EP0481971B1 - Kennzeichenanalyse und steuerung für eine schneidpresse - Google Patents

Kennzeichenanalyse und steuerung für eine schneidpresse Download PDF

Info

Publication number
EP0481971B1
EP0481971B1 EP89903891A EP89903891A EP0481971B1 EP 0481971 B1 EP0481971 B1 EP 0481971B1 EP 89903891 A EP89903891 A EP 89903891A EP 89903891 A EP89903891 A EP 89903891A EP 0481971 B1 EP0481971 B1 EP 0481971B1
Authority
EP
European Patent Office
Prior art keywords
generating
data bytes
press
cycle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89903891A
Other languages
English (en)
French (fr)
Other versions
EP0481971A1 (de
Inventor
Michael J. O'brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signature Technologies Inc
Original Assignee
Johnson Service Co
Signature Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22607101&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0481971(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johnson Service Co, Signature Technologies Inc filed Critical Johnson Service Co
Publication of EP0481971A1 publication Critical patent/EP0481971A1/de
Application granted granted Critical
Publication of EP0481971B1 publication Critical patent/EP0481971B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0094Press load monitoring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/26Programme control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24042Signature analysis, compare recorded with current data, if error then alarm

Definitions

  • the present invention relates to control systems for a stamping press and, in particular, to control systems which disable a press in the event of unacceptable force variations.
  • signature analysis has been employed in connection with test and quality control systems where respective specific characteristics, i.e., a signature, of a test piece are measured and compared to predetermined expected (reference) values.
  • a signature analysis system for testing printed circuits is described in U.S. Patent 4,527,272 issued on July 2, 1985 to M. G. Reiney. Signal measurements are taken at a plurality of test points on the circuit board test piece and each compared to expected signal values.
  • U.S. Patent 4,504,920 issued on March 12, 1985 discloses a data analysis and display method for reciprocating equipment in industrial processes.
  • stamping press respective upper and lower portions of a die are forced together to effect various stamping operations, such as forming, cutting, coining, bending, punching or drawing, on a workpiece, typically sheet metal, disposed between the die portions.
  • Systems for monitoring the force exerted during the stamping process are, in general, known.
  • various commercially available systems employ sensors fitted into respective support members of the press frame for visual display of the force curves as a setup aid (to equalize force on the respective support members).
  • Some such systems also generate an alarm or disable the press in the event that the total forming tonnage (maximum force exerted by the press) exceeds a predetermined level.
  • An example of such system is the Load Guard, marketed by Helm Instruments.
  • dies typically include a relatively large number of individual stations for performing the various forming operations and such systems do not provide information regarding the specific portion of the die at which the problem occurs.
  • the present invention provides a method for controlling the operation of a stamping press (12).
  • the press includes a first press member (21), adapted to cooperate with a second press member (22), for controllably moving through a cycle to generate forces at said second press member (22).
  • the method is characterized in that it comprises the steps of: sampling a force signal at a rate dependent upon a position signal and generating a first signature array of successive data bytes indicative of instantaneous values of said first force; and generating first and second reference arrays of data bytes from the first signature array.
  • the data bytes of the first reference array are indicative of the instantaneous values having a first offset value added thereto and the data bytes of the second reference array are indicative of the instantaneous values having a second offset value subtracted therefrom.
  • the method further comprises the steps of: generating a second analog signal indicative of a second force associated with the first press member (21) during an operation cycle subsequent to the reference cycle; sampling the second analog signal at a rate dependent upon the position signal and generating a second signature array of successive data bytes indicative of instantaneous values of the second force; comparing the data bytes of the second signature array with the data bytes of the first and second reference arrays; and generating control signals to control the press in accordance with the comparison.
  • the present invention further provides an apparatus for controlling the operating of a stamping press (12).
  • the press includes a ram (21) adapted to cooperate with a tool (22) for controllably moving through a cycle to generate forces at said tool (22).
  • the apparatus is characterized in that it comprises process means (112) for generating first and second reference arrays of data bytes from a first signature array.
  • the data bytes of the first reference array are indicative of the instantaneous values having a first offset value added thereto and the data bytes of the second reference array are indicative of the instantaneous value having a second offset value subtracted therefrom.
  • the apparatus further comprises comparison means (110, 112) for comparing the data bytes of the second signature array with the data bytes of the first and second reference arrays and generating a comparison signal, and control means (112, 116) for generating control signals to control the press (12) in response to the comparison signal.
  • a stamping press control system 10 in accordance with the present invention includes a conventional press 12, at least one force sensor 32, a mechanism for generating indicia of the phase of press operation, such as an encoder 34, and a signature analysis control system 100.
  • Press 12 suitably includes a piston ram 14, a rotatable shaft 16, suitably cranked or cammed, a die 20 having corresponding upper and lower portions 21 and 22, a suitable bolster (base) 24, and respective support members 26.
  • Support members 26 extend upwardly from bolster 24 to maintain the axis of shaft 16 at a predetermined distance from bolster 24.
  • Shaft 16 is driven by a conventional drive mechanism, generally indicated as 18, including an electrically actuated clutch or other control mechanism.
  • Ram 14 is operatively coupled at one end to rotating shaft 16. The other end of ram 14 bears upper portion 21 of die 20.
  • Lower portion 22 of die 20 is disposed on base 24.
  • a sheet material 30, (e.g., roll steel) is disposed between the die portions.
  • die 20 includes a multiplicity of individual stations for forming individual forming operations, such as cutting, coining, bending, or drawing.
  • a suitable feeder mechanism incrementally advances sheet material 30 along a path between die portions 21 and 22 in synchronism such that various portions of the sheet metal are operated upon by various stations of die 20 in sequence.
  • Sensor 32 is disposed on press 12 to generate an analog signal (hereinafter sometimes referred to as the "force signal") indicative of the force total tonnage generated by ram 14 over the course of the ram cycle.
  • Sensor 32 may be for example: a conventional strain gauge, such as a Wintress-Data Instrument WLA1000SL strain gauge; an accelerometer, such as a PCB303A02 accelerometer; or a piezo-electric transducer, such as a Penwalt Corporation Model SDT3028SK KYNAR piezo film sensor. It has been determined that the relative disposition of sensor 32 on press 12 is not critical. For example, depending upon the nature of the sensor, sensor 32 may be disposed beneath die 22, on ram 14, or on support members 26.
  • Encoder 34 is operatively coupled to shaft 16 to generate signals indicative of incremental advancement of shaft 16, and thus ram 14, through the ram cycle, i.e., the phase of the ram cycle. More specifically, encoder 34 suitably generates a top dead center pulse (TDC) indicative of the nominal beginning of the cycle (e.g., with die 20 in a full open position) and incremental advancement (INC) pulses generated in response to rotation of shaft 16 through a predetermined number of degrees. Encoder 34 suitably comprises a Hewlett-Packard incremental encoder. Where encoder 34 generates quadrature incremental signals, such signals may be combined, as is conventional in the art.
  • control system 100 periodically samples the force signal as a function of ram position (phase), stores sequential samples to generate a force signature of a relevant portion of the ram cycle (e.g., during which the die interacts with material 30), compares the force signature to a reference signature, and detects out-of-tolerance conditions. These force samples are correlated directly with respect to ram position. Upon detection of out-of-tolerance conditions, an alarm is generated and, if desired, press 12 stopped. The force signature and indicia of the out-of-tolerance points in the signature are also stored and displayed for analysis.
  • phase of the ram cycle does not vary linearly with time; the rate of change of ram position tends to vary in accordance with the resistance encountered from sheet metal 30. Variations in phase-time relationship from cycle to cycle may occur due to, for example, deviations in the thickness of material 30 or in drive speed, or damage to the die. Accordingly, to ensure that the signatures are repeatable, sampling is correlated directly with respect to ram position (phase), i.e., in accordance with signals from encoder 34, rather than as a function of time, or are otherwise correlated with the phase.
  • Control system 100 suitably comprises: appropriate timing-gate logic 101; an analog-to-digital (A-D) converter 108; a random access buffer memory 110 and cooperating address generator 106; a microprocessor 111 including a processing unit (CPU) 112, (e.g., MC68000), a random access memory 114 (e.g., 512KB) and a read-only memory 115 (e.g., 16 KB); suitable input/output interfacing circuitry 116, and a conventional bus 118.
  • Input/output interfacing circuitry 116 suitably includes conventional digital input/output (I/O) and communicating interfaces. Digital I/O interfaces provide control signals to, e.g., drive 18, feeder 28, and/or other portions of press 12, as appropriate.
  • a conventional communications interface such as an RS-232 interface, facilitates communication with various external devices, such as, e.g., an operator's console 36.
  • Bus 118 provides selective communication between the various elements of control system 100, and various external devices such as, for example, a mass memory 38, and a central supervisory computer (not shown in Figure 1).
  • Timing-gating logic 101 provides suitable clock signals to the other elements of system 100 during a designated portion of the ram cycle, e.g., the portion of the ram cycle during which the respective halves 21, 22 of die 20 interact with sheet metal 30.
  • Timing logic 101 may be implemented by conventional techniques.
  • timing-gating logic 101 may comprise respective programmable counters 102 and 103, an inverter 104, and a three-input AND GATE 105.
  • Counters 102 and 103 are pre-loaded, as will be explained, with indicia of the beginning and end of the designated portion of the ram cycle, and, clocked by the incremental advancement (INC) pulses, cooperate with inverter 104 to enable AND GATE 105 with respect to the INC pulses during the designated portion of the ram cycle.
  • logic 101 may be integral to microprocessor 111 with the INC and TDC signals applied to respective interrupts. Alternatively, logic 101 may additionally include respective registers (not shown) associated with counters 102 and 103.
  • the registers are pre-loaded with indicia of beginning and end of the designated ram cycle portion, (e.g., during initialization), and counters 102 and 103 loaded from the registers in response to the TDC pulse from encoder 34.
  • Another suitable implementation of timing logic 101 employs a counter, registers and comparators.
  • the registers are preloaded with indicia of the beginning and end of the relevant portion of the cycles.
  • the counter is reset to zero by the TDC pulse and incremented by the INC pulses, and the comparators generate a gating signal for the duration of period during which the contents of the counter are between the beginning and end counts stored in the registers.
  • A-D converter 108 samples the analog signal in response to the timing signals from logic 101. Thus, during the designated portion of the ram cycle, A-D converter 108 generates successive data bytes indicative of the instantaneous values of the force. If desired, suitable amplifier and gain control circuitry (not shown) may be interposed between sensor 32 and A-D converter 108.
  • the sequential data bytes are stored in the successive locations of an array BUF in memory 110.
  • Memory 110 suitably includes at least one addressable location corresponding to a each increment in the relevant portion of the ram cycle.
  • Addressing of memory 110 is effected through address generator 106.
  • address generator 106 is set to the beginning address of the BUF array at the beginning of each ram cycle, and is thereafter incremented by the timing signals from logic 101 to step through the BUF array.
  • Address generator 106 may be implemented through conventional techniques.
  • address generator 106 may comprise a programmable counter, incremented by the gated INC signals from logic 101, and periodically set by microprocessor 111 through bus 118.
  • address generator 106 may comprise a register and a counter. The register is preloaded with the starting address of the BUF array in memory 110. The counter is loaded from the register in response to the TDC pulse from encoder 34 and incremented by the timing signals from logic 101.
  • address generator 106 may be integral to a commercially available integrated circuit together with microprocessor 111, memory 110, or both. Where address generator 106 is not integral to microprocessor 111, tri-state buffers (not shown) may be included to facilitate data transfer.
  • A-D converter 108 For the duration of the designated portion of the cycle, A-D converter 108 is clocked, address generator 106 incremented and read control signals are applied to memory 110 (control lines not shown) to effect storage of the data bytes in sequential locations in the BUF array.
  • address generator 106 (or memory 110) generates a signature collected (SC) interrupt to microprocessor 112.
  • microprocessor 111 begins execution of a program 200 ( Figures 2 and 3) resident in ROM 115.
  • Program 200 is suitably interrupt-based, suspending normal progression in a main program to execute respective predetermined sequences of instructions in response to respective interrupts provided to microprocessor 112.
  • interrupt routines are illustrated as connected by dotted line to affiliated portions of the main program.
  • microprocessor 112 Upon actuation, microprocessor 112 executes a suitable initialization sequence (Step 202). Operator entry of various parameters are elicited through prompts or default values established in a manner well known in the art. For example, the beginning ( ⁇ 1) and end ( ⁇ 2) of the relevant portion of the ram cycle (and the number of increments (n) in the portion) are established. Similarly, the operator establishes the operational mode of the system: MONITOR, wherein an alarm and display are generated in the event of an out-of-tolerance conditon; or CONTROL, wherein the press is additionally inhibited upon an out-of-tolerance condition. Initial values for respective variables, address and array spaces are also established.
  • a reference generation sequence is then executed (Step 204). Respective reference arrays, HI and LO, indicative of a reference signature, are installed in random access memory 114 (Step 204). Reference generation sequence 204 will be described in conjunction with Figure 3.
  • a signature collection sequence 206 is then effected.
  • the system waits for a TDC interrupt indicative of the beginning of a ram cycle, followed by a signature collected (SC) interrupt, indicating that a complete signature has been stored in memory 110, then transfers the signature into an array in memory 114 for processing.
  • a "TDC wait" loop (Step 208) is entered; the value of a flag TDC, indicative of completion of TDC interrupt routine 204, is repeatedly checked until the TDC flag assumes a value of one. If desired, a timing mechanism can be interjected into the wait loop as a failsafe against failure to complete the TDC interrupt routine.
  • top dead center (TDC) pulse from encoder 34 is applied as an interrupt to microprocessor 112.
  • TDC top dead center
  • processing of the main program is suspended and a TDC interrupt sequence 209 is executed: timing logic 102 is loaded with indicia of the beginning ( ⁇ 1) and end ( ⁇ 2) of the designated portion of the ram cycle (Step 210); address generator (counter) 106 is loaded with an appropriate number to establish a beginning address for the BUF array (BUF (0)) (Step 213); and flag TDC is set to one to signify completion of the TDC interrupt routine (Step 214). A return to the main program is then effected.
  • the TDC wait loop (Step 208) is exited, and the TDC flag is reset to zero in preparation for detection of the next successive ram cycle (Step 216).
  • timing logic 101 and address generator 106 are of the type directly reset by the TDC pulses, timing logic 101 and address generator 106 would be preloaded as part of initialization sequence 202, and TDC wait loop 208 and TDC interrupt routine 209 would be omitted.
  • a signature collection wait loop 218 is then entered (Step 218); the system waits for completion of signature collection. Specifically, an SC flag, indicative of completion of SC interupt routine 219, is repeatedly checked until the SC flag assumes a value of one. Failsafe timers can be included in the loop, if desired.
  • SC interrupt routine 219 executed: the contents of the BUF array in memory 110 are transferred to an array CURVE in memory 114 (Step 220); and the SC flag is set to signify completion of the routine (Step 221). A return to the main program is then effected.
  • the transfer of the signature from the BUF array in memory 110 to the CURVE array in memory 114 can be effected as part of the main program, upon return from interrupt routine 219, rather than as a part of the interrupt routine.
  • the transfer may be effected by generation of appropriate signals to address generator 106 and memory 110 (control lines not shown) or utilizing a conventional direct memory access (DMA) device (not shown).
  • DMA direct memory access
  • the signature collection wait loop 218 is exited and the SC flag is reset (Step 222) in preparation for collection of the next signature.
  • the reference signature is represented in memory 114 represented by the HI and LO arrays.
  • the HI and LO arrays correspond to the respective sample values of a reference signature offset by high and low tolerance values, respectively.
  • a comparison sequence 224 is then initiated; the signature in the CURVE array is compared on a element-by-element basis to the reference signature: each element of the CURVE array is subtracted from the corresponding element of the HI array, and the difference loaded into the corresponding element of an array CHEK (Step 226); each element of CHEK array is then compared against zero (Step 228); assuming that no negative elements are found in the CHEK array, the individual elements of the LO reference array are subtracted from the corresponding elements of the CURVE array, and overwritten into the corresponding elements of the CHEK array (Step 230); and each element of the CHEK array as then constituted is again compared against zero (Step 232).
  • Step 236 A display and/or alarm is suitably generated (Step 236).
  • the signature is suitably displayed on a CRT on console 36 with the samples corresponding to deviant CHECK elements highlighted.
  • the signature in the CURVE array and indicia of the CHECK array are also suitably identified and stored in a BAD HIT file in memory 38 for analysis. If a CONTROL mode operation has been selected (Step 233) appropriate control signals are also generated to drive 18, feeder 28 and/or other elements of press 12 through input/output interface 116 in a manner well known in the art (Step 234).
  • comparison sequence 224 can be implemented as part of SC interrupt routine 219 to prevent external intervention from interfering with timely press shutdown.
  • Step 240 a check is suitably made for a quit command (Step 240) and, assuming no such command has been issued, TDC wait loop 208 is reentered.
  • a quit command e.g., an exit is effected upon a "quit" interrupt.
  • indicia of the reference signature is initially installed in memory 114 as part of the initialization of the system (Step 204).
  • reference generation sequence 204 will be more fully described.
  • a reference signature is either generated or obtained from memory, installed in the CURVE array in memory 114, and HI and LO reference arrays generated.
  • Initial parameters are first established and the source of the reference signature designated.
  • a source option menu is suitably displayed (Step 302).
  • the operator makes appropriate entries through console 36 to, e.g., establish respective tolerance limits LIMHI and LIMLO, indicative of permitted deviation from the elements of the reference signature; and identify the source of the reference signature.
  • the reference signature may be generated on line (captured) or obtained from a reference file in memory 38.
  • VER GP
  • REF OP FILE
  • the HI and LO limit arrays are constructed (Step 320): the tolerance limit entered by the operator, LIMHI, is added to each element of the reference signature in the CURVE array, and the result loaded into the corresponding element of the HI reference array; and the lower deviation tolerance limit, LIMLO, is subtracted from each element of the signature in the CURVE array, and loaded into the corresponding element of the LO array. A return is then effected to the main program.
  • an encoder 34 which generates an analog signal which varies linearly with the instantaneous phase of the ram cycle, (e.g. an infinite resolution frictionless potentiometer) may be utilized.
  • the analog phase signal may be multiplexed with the sensor signals to A-D converter 108, and the resultant digital phase indicia stored in sequence with the force samples. This, in effect, tags the samples as to corresponding phase; a plurality of locations in BUF array would correspond to each sampling point--a digital representation of the phase of the ram cycle, followed by the data bytes from each of the respective sensors.
  • the reference signature would be similarly constructed, and any deviation in the phase at which the samples are taken detected through comparison sequence 224. Thus, a resolution independent of encoder increments can be established; sampling would be effected in accordance with an independent clock signal. It may be desirable, however, to continue to employ TDC and INC pulses to establish the designated ram cycle portion. Synchronism between analog and digital phase signals may be maintained by mounting a potentiometer for generating the analog phase signal on a common shaft with an incremental encoder for generating the TDC and INC pulses.
  • System 100A is adapted to operate upon TDC and INC pulses and on an analog ram cycle phase signal ( ⁇ ) from encoder 34 and a plurality of force signals (F1, F2) from sensors disposed, for example, on the respective support members 26 of press 12 ( Figure 1).
  • System 100A further provides for monitoring of various other aspects of the operation of press 12, such as, e.g., parts ejection, feeder operation and sheet metal thickness, and cooperates with a suitable supervisory computer 426.
  • System 101A suitably comprises: a conventional high-speed analog input device 410; suitable timing/ gating logic 101A; a suitable microprocessor 111; a suitable microprogrammed bit-slice processor (sequencer) 422 for high speed execution of sequence tables; and suitable input/output I/O interfacing devices 116.
  • analog input device 410 collects force data (as a function of ram position (phase)) from press 12 in accordance with trigger (timing) signals provided by timing logic 101A. After a force signature has been collected by analog input device 410, the signature is communicated to microprocessor 111 for comparision against a reference signature.
  • Sequencer 422 monitors the status of the stamping operation, as reflected by the various digital status inputs (to interfacing devices 116) and an instantaneous phase (ram position) count maintained in timing logic 101A. In the event of an out-of-tolerance condition determined from analysis of the force signature by microprocessor 111, (a "bad hit") or from the relative status of the digital inputs, appropriate output signals to press 12 and the various external devices are generated through I/O devices 116.
  • timing-gating logic 101A provides the trigger signal (and/or timing signals) to microprocessor 406, and maintains indicia of the instantaneous phase of the ram cycle.
  • Timing-gating logic is 101A suitably implemented with a Yokogawa PU1 up/down counter card which comprises a storage register, a counter and a comparator (not shown).
  • the counter is suitably incremented by the incremental advancement and reset by the TDC pulses from encoder 34 to maintain a count indicative of the instantaneous position of ram 14 (sometimes to be referred to as the "phase count" or "position count").
  • the storage register is loaded with a count indicative of the beginning of the relevant portion of the RAM cycle by microprocessor 111 or supervisory computer 426 (suitably through sequencer 422).
  • the comparator generates a trigger signal to analog input device 410 when the contents of the counter reach the value loaded in the register.
  • the computer signal can be used to gate INC signals to device 410 as previously described.
  • the contents of the counter are provided to sequencer 422 as indicia of the instantaneous cycle phase.
  • High-speed analog input device 410 effects signature data collection.
  • Analog input device 410 suitably comprises a Yokogawa HAD1 High-Speed Analog Input Card which incorporates analog to digital converter 108 and memory 110 and further includes a multiplexer (MUX) 402, a programmable gain amplifier 404, a microprocessor 406, and optical isolation circuitry 408.
  • the analog ram position signal ⁇ , and the respective force signals F1, F2 are applied to the respective input terminals of MUX 402.
  • the output of MUX 402 is applied through programmable gain amplifier 404 to analog-to-digital converter 108, which, in turn, provides data inputs to memory 110. Timing and control signals are provided by microprocessor 406.
  • the trigger signal indicative of the beginning of the designated portion of the cycle, is applied through opto-isolators 408 as an interrupt to microprocessor 406.
  • microprocessor 406 In response to the trigger, microprocessor 406 generates timing and control signals to cause: Mux 402 to apply the phase signals ⁇ and force signals F1 and F2 to analog-to-digital converter 108 in sequence; A-D converter 108 to generate one data byte from each in sequence; and memory 110 to store the resultant data bytes in successive locations in the BUF array.
  • Mux 402 to apply the phase signals ⁇ and force signals F1 and F2 to analog-to-digital converter 108 in sequence
  • A-D converter 108 to generate one data byte from each in sequence
  • memory 110 to store the resultant data bytes in successive locations in the BUF array.
  • MUX 402 provides 16 input channels.
  • Microprocessor 406 may be programmed (e.g., from supervisory computer 426 or microprocessor 111) to determine the number of input channels (steps) grouped in a repetitive scan (e.g., 3 in the example above) the order in which the individual channels are accessed (e.g., ⁇ , F1, F2); the number of scans (samples) made in response to the trigger signal, as well as the time periods between input channel readings (steps) and between successive scans of the input channels.
  • microprocessor 406 may alternatively be programmed to respond to gated INC signals from timing logic 101A, to effect a single scan of the respective input channels in response to each INC signal, or to effect a single channel reading (step) in response to each INC signal. In these cases, analog phase signal ( ⁇ ) can be omitted.
  • an appropriate signal (e.g., the SC interrupt) is generated by microprocessor 406 to microprocessor 111 to signify completion of the signature collection process.
  • Microprocessor 111 is suitably implemented with a conventional microprocessor, e.g., a Yokogawa NP22*A or NP21*B processor employing an MC68000 central processing unit, a 16KB read-only memory, and a 512KB random-access memory.
  • microproecessor 111 loads the signature into the curve array and effects a comparision sequence generally in the manner previously described. If an out-of-tolerance condition is detected, a signal is generated to sequencer 422 for communication to I/O devices 416.
  • I/O devices 116 suitably include digital input interfaces for monitoring the operational status of the press system: an opto-isolated DC interface 412 suitable for monitoring DC voltage on/off input signals, e.g. a Yokogawa DC1 multipoint DC input card; and an opto-isolated digital input interface 414 suitable for monitoring alternating current voltage on/off input signals, e.g., a Yokogawa AC1 multipoint A/C input card.
  • Digital input interface (DI) 412 suitably receives signals from respective detectors 428.
  • Detectors 428 may be Piezo-electric sensors, proximity detectors, limit switches, or the like, disposed on press 12 and die 20 to monitor progression of the stamping operation.
  • Digital input interface (DI) 414 similarly monitors the status of external devices such as drive 18, and console 36 and feeder 28 as reflected by the presence or absence of an AC signal.
  • I/O devices 116 also include a suitable digital output interface (DO) 416 to provide on/off control signals to external devices, such as, e.g., a clutch solenoid associated with drive 18, feeder 28, and console 36.
  • Digital output interface circuitry 416 suitably comprises a Yokogawa RLO multipoint relay output card.
  • I/O devices 116 may include suitable RS232 interface 418 and ML Bus interface 420 to provide interactive communication between system 100A and external devices.
  • RS232 interface 418 is suitably a Yokogawa RS2 multi-point RS232-C interface card and effects communications with console 36 and feeder 28.
  • ML bus interface 420 suitably comprises a Yokogawa NC21*B ML bus communications card, and couples system 100A to a conventional ML bus 425, and therethrough to external memory 38, a central supervisory computer 426, and other press controller systems 100A.
  • Intercommunication in System 101A is effected employing conventional buses; an NI bus 118A; and an SQ bus 424.
  • NI bus 118A provides selective communications between microprocessor 406 and memory 110 in high-speed analog input card 410, sequencer 422, microprocessor 111 and communication's interface cards 418 and 420.
  • SQ Bus 424 couples sequencer 422 to timing-gating logic 101A, and digital I/O devices 412, 414 and 416.
  • buses 118A and 424 are effected using the backplane of system 100A, and particularly in the case of SQ Bus 424 may comprise direct from device connections to various registers or memory locations in sequencer 422.
  • Sequencer 422 is employed to monitor the status of the stamping operation, and generate alarms or disable press 12 upon detection of deviant conditions.
  • Sequencer 422 is suitably implemented with a Yokogawa SQ2 sequencer card, comprising a bit-slice microprocessor (2900 series), a 56-bit by 2K word read-only memory maintaining a sequence control program, and a 16-bit by 32K word random-access memory.
  • Sequencer 422 suitably includes respective addressable effective memory locations (e.g., registers or input/output slots) corresponding to each of DI interfaces 412 and 414, the instantaneous ram position counter in timing logic 101A, and D.O. interface 416.
  • sequencer 422 monitors the status of the various digital input signals reflecting the condition (on/off) of the respective detectors and equipment relative to the instantaneous ram position (phase) and cyclically effects a sequence of combinatorial logic operations to compare the actual (instantaneous) status of the input signals to expected condition at the respective phases of the ram cycle as reflected in a sequence table preprogrammed in the sequencer random-access memory.
  • the sequence table is suitably constructed in supervisory computer 426 using conventional builder/maintenance functions associated with sequencer 422 and downloaded into memory in sequencer 422. If the actual conditions deviate from the desired conditions, appropriate output signals, also specified in the sequence table are generated (through D.O. interface 416) to e.g., disable press 12.
  • Central computer 426 may be provided to supervise a plurality of control systems 100A (and thus a plurality of presses 12). Communications between line computer 426 and the individual press controllers is suitably effected through ML bus 425.
  • Central supervisory computer 426 suitably includes an MC68000 central processing unit, a 16KB read-only memory, a MB random-access memory, appropriate communications, printer and display interface circuitry, and 20MB fixed-disc and 1MB floppy-disc secondary memory. Such secondary memory may be used to implement mass memory 38.
  • Central supervisory computer 426 may be implemented with conventional minicomputer, such as a Yokogawa M3230A YEWMAC 300 line computer.
  • microprocessor 111 upon startup, executes an initialization sequence 502 similar to sequence 202.
  • various parameters are established by operator entries, or by downloading from supervisory computer 426 and the operational mode, (monitor or control) of the system is established.
  • various portions of the random access memory associated with microprocessor 111 are made directly accessable to supervisory computer 426 (are defined as common).
  • a count, indicative of the beginning of the relevant portion of the ram cycle is communicated to sequencer 422 for looking into the storage register in timing gating logic 101A.
  • sequence table reflecting the desired process conditions relative to ram position is also loaded into sequencer 422.
  • the hi and low arrays may be generated on line as described in connection with sequence 204, or may be downloaded from supervisory computer 426.
  • the microprocessor 406 in analog input device 410 is then provided with configuration parameters (e.g., the number of channels, steps per scan, the number of scans per trigger, and timing information) and is enabled (step 506).
  • configuration parameters e.g., the number of channels, steps per scan, the number of scans per trigger, and timing information
  • Microprocessor 111 then enters an interrupt-driven mode of operation; a wait loop, generally indicated as 508, is entered, and the response is made to various predefined interrupts.
  • various interrupts are defined: the SC interrupt from analog input device 410, indicative of a complete signature collection; RESET and QUIT interrupts provided from either supervisory computer 406 or operator console 36; and respective timer interrupts, T1 and T2, periodically generated by internal timers.
  • microprocessor 111 performs a signature analysis sequence 510 on a priority basis, and generates alarms and selectively stops press 12 in the event of an out-of-tolerance condition. More specifically, in response to the SC interrupt, a count stroke, utilized to monitor press speed, as will be explained, is incremented (step 512). The force signature in memory 110 of analog input device 410 is then transferred as in step 220 to the CURVE array in microprocessor 111 (step 514). A comparison sequence 516 analogous to sequence 224, is then executed. If the signature is within tolerance, a return to the wait loop is effected.
  • supervisory computer 426 If, however, an out-of-tolerance condition is detected, the condition is communicated to supervisory computer 426 (step 518) and, if the control mode has been selected (step 520), a signal is output to sequencer 422 (the effective memory location in sequencer 422 corresponding to the control signal to drive 18 of press 12 (figure 1) is addressed to stop press 12 (step 522)). After supervisory computer 426 is signalled, a return to the wait loop is effected. The signals to supervisory computer 426 may cause supervisory computer 426 to transfer the CURVE array and CHEK array to a designated bad hit file in mass memory 38. Further, if desired, the maximum and minimum values of the signature can be computed in comparison sequence 516 and communicated to supervisory computer 426. Supervisory computer 426 also suitably generates alarm and suitable messages at console 36.
  • a sequence 530 is executed to calculate the speed of press 12 (strokes per minute).
  • the T1 interrupt is generated by an internal timer at one minute intervals.
  • a count stroke is maintained (step 512) indicative of the number of SC interrupts, i.e. the number of strokes by ram 14 (figure 1).
  • the contents of the stroke register are transferred into a strokes per minutes register (SPM) (step 532), and the stroke count set to zero in preparation for the next speed measurement (step 534). A return to the wait loop is then effected.
  • SPM strokes per minutes register
  • a display refresh sequence 540 is effected.
  • the T2 interrupt is generated on a periodic basis by an internal timer.
  • the current signature in the curve array and the offset reference signatures in the high and low arrays are communicated to console 36 through RS232 interface 418.
  • the signature and tolerance offsets are suitably displayed on operator console 36.
  • the press speed (SPM) and minimum and maximum force values (if computed) may also be selectively communicated to the operator console to display, as well as the values of various parameters.
  • the RESET interrupt is generated from operator console 36 or supervisory computer 426 when it is desired to change system parameters or operational modes.
  • a reinitialization sequence 550 is executed. Specifically, initialization sequence 502, reference generation sequence 504, and analog input device initialization sequence 506 are reexecuted, then a return to the wait loop effected.
  • the program is ended by generation of the QUIT interrupt (step 560) from supervisory computer 426 or operator console 36.
  • sequencer 422 monitors the various digital inputs and the phase count in timing logic 101A and continuously cycles through the sequence table to detect deviant operating conditions.
  • connections are shown in the drawing as single lines, they are not so shown in a limiting sense, and may comprise plural conductors (connections), as is understood in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Control Of Presses (AREA)

Claims (10)

  1. Verfahren zur Steuerung des Betriebes einer Schneidpresse (12), wobei die Presse ein erstes Pressenbauteil (21) aufweist, das angepaßt ist, um mit einem zweiten Pressenbauteil (22) zusammenzuwirken, um steuerbar einen Zyklus zu durchlaufen, um auf das zweite Pressenbauteil (22) Kräfte aufzubringen, wobei das Verfahren der Art ist, welches die Schritte des Erzeugens eines ersten Analogsignals, das eine erste Kraft angibt, die dem ersten Pressenbauteil (21) während eines Referenzzyklus zugehörig ist, und des Erzeugens eines Positionssignals enthält, das eine zyklische inkrementale Vorwärtsbewegung des ersten Pressenbauteils (21) angibt, wobei das Verfahren dadurch gekennzeichnet ist, daß es die Schritte aufweist:
       Abtasten des ersten Analogsignals bei einer Rate, die vom Positionssignal abhängig ist, und Erzeugen eines ersten Kennzeichenfeldes aus aufeinanderfolgenden Datenbytes, die die Momentanwerte der ersten Kraft angeben;
       Erzeugen von ersten und zweiten Referenzfeldern aus Datenbytes vom ersten Kennzeichenfeld, wobei die Datenbytes des ersten Referenzfeldes die Momentanwerte angeben, zu denen ein erster Offsetwert addiert wurde, und die Datenbytes des zweiten Referenzfeldes die Momentanwerte angeben, von denen ein zweiter Offsetwert abgezogen wurde;
       Erzeugen eines zweiten Analogsignals, das eine zweite Kraft angibt, die dem ersten Pressenbauteil (21) während eines Betriebszyklus zugehörig ist, der dem Referenzzyklus folgt;
       Abtasten eines zweiten Analogsignals bei einer Rate, die vom Positionssignal abhängig ist, und Erzeugen eines zweiten Kennzeichenfeldes aus aufeinanderfolgenden Datenbytes, die die Momentanwerte der zweiten Kraft angeben;
       Vergleichen der Datenbytes des zweiten Kennzeichenfeldes mit den Datenbytes der ersten und zweiten Referenzfelder; und
       Erzeugen von Steuersignalen, um die Presse gemäß dieses Vergleichs zu steuern.
  2. Verfahren nach Anspruch 1, das weiterhin die Schritte des Schaffens eines Triggersignals, basierend auf der Vorwärtsbewegung der Schneidpresse (12) nach einem definierbaren Punkt in einem Betriebszyklus, und des Einleitens der Erfassung der ersten und zweiten Analogsignale enthält, basierend auf dem Triggersignal.
  3. Verfahren nach Anspruch 1, das weiterhin die Schritte des Erzeugens eines Positionssignals, basierend auf der Vorwärtsbewegung der Schneidpresse (12) nach einem definierbaren Punkt in einem Betriebszyklus, und des Beendens der Erfassung der ersten und zweiten Analogsignale enthält, basierend auf dem Positionssignal.
  4. Verfahren nach Anspruch 1, wobei der erste Offsetwert gleich dem zweiten Offsetwert ist.
  5. Verfahren nach Anspruch 1, das weiterhin den Schritt des permanenten Speicherns des Kennzeichenfeldes und der ersten und zweiten Referenzfelder in einem Massenspeicherbereich (38) enthält, wenn Datenbytes des gegenwärtigen Kennzeichenfeldes gefunden werden, die, basierend auf dem Vergleich, unzulässig von den entsprechenden Datenbytes in den Referenzfeldern abweichen.
  6. Vorrichtung zur Steuerung des Betriebes einer Schneidpresse (12), wobei die Presse einen Kolben (21) aufweist, der angepaßt ist, um mit einem Werkzeug (22) zusammenzuwirken, um steuerbar einen Zyklus zu durchlaufen, um auf das Werkzeug (22) Kräfte aufzubringen, wobei die Vorrichtung der Art ist, welche Einrichtungen (34) zum Erzeugen eines Positionssignals, das die Position des Kolbens während eines Zyklus angibt, Signaleinrichtungen (32) zum Erzeugen eines ersten Analogsignals, das eine erste Kraft angibt, die dem Kolben während eines Referenzzyklus zugehörig ist, und eines zweiten Analogsignals, das eine zweite Kraft angibt, die dem Kolben während eines nachfolgenden Zyklus zugehörig ist, und Abtasteinrichtungen (108) aufweist, um die ersten und zweiten Analogsignale als Reaktion auf das Positionssignal abzutasten und um jeweils erste und zweite Kennzeichenfelder aus aufeinanderfolgenden Datenbytes zu erzeugen, die Momentanwerte der ersten und zweiten Kraft angeben, wobei die Vorrichtung dadurch gekennzeichnet ist, daß sie aufweist:
       Verarbeitungseinrichtungen (112) zum Erzeugen von ersten und zweiten Referenzfeldern aus Datenbytes vom ersten Kennzeichenfeld, wobei die Datenbytes des ersten Referenzfeldes die Momentanwerte angeben, zu denen ein erster Offsetwert addiert wurde, und die Datenbytes des zweiten Referenzfeldes die Momentanwerte angeben, von denen ein zweiter Offsetwert abgezogen wurde;
       Vergleichseinrichtungen (110, 112) zum Vergleichen der Datenbytes des zweiten Kennzeichenfeldes mit den Datenbytes der ersten und zweiten Referenzfelder und zum Erzeugen eines Vergleichssignals; und
       Steuereinrichtungen (112, 116) zum Erzeugen von Steuersignalen, um die Presse (12) als Reaktion auf das Vergleichssignal zu steuern.
  7. Vorrichtung nach Anspruch 6, die weiterhin Einrichtungen zum Erzeugen eines Triggersignals (101), basierend auf der Vorwärtsbewegung der Schneidpresse (12) nach einem definierbaren Punkt in einem Betriebszyklus, aufweist, wobei die Signaleinrichtung (101) als Reaktion auf das Triggersignal das Erfassen der ersten und zweiten Analogsignale einleitet.
  8. Vorrichtung nach Anspruch 7, die weiterhin Einrichtungen (105) zum Erzeugen eines Positionssignals, basierend auf der Vorwärtsbewegung der Schneidpresse (12) nach einem definierbaren Punkt in einem Betriebszyklus, aufweist, wobei die Signaleinrichtung (105) als Reaktion auf das Positionssignal das Erfassen der ersten und zweiten Analogsignale beendet.
  9. Vorrichtung nach Anspruch 8, die weiterhin einen Antriebsmechanismus (18) zum Bewegen des Kolbens (21) durch einen Zyklus aufweist, wobei:
       die Einrichtung zum Erzeugen eines Positionssignals einen Enkoder (34) aufweist, der mit dem Antriebsmechanismus (18) gekoppelt ist, um eine Reihe von Impulsen zu erzeugen, wobei jeder Impuls einem inkrementalen Wechsel der Position des Kolbens (21) entspricht;
       die Abtasteinrichtung einen Analog-Digital-Umsetzer (108) aufweist; und
       der Enkoder (34) mit dem Analog-Digital-Umsetzer (108) gekoppelt ist, so daß eine Abtastung als Reaktion auf einen Impuls des Positionssignals stattfindet.
  10. Vorrichtung nach Anspruch 6, die weiterhin Einrichtungen zum permanenten Speichern des Kennzeichenfeldes und der ersten und zweiten Referenzfelder in einem Massenspeicherbereich (38) aufweist, wenn Datenbytes des gegenwärtigen Kennzeichenfeldes gefunden werden, die, basierend auf dem Vergleich, unzulässig von den entsprechenden Datenbytes in den Referenzfeldern abweichen.
EP89903891A 1988-03-14 1989-02-21 Kennzeichenanalyse und steuerung für eine schneidpresse Revoked EP0481971B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16737188A 1988-03-14 1988-03-14
US167371 1988-03-14
PCT/US1989/000671 WO1989008877A1 (en) 1988-03-14 1989-02-21 Signature analysis control system for a stamping press

Publications (2)

Publication Number Publication Date
EP0481971A1 EP0481971A1 (de) 1992-04-29
EP0481971B1 true EP0481971B1 (de) 1994-09-07

Family

ID=22607101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903891A Revoked EP0481971B1 (de) 1988-03-14 1989-02-21 Kennzeichenanalyse und steuerung für eine schneidpresse

Country Status (4)

Country Link
EP (1) EP0481971B1 (de)
JP (1) JPH03500941A (de)
DE (1) DE68918116T2 (de)
WO (1) WO1989008877A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838561A (en) * 1996-04-29 1998-11-17 Pulp And Paper Research Institute Of Canada Automatic control loop monitoring and diagnostics
US6016465A (en) * 1995-07-10 2000-01-18 The Secretary Of State For Defence Sensor fault detection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219777A1 (de) * 1992-06-17 1993-12-23 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zur Signalanalyse einer Regulierstrecke
ES2178770T3 (es) * 1996-04-29 2003-01-01 Pulp Paper Res Inst Aparato y procedimiento para supervision y diagnostico automatico de bucles de control.
CN1069264C (zh) * 1997-02-18 2001-08-08 薛云登 改进型安全压力机控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045039B2 (ja) * 1981-06-12 1985-10-07 株式会社ヨシツカ精機 粉末成形プレスにおける異常監視方法
JPS6021833B2 (ja) * 1981-07-06 1985-05-29 株式会社 アマダ プレス監視装置
US4536849A (en) * 1982-09-08 1985-08-20 Cincinnati Milacron Inc. Machine operation monitor
US4750131A (en) * 1985-09-11 1988-06-07 Rca Licensing Corporation Method of detecting faulty parts in a progressive die press
JPS62187600A (ja) * 1986-02-13 1987-08-15 Aida Eng Ltd プレス制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016465A (en) * 1995-07-10 2000-01-18 The Secretary Of State For Defence Sensor fault detection system
EP0838048B1 (de) * 1995-07-10 2000-03-15 The Secretary Of State For Defence Verfahren zur sensorfehlererkennung
US5838561A (en) * 1996-04-29 1998-11-17 Pulp And Paper Research Institute Of Canada Automatic control loop monitoring and diagnostics

Also Published As

Publication number Publication date
EP0481971A1 (de) 1992-04-29
WO1989008877A1 (en) 1989-09-21
DE68918116T2 (de) 1995-03-09
JPH03500941A (ja) 1991-02-28
DE68918116D1 (de) 1994-10-13

Similar Documents

Publication Publication Date Title
US4987528A (en) Signature analysis control system for a stamping press
US4099239A (en) Force measurement and analysis particularly relating to rotary tablet presses
US5414632A (en) System and method for predicting failure in machine tool
EP2196880B1 (de) Anlagenkontrollsystem und -verfahren
EP0580833B1 (de) Verfahren und vorrichtung zum steuern einer presse
CA2217808A1 (en) Method and apparatus for performing pre-emptive maintenance on operating equipment
CN113552840A (zh) 一种机械加工控制系统
EP0481971B1 (de) Kennzeichenanalyse und steuerung für eine schneidpresse
US4713770A (en) System and method for preventing tool breakage
WO2003052533A1 (en) Method and system for on-line monitoring stamping operation
US4130787A (en) Reliability monitoring system
CN1841038B (zh) 按键自动测试装置及方法
JPH0652181B2 (ja) 異常診断装置
CN109346200B (zh) 核电厂控制棒静态棒位线性度测量方法及电子设备
CN211425894U (zh) 一种机组检测系统
JPH03144819A (ja) ヘルプ機能発動装置
JPS57118639A (en) Process control of semiconductor photo-etching
JP2738029B2 (ja) 制御装置
CN111220404A (zh) 一种机组检测系统及方法
US20190302745A1 (en) Facility operation analysis device
JP3102486B2 (ja) ディジタル保護リレーの解析装置
CN216206929U (zh) 一种工业生产用称重系统
JP2908846B2 (ja) Nc装置のアラーム情報処理装置
RU31661U1 (ru) Система автоматизации диагностического измерительного стенда
JPS61148000A (ja) プレス装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19921021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 68918116

Country of ref document: DE

Date of ref document: 19941013

ET Fr: translation filed
ITF It: translation for a ep patent filed
NLS Nl: assignments of ep-patents

Owner name: SIGNATURE TECHNOLOGIES, INC. TE CARROLLTON, TEXAS,

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KISTLER INSTRUMENTE GMBH

Effective date: 19950603

NLR1 Nl: opposition has been filed with the epo

Opponent name: KISTLER INSTRUMENTE GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960201

Year of fee payment: 8

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIGNATURE TECHNOLOGIES, INC.

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIGNATURE TECHNOLOGIES, INC.

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 970306

27W Patent revoked

Effective date: 19970306

NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO