating mode, in which the control device regulates as previously known standard PI lambda controller.
- the catalyst diagnosis is merely an operating mode of an already provided control device, so that a change of the overall system with a control device, injection system, engine and catalyst essentially does not have to be changed constructively.
- FIG. 1 shows a functional diagram of an engine system.
- the engine system has a Gemischbuchner 1, which provides an internal combustion engine 2, a fuel mixture of air and fuel.
- the engine 2 burns the fuel mixture and releases exhaust gases supplied to a three-way catalyst 5.
- the exhaust gas emitted by the internal combustion engine 2 is conducted via a lambda probe 4, which determines from the exhaust gas composition whether the mixture is richer or leaner than the stoichiometric fuel mixture.
- the lambda probe 4 is connected to a control device 3, so that a measured value measured by the lambda probe 4 is available as an input variable for the control device.
- the control device 3 is a binary controller, which only receives the information as input from the lambda probe, whether the exhaust gas corresponds to a too rich or too lean fuel mixture.
- the control device 3 generates a control value, which is transmitted to the mixture former 1.
- the manipulated variable is the lambda control factor, which indicates by what factor the basic fuel mixture ratio specified by an injection system (not shown) should be changed.
- a catalyst efficiency diagnosis can be performed. For such an efficiency diagnosis, it is important that the lowest possible spread between individual diagnostic cycles is available. This can be achieved by charging the catalyst with the same amount of oxygen in each control cycle. While one can achieve the same oxygen loading in the control cycles with linear lambda control with a defined forced excitation, this is not possible with a binary lambda control.
- a binary lambda control regulates the mixture composition via the lambda control factor based on a binary signal dependent on the lambda probe or the probe voltage U ⁇ , which indicates whether the fuel mixture is too rich or too lean, the control deviation being unknown.
- FIG. 2 shows the time profile of the lambda control factor over time.
- the controller 3 In a first period T1, the controller 3 is in normal operation, i. the lambda control is achieved by cyclically oscillating the lambda control factor by an average of about a lambda value of 1, i. corresponds to a stoichiometric mean.
- the control cycles are referred to as a lean half-period when the lambda control factor is less than its average, and as the fifth-half period when the lambda control factor is greater than its average.
- Lambda control is accomplished by incrementally increasing the lambda control factor in the phase in which the lambda probe reports lean exhaust gas, thereby increasingly enriching the fuel mixture, i. the fuel content in the fuel mixture is increasingly increased. This is represented by the stepwise increase of the lambda control factor over time in the first time period T1. Once it is detected by the lambda probe 4 that the fuel mixture is too rich, the stepwise increase of the lambda control factor is stopped.
- a first residence time TDLY1 may be provided, while after detecting a change from the lean to the rich mixture and vice versa, the lambda control factor is maintained before being jumped back by a P jump.
- the lambda control factor becomes continuous, i. gradually reduced so that the fuel mixture is emaciated.
- the stepwise reduction of the lambda control factor is stopped and, after a second dwell time TDLY2, a P jump of the lambda control factor is made.
- the second residence time TDLY2 may be different from the residence time TDLY1.
- a second time segment T2 now shows the profile of the lambda control factor in a diagnostic mode in which the Functionality of the catalyst should be checked.
- a constant oxygen charge is necessary for all control cycles. That is, the oxygen loading change should have substantially the same amount both in the lean half periods and in the fifth half periods. It does not matter if it is a positive or a negative oxygen change.
- the control is substantially the same as in the normal mode as described above.
- the lambda control factor is first kept constant after a dwell time TDLY and further emaciated by a ⁇ P jump after the dwell time.
- the duration for which the maximum value for the lambda control factor is to be maintained depends on the oxygen load achieved in the relevant half-period. That the maximum value of the lambda control factor is maintained until a defined oxygen load has been reached in this control cycle.
- m O 2 the oxygen loading
- t M the time of the half-period
- ⁇ the lambda value of the fuel mixture
- ( ⁇ 1 at stoichiometric average)
- ⁇ L represents the air mass flow.
- the factor of 23% results from the oxygen mass fraction in the air.
- ⁇ ⁇ is to be positive during the lean half-period and negative during the rich half period.
- FAC_LAM is the instantaneous multiplicative lambda controller factor
- FAC_LAM_MV is its average over the entire lambda controller period.
- the dwell time and the range of the stepwise change of the lambda control factor are unchanged in the diagnostic mode maintained.
- the lambda control factor in the lean half period may be increased by a ⁇ P jump or decreased by a ⁇ P jump during the fifth-half period in order to increase the oxygen loading - positive or negative - faster to achieve catalyst efficiency diagnostics.
- the length of time during which the maximum or minimum value of the lambda control factor is output by the controller 3 depends on the desired oxygen loading, i. the lambda control factor remains applied until the desired oxygen charge according to the above formula is reached.
- the lambda control factor Upon reaching the desired oxygen load, the lambda control factor is reset by the sum of the lambda controller changes made during the incremental increases or decreases in the respective half-cycle and the additional P-jump ⁇ P.
- the sum results from the sum of all incremental increases or decreases of the lambda control factor, and the additional increase or decrease to the maximum difference or the minimum value of the lambda control factor over the entire lambda control cycle.
- the maximum or the minimum value of the lambda control factor results from the maximum diffusion rate of the oxygen into the active layer or washcoat of the catalyst into or out.
- the maximum or the minimum value of the lambda control factor is thus determined by how quickly oxygen from the exhaust gas stream, which is passed through the catalyst, can be taken up or released into the active layer or washcoat.
- the maximum or minimum control factor value thus results from a predetermined oxygen loading value. If the lambda control factor is set greater than the maximum value or less than the minimum value, this does not mean that more oxygen is absorbed or delivered. As a result, the catalyst is no longer able to buffer the ⁇ fluctuations caused by the control cycles relative to the output of the catalyst, so that no fluctuations can be detected there, although the oxygen storage capacity of the catalyst has not yet been exhausted.
- the particular oxygen load used to perform the catalyst efficiency diagnostics corresponds to the oxygen storage capability of an aged catalyst that is just meeting efficiency requirements.
- the efficiency diagnosis is carried out with the aid of a ⁇ monitor probe (not shown), which is also a lambda probe, wherein the monitor probe is mounted in the exhaust gas flow downstream of the catalytic converter 5.
- the monitor probe detects whether a constant lambda value is reached or whether the lambda value varies according to the control cycles. If the lambda value measured by the monitor probe varies, the catalyst under test does not have sufficient oxygen storage capacity and a defective or aged catalyst is detected.
- the oxygen loading calculation and setpoint adjustment also take into account the aging of the lambda probe and the resulting detection delay of the exhaust gas change in rich ⁇ lean. Prolongs the reaction time of the lambda probe by aging phenomena, the stepwise increase or decrease in the lambda control factor is carried out longer, so that even when detecting a change between a too rich and too lean a fuel mixture, a higher oxygen loading of the catalyst is achieved and a higher amplitude in the ⁇ control factor and ⁇ oscillation. Therefore, the amplitude of the lambda control factor becomes maximum difference to lambda control factor average limited, that is, the additional P-pitch ⁇ P is not fully realized.
- the idea of the invention is to provide a method for an oxygen-loading-based, binary lambda control, wherein after the residence time a further jump of the lambda control factor value in the original direction is provided in order to achieve the increased oxygen loading more quickly.
- the additional P-jump is limited so that it does not reach the maximum in the sum of the I component integrated over half-period Difference to the mean value of the lambda control factor may not exceed.
- Oxygen load-based lambda control adjusts the times during which the maximum or minimum lambda control factor is maintained, or the amplitude increases, adaptively to the maximum and minimum lambda control factor values, respectively.
- the lambda control factor is not set to a maximum or minimum value after detection of a change between a lean and rich fuel mixture, but that the lambda control factor is maintained until the predetermined oxygen charge is reached.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zur Einstellung einer definierten Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Abgaskatalysatordiagnose. Die Erfindung betrifft weiterhin eine Regeleinrichtung, die zur Einstellung einer definierten Sauerstoffbeladung genutzt werden kann.
- Abgaskatalysatoren für Kraftfahrzeuge, im folgenden vereinfacht als Katalysatoren bezeichnet, unterliegen Alterungserscheinungen. Nach Gesetzgeberanforderung ist es notwendig, in jedem Fahrzyklus eine Überprüfung der Funktion von Katalysatoren durchzuführen. Die zuverlässige Funktion von Katalysatoren wird über die Bestimmung der Sauerstoffspeicherfähigkeit des Katalysators durchgeführt. Die Katalysatordiagnose läuft über mehrere Lambdareglerperioden, die sich mit Katalysatordiagnosezyklen decken. Um möglichst niedrige Streuungen einzelner Diagnosezyklen zu haben, ist eine bestimmte, in jedem der durch die Regelung bedingten Regelzyklen wiederholbare Sauerstoffbeladung des Katalysators wichtig.
- Bei einer linearen Lambda-Regelung kann man diese definierte Sauerstoffbeladung mit einer definierten Zwangsanregung erreichen. Dabei werden zyklische Abweichungen von dem stöchiometrischen Lambda-Sollwert eingestellt, wobei sich Halbperioden mit magerem und fettem Abgas abwechseln. In der Halbperiode mit magerem Abgas wird der Sauerstoffspeicher des Katalysators gefüllt, indem überschüssiger Sauerstoff eingelagert wird, während der Halbperiode mit fettem Abgas der Sauerstoffspeicher des Katalysators geleert wird, indem Sauerstoff zur Oxidation von Abgasbestandteilen verbraucht wird. Der momentane Sauerstoffeintrag ist positiv, wenn überschüssiger Sauerstoff in dem Katalysator gespeichert wird; er ist negativ, wenn der zu Oxidationsreaktionen im fetten Abgas fehlende Sauerstoff dem Katalysator entnommen wird (falls er vorher gespeichert wurde).
- Bei einer binären Lambda-Regelung basiert die Regelung auf einer Rückmeldung der Lambda-Sonde, dass die Abgase einem fetten oder magerem Gemisch entsprechen. Bei einem Lambda-Sondensignal, das ein zu fettes Brennstoffgemisch anzeigt, wird die Kraftstoffmenge kontinuierlich abgemagert, wobei der für Oxidationsreaktionen gebrauchte Sauerstoff dem Katalysator entnommen wird. Die Abmagerung erfolgt solange, bis das Lambda-Sondensignal umspringt und ein zu mageres Brennstoffgemisch anzeigt, wobei der überschüssige Sauerstoff im Katalysator gespeichert wird. Dann erfolgt eine kurze Verweilzeit, mit der leichte Lambda-Verschiebungen, d.h. unterschiedliche Reaktionszeiten der Lambda-Sonde, kompensiert werden können. Anschließend erfolgt ein so genannter p-Sprung (Proportionalsprung) des Lambda-Reglerfaktors in Anfettungsrichtung und das Brennstoffgemisch wird anschließend kontinuierlich angefettet, bis die binäre Lambda-Sonde ein zu fettes Brennstoffgemisch anzeigt. Darauf folgt eine entsprechende Verweilzeit und ein p-Sprung des Lambdareglerfaktors in Abmagerungsrichtung. Dieser Regelzyklus wiederholt sich.
- Die Dauer des Regelzyklus und die Amplitude sind wesentlich durch die Systemtransportverspätung und die Reaktionszeit der Lambda-Sonde bestimmt. Die Systemtransportverspätung ist stark abhängig vom Betriebspunkt des Motors. Dadurch ist die Sauerstoffbeladung des Katalysators Änderungen unterworfen, die eine Bestimmung des Katalysatorwirkungsgrads erschwert. Darüber hinaus weisen neuere Katalysatoren für die Erfüllung zukünftiger Emissionsgrenzwerte (z.B. ULEV, LEV II) eine höhere Sauerstoffspeicherfähigkeit auf, so dass für die Katalysator-Wirkungsgraddiagnose eine höhere Sauerstoffbeladung benötigt wird, als sich in einem Regelzyklus von selbst einstellt.
- Bisher sind Standard-PI-Lambda-Regler mit verlängerten Verweilzeiten bekannt, um eine höhere Sauerstoffbeladung zu erreichen. Die Sauerstoffbeladung unterliegt starken Streuungen von Regelzyklus zu Regelzyklus und ist erheblich vom Betriebspunkt abhängig. Dadurch unterliegen auch die einzelnen Zyklen der Katalysator-Wirkungsgraddiagnose starken Streuungen, so dass eine ausreichende Trennschärfe zwischen verschieden gealterten Katalysatoren nicht gegeben ist. Die Patentschrift
US 5325664 offenbart ein derartiges Verfahren. - Es ist daher Aufgabe der vorliegenden Erfindung, eine störungsunempfindlichere reproduzierbare Katalysator-Wirkungsgraddiagnose zu ermöglichen.
- Diese Aufgabe wird durch das Verfahren nach Anspruch 1, sowie durch die Regeleinrichtung nach Anspruch 4 gelöst.
- Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
- Gemäß einem ersten Aspekt der vorliegenden Erfindung ist ein Verfahren zur Einstellung einer definierten Sauerstoffbeladung zur Durchführung der Katalysatordiagnose vorgesehen. Die Regelung des Katalysators bewirkt Regelzyklen. Die Katalysatordiagnose wird bei einer vorbestimmten Sauerstoffbeladung pro Regelzyklus durchgeführt. Ein Brennstoffgemisch ist gemäß einem Lambda-Reglerfaktor fett oder mager einstellbar. Eine fettes oder mageres Abgas des Brennstoffgemisches wird detektiert, wobei bei Feststellen eines mageren Abgases des Brennstoffgemisches der Lambda-Reglerfaktor inkrementell erhöht wird und bei einem Feststellen eines fetten Abgases des Brennstoffgemisches der Lambda-Reglerfaktor inkrementell vermindert wird. Nach einem detektierten Wechsel von einem fetten Abgas zu einem mageren Abgas oder von einem mageren Abgas zu einem fetten Abgas des Brennstoffgemisches wird der Lambda-Reglerfaktor um einen p-Sprungwert des Lambda-Reglerfaktors geändert. Weiterhin wird nach einem detektierten Wechsel von einem fetten Abgas zu einem mageren Abgas des Brennstoffgemisches der Lambda-Reglerfaktor während einer ersten Beladungszeit auf einen minimalen Reglerfaktorwert und nach einem detektierten Wechsel von einem mageren Abgas zu einem fetten Abgas des Brennstoffgemisches der Lambda-Reglerfaktor während einer zweiten Beladungszeit auf einen maximalen Reglerfaktorwert gesetzt. Der minimale Reglerfaktor ist durch ein lokales Minimieren des Reglerfaktorwertes des aktuellen Regelzyklus, der maximale Reglerfaktor durch ein lokales Maximum des Reglerfaktorwertes des aktuellen Regelzyklus bestimmt. Die erste und die zweite Beladungszeit werden so eingestellt, dass die Sauerstoffbeladung in jedem Regelzyklus die bestimmte Sauerstoffbeladung erreicht, d. h. den vorgegebenen Sauerstoffeintrag bzw. Sauerstoffaustrag je nach Halbperiode des Regelzyklus.
- Mit dem Lambda-Regelfaktor kann man das Gemisch fett oder mager einstellen. Wenn mit der Lambdasonde ein fettes Abgas detektiert wird, wird der Lambda-Regelfaktor kontinuierlich vermindert und damit das Gemisch abgemagert, bis die Lambdasonde ein mageres Abgas delektiert. Danach erfolgt eine Verweilzeit, während der der Lambdaregelfaktor angehalten wird, um die Differenz der Sondenschaltzeiten auszugleichen, bzw. eine leichte Gemischverschiebung zu realisieren, wie bei einem Standard-Lambda-Regler. Danach erfolgt ein zusätzlicher P-Sprung ΔP ebenfalls in Abmagerungsrichtung des Lambdareglerfaktors auf den minimalen Reglerfaktorwert, der sich aus der maximalen Differenz zu dem Lambda-Reglerfaktormittelwert ergibt, so dass der Wert der vorbestimmten Sauerstoffbeladung schneller erreicht wird. Danach erfolgt der P-Sprung um den Betrag der inkrementellen Verminderungen und des zusätzlichen P-Sprungs ΔP in Anfettungsrichtung. Da an der Lambdasonde ein mageres Abgas detektiert wird, wird nun der Lambda-Regelfaktor kontinuierlich erhöht und damit das Brennstoffgemisch angefettet, bis die Lambdasonde ein fettes Abgas detektiert. Danach erfolgt eine Verweilzeit um die Differenz der Sondenschaltzeiten auszugleichen, bzw. Gemischverschiebung zu realisieren. Danach erfolgt erneut ein zusätzlicher P-Sprung in Anfettungsrichtung, der durch die maximale Differenz zu dem Lambdareglerfaktormittelwert begrenzt ist, so dass der Sauerstoffaustrag - entsprechend dem Sauerstoffeintrag in der Magerhalbperiode - schneller realisiert wird. Für die Katalysatordiagnose ist die Möglichkeit wichtig, die Amplitude der Lambdaschwingung durch den zusätzlichen P-Sprung, bzw. die Begrenzung der maximalen Amplitude in Abhängigkeit vom Betriebspunkt einstellen zu können, so dass die Sauerstoffspeicherungseigenschalten im Katalysator bei der Katalysatordiagnose berücksichtigt werden können.
- Das erfindungsgemäße Verfahren führt dazu, dass bei einer Anfettungshalbperiode - Sauerstoffaustrag vom Katalysator -, d.h. das Gemisch wird angefettet, bzw. einer Abmagerungshalbperiode - Sauerstoffeintrag im Katalysator, d.h. das Brennstoffgemisch wird abgemagert, das Brennstoffgemisch nach dem Detektieren eines Wechsels zwischen fetten und magerem Abgas noch um einen ΔP-Sprung geändert, bzw. auf eine maximale Differenz zu dem Lambda-Reglerfaktormittelwert gesetzt wird, um die bislang noch nicht erreichte vorgegebene Sauerstoffbeladung so schnell wie möglich mit definierter Lambdaamplitude zu erreichen. Das Einstellen des Lambda-Reglerfaktors auf den maximalen Reglerfaktorwert, der von der vorbestimmten Sauerstoffbeladung abhängig bewirkt, dass die vorgegebene bestimmte Sauerstoffbeladung schnell erreicht wird, nachdem ein Wechsel zwischen fettem und mageren Abgas detektiert worden ist.
- Nachdem die vorgegebene Sauerstoffbeladung erreicht worden ist, wird der Lambda-Reglerfaktor sprunghaft um die Summe der im Verlauf der jeweiligen Halbperiode durchgeführten P-Sprünge (Standard P-Sprung + ΔP-Sprung) zurückgestellt. Wie zuvor wird nun der Lambda-Reglerfaktor schrittweise erhöht bzw. vermindert, und somit das Brennstoffgemisch abgemagert oder angefettet.
- Vorzugsweise ist vorgesehen, dass die vorgegebene bestimmte Sauerstoffbeladung durch die maximale Sauerstoffspeicherfähigkeit eines gealterten Katalysators festgelegt ist. Auf diese Weise kann die Katalysator-wirkungsgraddiagnose auch bei einem gealterten Katalysator bei einer in jedem Regelzyklus wiederholbaren vom Betriebspunkt abhängigen Sauerstoffbeladung des Katalysators durchgeführt werden.
- Vorzugsweise ist der minimale bzw. der maximale Reglerfaktorwert durch die Differenz des Lambdareglerfaktors zu dem Lambdareglerfaktormittelwert bestimmt und ist durch die Sauerstoffspeicherungsgeschwindigkeit des Katalysators vorgegeben. Die Sauerstoffspeicherungsgeschwindigkeit des Katalysators hängt von dem Durchfluss der Abgase durch den Katalysator und der Katalysatortemperatur ab und beschreibt im Wesentlichen, welche maximale Sauerstoffmenge pro Zeiteinheit in den Katalysator eindiffundieren und gebunden werden kann. Der Reglerfaktorwert ist so also auf einen minimalen bzw. maximalen Wert eingestellt, bei dem es noch nicht zu einer Überschreitung der Sauerstoffdiffusionsgeschwindigkeit und dadurch zu messbarem Sauerstoff hinter dem Katalysator kommt, obwohl die Speicherfähigkeit nicht überschritten wurde.
- Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist eine Regeleinrichtung für die Durchführung einer Diagnose eines geregelten Katalysators vorgesehen. Die Regeleinrichtung stellt eine bestimmte maximale Sauerstoffbeladung pro Regelzyklus ein für die Durchführung einer Katalysatordiagnose. Die Regeleinrichtung regelt die Zusammensetzung eines Brennstoffgemisches, wobei die Regelung zu Regelzyklen führt. Die Regeleinrichtung ist dazu mit einem Einspritzsystem verbindbar, um das Brennstoffgemisch gemäß einem Lambda-Reglerfaktor fett oder mager einzustellen. Mithilfe eines Sensors wird mageres oder fettes Abgas detektiert. Die Regeleinrichtung erhöht den Lambda-Reglerfaktor bei magerem Abgas inkrementell und vermindert den Lambda-Reglerfaktor inkrementell bei fettem Abgas. Die Regeleinrichtung setzt den Lambda-Reglerfaktor während einer ersten Beladungszeit nach einem detektierten Wechsel von einem fetten Abgas zu einem mageren Abgas des Brennstoffgemisches auf einen minimalen Reglerfaktorwert, wobei nach Ablauf der ersten Beladungszeit der Reglerfaktorwert auf einen Mittelwert des Lambda-Reglerfaktors gesetzt wird. Die Regeleinrichtung setzt weiterhin den Lambda-Reglerfaktor während einer zweiten Beladungszeit auf einen maximalen Reglerfaktorwert, nachdem ein Wechsel von einem mageren Abgas zu einem fetten Abgas des Brennstoffgemisches detektiert worden ist. Nach Ablauf der zweiten Beladungszeit wird der Lambda-Reglerfaktor auf einem Mittelwert des Lambda-Reglerfaktor durch die Regeleinrichtung geändert. Die erste und die zweite Beladungszeit sind so festgelegt, dass die Sauerstoffbeladung, d. h. der Sauerstoffeintrag bzw. -austrag in jedem Regelzyklus die vorbestimmte maximale positive oder negative Sauerstoffbeladung erreicht.
- Die erfindungsgemäße Regeleinrichtung hat den Vorteil, dass sie das Brennstoffgemisch so regelt, dass die Sauerstoffbeladung bei jedem Regelzyklus gleich ist, so dass eine reproduzierbare Sauerstoffbeladung über mehrere Regelzyklen eine störungsunempfindlichere und reproduzierbare Katalysatordiagnose ermöglicht.
- Die Regeleinrichtung kann vorzugsweise in einem Diagnosemodus zur Durchführung der Katalysatordiagnose betrieben werden und in einem zweiten Betriebsmodus betrieben werden, bei dem die Regeleinrichtung als bisher bekannter Standard PI-Lambdaregler regelt. Auf diese Weise stellt die Katalysatordiagnose lediglich einen Betriebsmodus einer bereits vorgesehenen Regeleinrichtung dar, so dass eine Änderung des Gesamtsystems mit einer Regeleinrichtung, Einspritzsystem, Motor und Katalysator im Wesentlichen nicht konstruktiv verändert werden muss.
- Eine bevorzugte Ausführungsform der Erfindung wird im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
- Figur 1
- ein Motorsystem mit einer Regeleinrichtung gemäß einer bevorzugten Ausführungsform der Erfindung; und
- Figur 2
- den Verlauf des Lambda-Reglerfaktors über mehrere Regelzyklen.
- In Figur 1 ist ein Funktionsschema eines Motorsystems dargestellt. Das Motorsystem weist einen Gemischbildner 1, der einem Verbrennungsmotor 2 ein Brennstoffgemisch aus Luft und Kraftstoff zur Verfügung stellt. Der Verbrennungsmotor 2 verbrennt das Brennstoffgemisch und gibt Abgase ab, die einem Drei-Wege-Katalysator 5 zugeführt werden. Das von dem Verbrennungsmotor 2 abgegebene Abgas wird über eine Lambda-Sonde 4 geleitet, die anhand der Abgaszusammensetzung feststellt, ob das Gemisch fetter oder magerer als das stöchiometrische Brennstoffgemisch ist.
- Die Lambda-Sonde 4 ist mit einer Regeleinrichtung 3 verbunden, so dass ein von der Lambda-Sonde 4 gemessener Messwert als Eingangsgröße für die Regeleinrichtung zur Verfügung steht. Bei der Regeleinrichtung 3 handelt es sich um einen binären Regler, der als Eingangsgröße von der Lambda-Sonde lediglich die Information erhält, ob das Abgas einem zu fetten oder zu mageren Brennstoffgemisch entspricht. Die Regeleinrichtung 3 generiert daraus einen Stellwert, der an den Gemischbildner 1 übertragen wird. Der Stellwert ist der Lambda-Reglerfaktor, der angibt, um welchen Faktor das von einem Einspritzsystem (nicht gezeigt) vorgegebene Basis-Brennstoffmischungsverhältnis verändert werden soll.
- Durch die Überprüfung der Funktionsfähigkeit des Katalysators 5 kann eine Katalysator-Wirkungsgraddiagnose durchgeführt werden. Für eine solche Wirkungsgraddiagnose ist es wichtig, dass möglichst niedrige Streuungen zwischen einzelnen Diagnosezyklen vorhanden ist. Dies kann erreicht werden, indem in jedem Regelzyklus der Katalysator mit der gleichen Sauerstoffmenge beladen wird. Während man die gleiche Sauerstoffbeladung in den Regelzyklen bei linearer Lambda-Regelung mit einer definierten Zwangsanregung erreichen kann, ist dies bei einer binären Lambda-Regelung so nicht möglich. Eine binäre Lambda-Regelung regelt über den Lambda-Regelfaktor die Gemischzusammensetzung anhand eines von der Lambda-Sonde bzw. der Sondenspannung Uλ abhängigen binären Signal, das angibt, ob das Brennstoffgemisch zu fett oder zu mager ist, wobei die Regelabweichung nicht bekannt ist.
- Da die Länge der Regelzyklen Betriebspunkt-abhängig ist, gibt es beim Normalbetrieb keine konstante Sauerstoffbeladung über die Regelzyklen. Nach einer Aktivierung der Katalysator-Wirkungsgraddiagnose wird jedoch auf eine Sauerstoffbeladungs-basierte Lambda-Regelung umgeschaltet. In Figur 2 ist der zeitliche Verlauf des Lambda-Reglerfaktors über der Zeit dargestellt.
- In einem ersten Zeitabschnitt T1 befindet sich die Regeleinrichtung 3 im Normalbetrieb, d.h. die Lambda-Regelung wird durch ein zyklisches Schwingen des Lambda-Reglerfaktors um einen Mittelwert der etwa bei einem Lambda-Wert von 1, d.h. einem stöchiometrischen Mittelwert entspricht. Die Regelzyklen werden als Magerhalbperiode, wenn der Lambdaregelfaktor kleiner als sein Mittelwert, und als Fetthalbperiode, wenn der Lambdaregelfaktor größer als sein Mittelwert ist, bezeichnet.
- Während der Magerhalbperiode befindet sich mehr Sauerstoff in dem Brennstoffgemisch, als das stöchiometrische Mittel vorgibt, d.h. als für den optimalen Betrieb des Katalysators benötigt wird. Daraus resultiert eine positive Sauerstoffbeladung während der Magerhalbperiode. Während der Fetthalbperiode befindet sich weniger Sauerstoff im Brennstoffgemisch, als das stöchiometrische Mittel vorgibt, d.h. weniger als für einen optimalen Betrieb notwendig ist, so dass Sauerstoff von dem Katalysator für die Oxidationsreaktionen an das Abgas abgegeben wird. Dies wird als negative Sauerstoffbeladung (Sauerstoffaustrag) bezeichnet.
- Die Lambda-Regelung erfolgt durch eine schrittweise Erhöhung des Lambda-Reglerfaktors in der Phase, in der die Lambdasonde mageres Abgas meldet, wodurch das Brennstoffgemisch zunehmend angefettet wird, d.h. der Brennstoffanteil im Brennstoffgemisch wird zunehmend erhöht. Dies ist durch das stufenförmige Ansteigen des Lambda-Reglerfaktors über der Zeit in dem ersten Zeitabschnitt T1 dargestellt. Sobald durch die Lambda-Sonde 4 detektiert wird, dass das Brennstoffgemisch zu fett ist, wird die stufenweise Erhöhung des Lambda-Reglerfaktors angehalten.
- Da die Lambda-Sonde 4 häufig eine asymmetrische Reaktionszeit aufweist, d.h. mit verschiedenen Reaktionszeiten einen Wechsel von einem mageren- zum fetten Gemisch, bzw. von dem fetten zum mageren Gemisch detektiert, kann eine erste Verweilzeit TDLY1 vorgesehen sein, während der nach dem Erkennen eines Wechsels von der mageren zum fetten Gemisch und umgekehrt der Lambda-Reglerfaktor beibehalten wird, bevor er sprunghaft um einen P-Sprung zurückgesetzt wird. Für die nun folgende Fetthalbperiode, d.h. nach dem P-Sprung des Lambda-Reglerfaktors, wird der Lambda-Reglerfaktor kontinuierlich, d.h. schrittweise verringert, so dass das Brennstoffgemisch abgemagert wird. Wird von der Lambda-Sonde nun angezeigt, dass das Brennstoffgemisch zu mager ist, wird die schrittweise Verringerung des Lambda-Reglerfaktors gestoppt und nach einer zweiten Verweilzeit TDLY2 ein P-Sprung des Lambda-Reglerfaktors vorgenommen. Die zweite Verweilzeit TDLY2 kann von der Verweilzeit TDLY1 verschieden sein.
- Ein zweiter Zeitabschnitt T2 zeigt nun den Verlauf des Lambda-Reglerfaktors in einer Diagnosebetriebsart, bei der die Funktionsfähigkeit des Katalysators überprüft werden soll. Um die Diagnose der Funktionalität des Katalysators mit möglichst niedrigen Streuungen zwischen den Diagnosezyklen durchführen zu können, ist eine konstante Sauerstoffbeladung für alle Regelzyklen notwendig. D.h. die Sauerstoffbeladungsänderung soll sowohl bei den Magerhalbperioden als auch bei den Fetthalbperioden im Wesentlichen den gleichen Betrag aufweisen. Dabei spielt es keine Rolle, ob es sich um eine positive oder um eine negative Sauerstoffbeladungsänderung handelt.
- Bei der Diagnosebetriebsart erfolgt die Regelung im Wesentlichen in gleicher Weise wie bei der normalen Betriebsart, wie zuvor beschrieben. Sobald während einer Magerhalbperiode ein Wechsel von einem zu fetten zu einem zu mageren Brennstoffgemisch detektiert worden ist, wird zunächst nach einer Verweilzeit TDLY der Lambda-Reglerfaktor konstant gehalten und nach der Verweilzeit um einen ΔP-Sprung weiter abgemagert. Die Dauer, wie lange der maximale Wert für den Lambda-Reglerfaktor beibehalten werden soll, richtet sich nach der erreichten Sauerstoffbeladung in der betreffenden Halbperiode. D.h. der maximale Wert des Lambda-Reglerfaktors wird so lange beibehalten, bis eine definierte Sauerstoffbeladung in diesem Regelzyklus erreicht worden ist.
- Um die Sauerstoffbeladung des Regelzyklus zu ermitteln, muss der zeitliche Verlauf des Sauerstoffeintrags für jede Halbperiode ermittelt werden. Es gilt
wobei m O2 die Sauerstoffbeladung, tM die Zeit der Halbperiode, λ der Lambda-Wert des Brennstoffgemischs, (λ = 1 bei stöchiometrischem Mittel) und ṁL den Luftmassenstrom darstellt. Da das λ von dem Lambda-Reglerfaktor abhängt, ergibt sich:
wobei λsoll der Mittelwert des λ-Reglers über eine Periode der λ-Reglerschwingung und Δλ soll den Verlauf der Abmagerung darstellt. Der Faktor 23% ergibt sich aus dem Sauerstoffmassenanteil in der Luft. - Δλ soll ist positiv während der Magerhalbperiode und negativ während der Fetthalbperiode. Für den Sauerstoffentleervorgang während der Fetthalbperiode können die Formeln in gleicher Weise angewandt werden.
- Bei einer binären Lambda-Regelung ist der Wert von λ nicht direkt bekannt. λ kann vom Lambda-Reglerfaktor berechnet werden, der einen multiplikativen Faktor der Grundeinspritzmenge darstellt. Der Lambda-Reglerfaktor entspricht umgekehrt proportional der λ-Verschiebung. Der jeweilige Mittelwert ist ein mittlerer Regeleingriff über einen Regelzyklus und entspricht λsoll , und Δλsoll ist die Differenz zwischen aktuellem Wert und dem Mittelwert des Lambda-Reglerfaktors. Es ergibt sich:
wobei FAC_LAM der momentane multiplikative Lambda-Reglerfaktor und FAC_LAM_MV sein Mittelwert über die gesamte Lambda-Reglerperiode ist. Durch diese Integration wird für jede Mager- und Fetthalbperiode der Lambda-Regelung die Sauerstoffbeladung ermittelt. Dadurch, dass der aktuelle Luftmassenstrom ṁL berücksichtigt wird, wird auch die Änderung des Betriebspunkts des Motors berücksichtigt. - Um eine Verschiebung des Lambda-Werts zu vermeiden, wird in der Diagnosebetriebsart die Verweilzeit und der Bereich der schrittweisen Änderung des Lambda-Reglerfaktors unverändert beibehalten. Um schnellstmöglich die gewünschte vorgegebene Sauerstoffbeladung zu realisieren, kann jedoch nach der Verweilzeit der Lambda-Reglerfaktor in der Magerhalbperiode um einen P-Sprung ΔP erhöht bzw. während der Fetthalbperiode um einen P-Sprung ΔP vermindert, um die erhöhte Sauerstoffbeladung - positiv oder negativ - für die Katalysator-Wirkungsgraddiagnose schneller zu erreichen.
- Die Zeitdauer, während der der maximale bzw. minimale Wert des Lambda-Reglerfaktors von der Regeleinrichtung 3 ausgeben wird, hängt von der gewünschten Sauerstoffbeladung ab, d.h. der Lambda-Reglerfaktor bleibt so lange angelegt, bis die gewünschte Sauerstoffbeladung gemäß obiger Formel erreicht ist.
- Nach Erreichen der gewünschten Sauerstoffbeladung wird der Lambda-Reglerfaktor um die Summe der während der schrittweisen Erhöhungen oder Verminderungen in der jeweiligen Halbperiode erfolgten Lambdareglerfaktoränderungen und den zusätzlichen P-Sprung ΔP zurückgesetzt. Die Summe ergibt sich aus der Summe aller schrittweisen Erhöhungen bzw. Verminderungen des Lambda-Reglerfaktors, sowie der zusätzlichen Erhöhung bzw. Verminderung auf die maximale Differenz bzw. den minimalen Wert des Lambda-Reglerfaktors über den gesamten Lambdareglerzyklus.
- Die maximale bzw. der minimale Wert des Lambda-Reglerfaktors ergibt sich aus der maximalen Diffusionsgeschwindigkeit des Sauerstoffs in die aktive Schicht bzw. Washcoat des Katalysators hinein, bzw. heraus. Die maximale bzw. der minimale Wert des Lambda-Reglerfaktors ist also dadurch bestimmt, wie schnell Sauerstoff aus dem Abgasstrom, der durch den Katalysator geleitet wird, in die aktive Schicht bzw. Washcoat aufgenommen bzw. abgegeben werden kann. Der maximale bzw. minimale Reglerfaktorwert ergibt sich also aus einem vorgegebenen Sauerstoffbeladungswert. Wird der Lambda-Reglerfaktor größer als der maximale Wert bzw. kleiner als der minimale Wert angesetzt, hat dies nicht zur Folge, dass mehr Sauerstoff aufgenommen bzw. abgegeben wird. Dadurch ist der Katalysator nicht mehr in der Lage, die λ-Schwankungen, die durch die Regelzyklen hervorgerufen werden, gegenüber dem Ausgang des Katalysators so zu puffern, so dass dort keine Schwankungen detektiert werden können, obwohl die Sauerstoffspeicherfähigkeit des Katalysators noch nicht ausgeschöpft wurde.
- Die bestimmte Sauerstoffbeladung, die zur Durchführung der Katalysator-Wirkungsgraddiagnose angesetzt wird, entspricht der Sauerstoffspeicherfähigkeit, die ein gealterter Katalysator aufweist, der gerade noch den Anforderungen gemäß der Wirkungsgrades gerecht wird.
- Die Wirkungsgraddiagnose erfolgt unter Zuhilfenahme einer λ-Monitorsonde (nicht gezeigt), die ebenfalls eine Lambda-Sonde ist, wobei die Monitorsonde in dem Abgasstrom hinter dem Katalysator 5 angebracht wird. Die Monitorsonde detektiert dann, ob ein konstanter Lambda-Wert erreicht wird, oder ob der Lambda-Wert gemäß den Regelzyklen schwankt. Schwankt der durch die Monitorsonde gemessene Lambda-Wert, so weist der überprüfte Katalysator keine ausreichende Sauerstoffspeicherfähigkeit auf und ein defekter oder gealterter Katalysator wird detektiert.
- Durch die Sauerstoffbeladungsrechnung und Sollwerteinregelung wird auch die Alterung der Lambdaregel-Sonde und die dadurch hervorgerufene Detektionsverzögerung der Abgasänderung fett ↔ mager mit berücksichtigt. Verlängert sich die Reaktionszeit der Lambda-Sonde durch Alterungserscheinungen, so wird die schrittweise Erhöhung bzw. Verminderung des Lambda-Reglerfaktors länger durchgeführt, so dass bereits bei Erkennen eines Wechsels zwischen einem zu fetten und einem zu mageren Brennstoffgemisch eine höhere Sauerstoffbeladung des Katalysators erreicht ist und eine höhere Amplitude im λ-Regelfaktor und λ-Schwingung. Deswegen wird die Amplitude des Lambdaregelfaktors auf maximale Differenz zu Lambdaregelfaktormittelwert begrenzt, das bedeutet der zusätzliche P-Spung ΔP wird nicht voll realisiert.
- Die Idee der Erfindung liegt in der Bereitstellung eines Verfahrens für eine Sauerstoffbeladungs-basierte, binäre Lambda-Regelung, wobei nach der Verweilzeit ein nochmaliger Sprung des Lambda-Reglerfaktorwertes in die ursprüngliche Richtung vorgesehen wird, um die erhöhte Sauerstoffbeladung schneller zu erreichen. Um aber durch Alterung der Lambdaregelsonde und damit verbundener Verlängerung der Reaktionszeit der Sonde einen übermäßigen Anstieg der Amplitude des Lambdareglerfaktors und Lambdaschwingung vorzubeugen, wird der zusätzliche P-Sprung so begrenzt, dass er in der Summe mit dem über Halbperiode aufintegriertem I-Anteil nicht die maximale Differenz zu dem Mittelwert des Lambdareglerfaktors nicht übersteigen darf. So kann auch bei einer gealterten binären Lambda-Regelsonde mit langsamerer Dynamik vermieden werden, dass es zu einer Erhöhung der Lambda-Amplitude kommt.
- Die Katalysator-Sauerstoff-Bilanzierung erfolgt ausschließlich über Sauerstoffbeladungs-Integrale, die sich in der Fett- und Magerhalbperiode ausgleichen müssen. Dies führt zur Erhöhung der Genauigkeit der Sauerstoffbeladungseinstellung, vor allem bei Instationärvorgängen bzw. leichten Störungen. Durch die Sauerstoffbeladungs-basierte Lambda-Regelung stellen sich die Zeiten, während denen der maximale bzw. minimale Lambda-Regelfaktor beibehalten wird, bzw. die Amplitudenerhöhungen, auf den maximalen bzw. minimalen Lambda-Reglerfaktorwert adaptiv ein.
- Alternativ kann vorgesehen sein, dass der Lambda-Reglerfaktor nach Detektion eines Wechsels zwischen einem mageren und fetten Brennstoffgemisch nicht auf einen maximalen bzw. minimalen Wert eingestellt wird, sondern dass der Lambda-Reglerfaktor beibehalten wird, bis die vorgegebene Sauerstoffbeladung erreicht ist.
Claims (5)
- Verfahren zur Einstellung einer definierten Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Katalysatordiagnose (5), wobei die Regelung des Katalysator (5) Regelzyklen bewirkt, wobei- die Katalysatordiagnose bei einer vorgegebenen bestimmten Sauerstoffbeladung pro Regelzyklus durchgeführt wird,- ein Brennstoffgemisch gemäß einem Lambdareglerfaktor fett oder mager einstellbar ist,- ein fettes oder mageres Abgas detektiert wird,- bei einem mageren Abgas der Lambdareglerfaktor inkrementell erhöht wird, und- bei einem fetten Abgas der Lambdareglerfaktor inkrementell vermindert wird,- nach einem detektierten Wechsel von einem fetten Abgas zu einem mageren Abgas oder von einem mageren Abgas zu einem fetten Abgas der Lambdareglerfaktor um einen P-Sprung geändert wird,dadurch gekennzeichnet, dass nach einem detektierten Wechsel von einem fetten zu einer mageren Abgas der Lambdareglerfaktor während einer ersten Beladungszeit auf einen minimalen Reglerfaktorwert, der ein lokales Minimum des Reglerfaktorwertes des aktuellen Regelzyklus darstellt, und nach einem detektierten Wechsel von einem mageren zu einem fetten Abgas der Lambdareglerfaktor während einer zweiten Beladungszeit auf einen maximalen Reglerfaktorwert der ein lokales Maximum des Reglerfaktorwertes des aktuellen Regelzyklus darstellt, gesetzt wird,
wobei die erste Beladungszeit so eingestellt wird, dass die Sauerstoffbeladung in jedem Regelzyklus einen durch die vorbestimmte Sauerstoffbeladung bestimmten Sauerstoffeintrag erreicht, und
wobei die zweite Beladungszeit so eingestellt wird, dass die Sauerstoffbeladung in jedem Regelzyklus einen durch die vorbestimmte Sauerstoffbeladung bestimmten Sauerstoffaustrag erreicht. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorbestimmte Sauerstoffbeladung durch die maximale Sauerstoffspeicherfähigkeit eines gealterten Katalysators festgelegt ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der minimale und der maximale Reglerfaktorwert durch die Differenz zwischen dem Lambdareglerfaktor und einem Mittelwert des Lambdareglerfaktors für den aktuellen Regelzyklus bestimmt wird, wobei die Differenz durch die Sauerstoffaufnahmefähigkeit des Katalysators vorgegeben wird.
- Regeleinrichtung (3) zur Einstellung einer definierter Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Katalysatordiagnose, wobei die Regeleinrichtung die Katalysatordiagnose bei einer vorgegebenen bestimmten Sauerstoffbeladung pro Regelzyklus durchführt, wobei die Regeleinrichtung (3) diese Zusammensetzung eines Brennstoffgemisches mit Regelzyklen regelt, wobei die Regeleinrichtung (3) mit einem Gemischbildner (1) verbindbar ist, um das Brennstoffgemisch gemäß einem Lambdareglerfaktor fett oder mager einzustellen,
wobei mit Hilfe eines Sensors (4) ein mageres Abgas oder ein fettes Abgas detektierbar ist,
wobei die Regeleinrichtung bei einem mageren Abgas des Brennstoffgemisches den Lambdareglerfaktor inkrementell erhöht und bei einem fetten Abgas des Brennstoffgemisches den Lambdareglerfaktor inkrementell vermindert,
wobei die Regeleinrichtung (3) den Lambdareglerfaktor um einen P-Sprung ändert, nachdem ein Wechsel von einem fetten Abgas zu einem mageren Abgas oder von einem mageren Abgas zu einem fetten Abgas des Brennstoffgemisches festgestellt worden ist,
dadurch gekennzeichnet, dass die Regeleinrichtung (3) den Lambdareglerfaktor während einer ersten Beladungszeit nach einem detektierten Wechsel von einem fetten Abgas zu einem mageren Abgas des Brennstoffgemisches auf einen minimalen Reglerfaktorwert setzt und den Lambdareglerfaktor während einer zweiten Beladungszeit nach einem detektierten Wechsel von einem mageren Abgas zu einem fetten Abgas des Brennstoffgemisches auf einen maximalen Reglerfaktorwert setzt,
wobei die erste und die zweite Beladungszeit so festgelegt sind, dass die Sauerstoffbeladung in jedem Regelzyklus die vorgegebene bestimmte Sauerstoffbeladung erreicht. - Regeleinrichtung (3) nach Anspruch 4, dadurch gekennzeichnet, dass die Regeleinrichtung in einem Diagnosemodus zur Durchführung der Diagnose betreibbar ist und in einem zweiten Betriebsmodus, bei dem die Regeleinrichtung (3) den Katalysator gemäß einem Normalbetriebszustand regelt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10307010 | 2003-02-19 | ||
DE10307010A DE10307010B3 (de) | 2003-02-19 | 2003-02-19 | Verfahren zur Einstellung einer definierten Sauerstoffbeladung mit binärer Lambdaregelung zur Durchführung der Abgaskatalysatordiagnose |
PCT/EP2004/000272 WO2004074664A1 (de) | 2003-02-19 | 2004-01-15 | Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1478834A1 EP1478834A1 (de) | 2004-11-24 |
EP1478834B1 true EP1478834B1 (de) | 2007-12-26 |
Family
ID=32185988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04702313A Expired - Lifetime EP1478834B1 (de) | 2003-02-19 | 2004-01-15 | Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose |
Country Status (4)
Country | Link |
---|---|
US (1) | US7343734B2 (de) |
EP (1) | EP1478834B1 (de) |
DE (2) | DE10307010B3 (de) |
WO (1) | WO2004074664A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009032280A1 (de) | 2009-07-08 | 2011-01-13 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004061603B4 (de) * | 2004-12-17 | 2008-05-15 | Audi Ag | Verfahren zur Bestimmung der dynamischen Speicherfähigkeit des Sauerstoffspeichers eines Abgaskatalysators |
DE102004062408B4 (de) | 2004-12-23 | 2008-10-02 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine |
DE102005014955B3 (de) | 2005-04-01 | 2005-12-08 | Audi Ag | Verfahren zur Bestimmung des Lambdawertes stromauf des Abgaskatalysators einer Brennkraftmaschine |
DE102005024872A1 (de) * | 2005-05-31 | 2006-12-14 | Siemens Ag | Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine |
DE102005044729A1 (de) * | 2005-09-19 | 2007-03-22 | Volkswagen Ag | Lambdaregelung mit Sauerstoffmengenbilanzierung |
DE102005045888B3 (de) * | 2005-09-26 | 2006-09-14 | Siemens Ag | Vorrichtung zum Betreiben einer Brennkraftmaschine |
US7581390B2 (en) * | 2006-04-26 | 2009-09-01 | Cummins Inc. | Method and system for improving sensor accuracy |
JP4844257B2 (ja) * | 2006-06-27 | 2011-12-28 | トヨタ自動車株式会社 | 触媒劣化検出装置 |
US8065871B1 (en) | 2007-01-02 | 2011-11-29 | Cummins Ip, Inc | Apparatus, system, and method for real-time diagnosis of a NOx-adsorption catalyst |
DE102007005684B3 (de) * | 2007-02-05 | 2008-04-10 | Siemens Ag | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
US8516796B2 (en) * | 2009-11-20 | 2013-08-27 | GM Global Technology Operations LLC | System and method for monitoring catalyst efficiency and post-catalyst oxygen sensor performance |
US8756922B2 (en) | 2011-06-10 | 2014-06-24 | Cummins Ip, Inc. | NOx adsorber catalyst condition evaluation apparatus and associated methods |
US9599006B2 (en) | 2011-08-30 | 2017-03-21 | GM Global Technology Operations LLC | Catalyst oxygen storage capacity adjustment systems and methods |
DE102011087300A1 (de) * | 2011-11-29 | 2013-05-29 | Volkswagen Ag | Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät |
US8793976B2 (en) | 2012-01-19 | 2014-08-05 | GM Global Technology Operations LLC | Sulfur accumulation monitoring systems and methods |
US9771888B2 (en) | 2013-10-18 | 2017-09-26 | GM Global Technology Operations LLC | System and method for controlling an engine based on an oxygen storage capability of a catalytic converter |
US9650981B1 (en) | 2015-12-28 | 2017-05-16 | GM Global Technology Operations LLC | Adjustment of measured oxygen storage capacity based on upstream O2 sensor performance |
US11649779B2 (en) * | 2018-07-03 | 2023-05-16 | Hitachi Astemo, Ltd. | Control device |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
CN112282954B (zh) * | 2020-11-02 | 2022-10-28 | 潍柴动力股份有限公司 | 氮氧传感器作弊故障检测方法及设备 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2328459A1 (de) | 1973-01-31 | 1975-01-02 | Bosch Gmbh Robert | Einrichtung zur ueberwachung von katalytischen reaktoren in abgasentgiftungsanlagen von brennkraftmaschinen |
US5325664A (en) * | 1991-10-18 | 1994-07-05 | Honda Giken Kogyo Kabushiki Kaisha | System for determining deterioration of catalysts of internal combustion engines |
FR2682993B1 (fr) | 1991-10-28 | 1994-01-28 | Siemens Automotive Sa | Procede de surveillance de l'efficacite d'un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne. |
DE4331153C2 (de) | 1992-09-26 | 2001-02-01 | Volkswagen Ag | Verfahren zur Gewinnung von fehlerspezifischen Beurteilungskriterien eines Abgaskatalysators und einer Regel-Lambdasonde |
GB9315918D0 (en) * | 1993-07-31 | 1993-09-15 | Lucas Ind Plc | Method of and apparatus for monitoring operation of a catalyst |
JP3374569B2 (ja) * | 1995-01-10 | 2003-02-04 | 株式会社日立製作所 | 排ガス浄化触媒および浄化方法 |
JP3380366B2 (ja) * | 1995-05-22 | 2003-02-24 | 株式会社日立製作所 | エンジン排気ガス浄化装置の診断装置 |
DE19606652B4 (de) * | 1996-02-23 | 2004-02-12 | Robert Bosch Gmbh | Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator |
DE19633481A1 (de) * | 1996-08-20 | 1998-03-05 | Porsche Ag | Brennkraftmaschine mit Lambda-Regelung und Störglied |
JP3549147B2 (ja) * | 1997-11-25 | 2004-08-04 | 本田技研工業株式会社 | 天然ガス用内燃機関の触媒劣化検出装置 |
IT1305375B1 (it) * | 1998-08-25 | 2001-05-04 | Magneti Marelli Spa | Metodo di controllo del titolo della miscela aria / combustibilealimentata ad un motore endotermico |
DE19844994C2 (de) * | 1998-09-30 | 2002-01-17 | Siemens Ag | Verfahren zur Diagnose einer stetigen Lambdasonde |
DE10017931A1 (de) | 2000-04-11 | 2001-12-06 | Siemens Ag | Verfahren zur Diagnose einer Abgasreinigungsanlage einer lambdageregelten Brennkraftmaschine |
DE10103772C2 (de) | 2001-01-27 | 2003-05-08 | Omg Ag & Co Kg | Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält |
US6694243B2 (en) * | 2001-02-27 | 2004-02-17 | General Motors Corporation | Method and apparatus for determining oxygen storage capacity time of a catalytic converter |
US6631611B2 (en) * | 2001-05-30 | 2003-10-14 | General Motors Corporation | Methodology of robust initialization of catalyst for consistent oxygen storage capacity measurement |
JP2004176710A (ja) * | 2002-10-01 | 2004-06-24 | Toyota Motor Corp | 動力出力装置及びハイブリッド型の動力出力装置、それらの制御方法並びにハイブリッド車両 |
-
2003
- 2003-02-19 DE DE10307010A patent/DE10307010B3/de not_active Expired - Fee Related
-
2004
- 2004-01-15 EP EP04702313A patent/EP1478834B1/de not_active Expired - Lifetime
- 2004-01-15 US US10/510,648 patent/US7343734B2/en active Active
- 2004-01-15 DE DE502004005778T patent/DE502004005778D1/de not_active Expired - Lifetime
- 2004-01-15 WO PCT/EP2004/000272 patent/WO2004074664A1/de active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009032280A1 (de) | 2009-07-08 | 2011-01-13 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
DE102009032280B4 (de) * | 2009-07-08 | 2012-03-08 | Continental Automotive Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine |
Also Published As
Publication number | Publication date |
---|---|
DE10307010B3 (de) | 2004-05-27 |
US20050252196A1 (en) | 2005-11-17 |
WO2004074664A1 (de) | 2004-09-02 |
US7343734B2 (en) | 2008-03-18 |
DE502004005778D1 (de) | 2008-02-07 |
EP1478834A1 (de) | 2004-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1478834B1 (de) | Verfahren zur einstellung einer definierten sauerstoffbeladung mit binärer lambdaregelung zur durchführung der abgaskatalysatordiagnose | |
DE19953601C2 (de) | Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine | |
DE69003459T2 (de) | System zum Bestimmen von Fehlern einer Sauerstoffmesszelle und zum Kontrollieren des Luft-/Brennstoff-Verhältnisses. | |
DE4339299C2 (de) | Vorrichtung und Verfahren zur periodischen Überwachung des Katalysator-Wrrkungsgrades an einer Brennkraftmaschine | |
DE60115303T2 (de) | Steuersystem für das Luft-Kraftstoff-Verhältnis einer Brennkraftmaschine | |
EP1272746B1 (de) | Verfahren zur diagnose einer abgasreinigungsanlage einer lambdageregelten brennkraftmaschine | |
DE69617232T2 (de) | Vorrichtung und verfahren zur bestimmung der sauerstoffpufferkapazität in einem katalysator | |
EP1336728B1 (de) | Verfahren und Vorrichtung zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses | |
DE3500594A1 (de) | Zumesssystem fuer eine brennkraftmaschine zur beeinflussung des betriebsgemisches | |
DE19612212B4 (de) | Diagnosevorrichtung für einen Luft/Brennstoffverhältnis-Sensor | |
DE69422127T2 (de) | Verfahren zur Regelung des Luft/Kraftstoffverhältnisses einer Brennkraftmaschine | |
DE19928968C2 (de) | Steuereinrichtung und Verfahren zum Steuern einer Abgasemission einer Brennkraftmaschine | |
DE102004009615B4 (de) | Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine | |
EP0546318A1 (de) | Verfahren und Vorrichtung zur Ermittlung der Konvertierungsfähigkeit eines Katalysators | |
DE102005044335B4 (de) | Verfahren zum Steuern des einer Brennkraftmaschine zugeführten Kraftstoff-/Luftverhältnisses | |
DE102018216980A1 (de) | Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators | |
DE102016219689A1 (de) | Verfahren und Steuereinrichtung zur Regelung einer Sauerstoff-Beladung eines Dreiwege-Katalysators | |
DE19501150A1 (de) | Verfahren zum Steuern des Luft-Kraftstoffverhältnisses bei einem Verbrennungsmotor und Steuerungsvorrichtung hierzu | |
DE10361286B4 (de) | Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators | |
DE4024212A1 (de) | Verfahren zur stetigen lambdaregelung einer brennkraftmaschine mit katalysator | |
DE102018251725A1 (de) | Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators | |
DE102021102456B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung | |
DE102004060125B4 (de) | Verfahren zur Steuerung der Be- und Entladung des Sauerstoffspeichers eines Abgaskatalysators | |
DE102004061603B4 (de) | Verfahren zur Bestimmung der dynamischen Speicherfähigkeit des Sauerstoffspeichers eines Abgaskatalysators | |
DE102005012943A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040917 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS VDO AUTOMOTIVE AG |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004005778 Country of ref document: DE Date of ref document: 20080207 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VDO AUTOMOTIVE AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080305 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CONTINENTAL AUTOMOTIVE GMBH |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080929 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090122 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090127 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090115 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200131 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502004005778 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004005778 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004005778 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |