EP0478790B1 - Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance - Google Patents

Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance Download PDF

Info

Publication number
EP0478790B1
EP0478790B1 EP91906263A EP91906263A EP0478790B1 EP 0478790 B1 EP0478790 B1 EP 0478790B1 EP 91906263 A EP91906263 A EP 91906263A EP 91906263 A EP91906263 A EP 91906263A EP 0478790 B1 EP0478790 B1 EP 0478790B1
Authority
EP
European Patent Office
Prior art keywords
stainless steel
ferritic stainless
high temperature
heat
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91906263A
Other languages
German (de)
English (en)
Other versions
EP0478790A1 (fr
EP0478790A4 (en
Inventor
Yoshihiro Uematsu
Naoto Hiramatsu
Sadayuki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of EP0478790A1 publication Critical patent/EP0478790A1/fr
Publication of EP0478790A4 publication Critical patent/EP0478790A4/en
Application granted granted Critical
Publication of EP0478790B1 publication Critical patent/EP0478790B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the present invention relates to a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance.
  • the stainless steel according to the invention is suitable for use in composing a part of an exhaust gas path-way of an automobile, especially, a path-way from an engine to a converter, which is exposed to high temperatures.
  • heat resistivity As long as a heat resisting steel, for example, a stainless steel is applied as a material for the production of these parts, heat resistivity, of course, is excellent.
  • the material because of weld-joints (the pipe used for these parts is usually made by weld and is often jointed to other parts by weld), the material must be excellent in weldability and in mechanical workability. Therefore, it is important that the material used for this purpose must be not only corrosion resistant which is the fundamental property of a stainless steel but also heat resistant, tough at low temperature, weldable and workable.
  • SUS304 a typical austinitic stainless steel
  • SUS304 has been considered as a favorable material for use for the above-mentioned purpose because of its excellent workability and favorable weldability.
  • an austinitic stainless steel has a large thermal expansion coefficient, fears are entertained for a thermal fatigue cracking caused by a thermal stress which comes about in the repeated heating and cooling.
  • the oxide layer tends to splinter off from the surface of the steel.
  • a nickel base alloy represented by Inconel 600 is used in some parts as the pathway material for an exhaust gas of an automobile. This alloy is promising for the reasons that its thermal expansion coefficient is small whereby the oxide layer is tight adhesive to the surface and, in consequence, it is excellent in high temperature oxidation resistance as well as high temperature strength.
  • this alloy is very expensive so that it is not extensively used.
  • a ferritic stainless steel when compared with the austinitic stainless steel, a ferritic stainless steel is cheap and, in addition, excellent in thermal fatigue properties because of its small thermal expansion coefficient, so that it is considered suitable for use in parts which are subjected to cyclic variation of temperature such as heating and cooling.
  • Type 409 or SUS430 a representative of the ferritic stainless steel, is going on to use in part of an automobile exhaust gas path-way .
  • these materials have a property that the strength goes sharply down as the temperature 900 °C. and higher, and in consequence, give rise to problems of which one is fatigue cracking due to insufficient strength and the other is abnormal oxidation when conditions go beyond the limit of oxidation resistivity.
  • ferritic stainless steel retaining the previously stated desirable properties inherent to the ferritic stainless steel, and having improved heat resistivity and high temperature strength and, in addition, being excellent in productivity, workability, weldability and low temperature toughness comes to be obtainable, it may be said that such a material is very promising for the particular use mentioned above.
  • JP A 64-8254 discloses a ferritic stainless steel for the like use, but is completely silent with respect to low temperature toughness.
  • JP B 59-52226 and 61-44121 disclose to improve a ferritic stainless steel in its rust development due to chlorine ion and its acid resistivity by adding copper and nickel while extremely lowering S, but teach nothing about high temperature strength, heat resistance, weldability and low temperature toughness.
  • an object of the invention is to provide a ferritic stainless steel having properties which simultaneously meet the above-mentioned many severe conditions required for a material of an automobile exhaust gas path-way, particularly, of a part between an engine and a converter where the material is exposed to high temperatures.
  • Another object of the invention is to improve low temperature toughness, which is an inherent defect of ferritic stainless steels.
  • a further object of the invention is the provision of a heat resistive ferritic stainless steel which does not suffer from a problem of high temperature cracking of weld heat-affected zone.
  • the invention further provides a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance which comprises, in addition to the elements of the above-mentioned steel, one or more of: up to 0.5 % of Al, up to 0.6 % of Ti, up to 0.5 % of V, up to 1.0 % of Zr, up to 1.5 % of W, up to 0.01 % of B, and up to 0.1 % of REM.
  • a heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance which comprises, in addition to the elements of the above-mentioned steel, one or more of: up to 0.5 % of Al, up to 0.6 % of Ti, up to 0.5 % of V, up to 1.0 % of Zr, up to 1.5 % of W, up to 0.01 % of B, and up to 0.1 % of REM.
  • Fig. 1 shows results of the tensile tests at the indicated elevated temperatures carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with various Mo and Cu contents to examine effects of Mo and Cu on high temperature tensile strength.
  • high temperature strength is improved by the addition of molybdenum in an amount of 1 % or more.
  • the conjoint addition of molybdenum and copper is more effective than the addition of molybdenum alone to improve high temperature strength.
  • Fig. 2 shows results of the oxidation tests at the indicated elevated temperatures carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with various Mn contents.
  • the oxidation was continued in air for 100 hrs at 900 °C. or 1000 °C., and at the end of the period an amount of scale which had splintered off (spalled) was measured.
  • the scale splintering (spalling) was suppressed, irrespective of the oxidation temperature tested, by the addition of at least about 0.6 % of manganese.
  • manganese makes the limit of oxidation resistivity to rise up.
  • Fig. 3 shows results of the weld high temperature affected cracking test on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with appropriate Mo and Cu contents whose effects are recognized as shown in Fig. 1 (3 % Mo and 0.5 % Cu) and with varied Mn and S contents to examine effects of the ratio, Mn/S, on weld high temperature affected cracking.
  • the test was carried out as follows. The cold rolled and annealed plate of 1.2 mm in thickness was cut into test pieces of 40 mm ⁇ 200 m. The test pieces were TIG welded under various tensile stresses imposed longitudinally.
  • the minimum strain at which cracking began to occur was determined, which is referred to herein as the critical strain and is a measure of the susceptibility to the weld high temperature affected cracking. It is revealed from Fig. 3 that if the ratio, Mn/S, is 200 or higher, ferritic stainless steels having conjointly incorporated with Mo and Cu have an increased critical strain, and, in consequence, an improved weldability. Thus, in order to overcome the weld high temperature affected cracking it is effective to add a proper amount of Mn rendering the ratio, Mn/S, not less than 200.
  • Fig. 4 shows results of the Charpy impact test carried out on materials having a basic composition of Fe-18 % Cr-0.45 %-Nb with varied Mo and Cu contents for examining effects of molybdenum and copper on toughness.
  • the impact value is lowered by the addition of molybdenum, as is known in the art.
  • Fig. 4 provides new information that the reduction in the impact value due to Mo may be compensated to some extent by conjoint addition of Cu.
  • the conjoint addition of copper improves the impact value well enough.
  • the conjoint addition of nickel and molybdenum can also improve low temperature impact toughness, as will be manifested in Examples described later.
  • the information of these facts is of great importance, particularly for a material which constitutes parts exposed to low temperature circumstance in winter, for example, a manifold or dual tube which suffer from mechanical vibration in addition to low temperature when the engine starts, whereupon the material will become usable even under further more severe conditions expected in the future.
  • the invention provides a ferritic stainless steel having well-balanced excellent properties as a whole, including high temperature strength, thermal fatigue resistance, oxidation resistance and low temperature toughness.
  • C and N are, in general, important elements because of promoting high temperature strength, but excessive amounts of them demote oxidation resistance, workability and toughness. Besides above, C and N react and form compounds with Nb, thereby lowering the effective Nb in the ferritic phase. Accordingly, it is favorable that C and N are small in quantities, so that they should be controlled not more than 0.03 %, respectively.
  • Si Si is an effective element to improve oxidation resistance, but an excessive amount of Si renders the steel hard, and, in consequence, adversely affects workability and toughness. Therefore, Si is controlled within the range from 0.1 % to 0.8 %.
  • Mn reacts with S, which is harmful for weld high temperature affected cracking, and fixes S in the form of MnS, whereby S is removed or reduced in welded metal . It has been found that if the relation, Mn/S ⁇ 200, is satisfied, the effect is the same as that of S reduction. On the other hand, the addition of at least 0.6 % of Mn improves adhesion of scale Therefore, Mn is controlled in the range from 0.6 % to 2.0 %, while satisfying the relation: Mn/S ⁇ 200.
  • S As previously stated, since S is harmful to the weld high temperature affected cracking, it is desirable that S is as small as possible in quantity. However, the smaller S is, the more the cost is needed for the production.
  • Ni As illustrated in Examples, Ni brings about a favorable result of improving toughness like copper does. However, an excessive of Ni gives rise to deposition of an austenite phase at elevated temperatures, and follows the increase of thermal expansion coefficient as well as anxiety about the deterioration of thermal fatigue. Therefore, in the case of the conjoint addition of Ni and Cu according to the invention, the Cu being also an austenite former, it has been found that (Ni + Cu) should be not more than 4 %.
  • Cr Cr is an indispensable element to improve corrosion resistivity and oxidation resistivity.
  • the reason of limiting Cr as not less than 17 % is that the addition of at least 17 % of Cr is required to keep a desired level of oxidation resistance at a temperature of at least higher 900 °C.
  • the upper limit of Cr is now set as 25 %.
  • Nb is a necessary element to maintain high temperature strength. Furthermore, Nb improves workability and oxidation resistivity, and still brings about a favorable influence in the manufacture of pipe by a high frequency welding method.
  • Nb The upper limit of Nb is now set as 0.8 % so that sufficient high temperature strength may be held and susceptibility to weld high temperature affected cracking may not be influenced so much.
  • Mo As already stated, the more addition of Mo make high temperature strength to increase. Besides, Mo is effective to improve high temperature oxidation resistance and corrosion resistivity. However, an excessive addition of it makes low temperature toughness as well as productivity and workability to decrease remarkably. Therefore, Mo is restricted within the range from 1.0 % to 4.5 %, preferably from 2.0 % to 4.5 %, still more preferably within the range of more than 2.5 % and up to 4.5 %.
  • Cu As mentioned previously, Cu is an important element of the steel according to the invention because of its remarkable effectiveness on toughness. As shown in Fig.
  • Cu is needed at least 0.1 % to achieve an appreciable improvement to toughness, so that the lower limit of Cu is now set as 0.1 %.
  • the addition of an excessive amount of Cu renders the steel hard and deteriorates its workability, in particular its hot workability, so that the upper limit of Cu is now set as 2.5 %.
  • Al Al improves oxidation resistivity at elevated temperatures, but the addition of an excessive amount of Al poses problems on productivity as well as weldability. For this reason the upper limit of Al is now set as 0.5 %.
  • Ti increases high temperature strength and improves workability. Like aluminum, the addition of an excessive amount of Ti, causes problems on productivity and weldability, so that the upper limit of Ti is now set as 0.6 %.
  • V Like Ti, V increases high temperature strength and improves workability, but the addition of an excessive amount of V invites reduction in strength. Therefore, the upper limit of V is now set as 0.5 %.
  • Zr Zr increases high temperature strength and improves oxidation resistance at elevated temperatures. However, the addition of an excessive amount of Zr invites reduction in strength. Therefore, the upper limit of Zr is now set as 1.0 %.
  • W Similar to Ti and V, W increases high temperature strength and improves workability, but the addition of an excessive amount of W invites reduction in strength, so that the upper limit of W is now set as 1.5 %.
  • B B improves hot workability, high temperature strength and even workability.
  • the upper limit of B is now set as 0.01 %.
  • REM Even in small quantity the addition of rare-earth metal improves hot-workability, oxidation resistance, particularly, adhesion of scale. However, the addition of an excessive amount of REM adversely affects hot workability on the contrary. Therefore, the upper limit of REM is now set as 0.1 %.
  • Table 1 shows chemical components, in % by weight, of the tested steels.
  • Steels M1 to M21 are those in accordance with the invention, while Steels M22 to M30 are control steels.
  • Each steel was made into a 30 kg ingot and forged to a rod having a diameter of 25 mm, or to a slab having a thickness of 25 mm.
  • the rod was annealed at a temperature of from 950 °C. to 1100 °C., and test pieces for the high temperature tensile test in accordance with JIS were prepared from the annealed rod.
  • the slab was cut into pieces, which were heated in a furnace, took out from the furnace at a temperature of 1200 °C., hot rolled to plates having a thickness of 5 mm and annealed at a temperature of from 950 °C. to 1100 °C.
  • Some of the annealed plates were as such worked to Charpy impact test pieces having a thickness of 4.5 mm, while the others were made to cold plates having a thickness of 2 mm or 1.2 mm by repeating cold rolling and annealing.
  • the 2 mm plates were subjected to the high temperature oxidation test, while the 1.2 mm plates were subjected to the high temperature affected weld cracking test.
  • Table 2 shows tensile strength at elevated temperatures determined by the tensile test in accordance with JIS, amount of scale which splinters off by the oxidation test continued for 100 hours at 900 °C. and at 1000 °C., critical strain of weldment caused by the high temperature affected cracking test which is previously described, and results of the Charpy impact test carried out on V-notched Charpy impact testing pieces of a thickness of 4.5 mm.
  • the invention has provided a heat resistive ferritic stainless steel which achieves the above-mentioned object and which has excellent high temperature strength, resistance to high temperature oxidation, resistance to high temperature affected weld cracking, improved low temperature toughness, which is serious drawback of the ferritic stainless steel. Accordingly, the novel and useful material responsible to the progressive increase of power and capability of the engine has now been offered for an automobile exhaust gas system, particularly, for a pipe between an engine and a converter, which pipe is prepared by welding or jointed to other parts by welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Un acier inoxydable ferritique thermo-résistant à tenacité améliorée à basse température, qui ne se fend pas sous la soudure à haute température, et utile comme matériau pour un passage de gaz d'échappement d'une automobile, en particulier un passage exposé à une haute température entre la moteur et un convertisseur, comprend jusqu'à 0,03 % de carbone, 0,1 à 0,8 % de silicium, 0,6 à 2,0 % de manganèse, jusqu'à 0,006 % de soufre, jusqu'à 4 % de nickel, 17,0 à 2,5 % de chrome , 0,2 à 0,8 % de niobium, 1,0 à 4,5 % de molybdène, 0,1 à 2,5 % de cuivre, jusqu'à 0,03 % de nitrogène, et, facultativement, une quantité nécessaire d'au moins un des éléments suivants, aluminium, titane, vanadium, zircone, tungstène, bore et REM, où le rapport manganèse/soufre est de 200 ou plus [Nb] = Nb % -8(C % + N %) » 0,2, et Ni % + Cu % « 4, le reste étant composé de fer et des inévitables impuretés dans le procédé de production.

Claims (5)

  1. Acier inoxydable ferritique réfractaire présentant d'excellentes propriétés de ténacité à basse température, de soudabilité et de résistance thermique, caractérisé en ce qu'il comprend, en poids,
       jusqu'à 0,03% de C,
       de 0,1 à 0,8% de Si,
       de 0,6 à 2,0% de Mn,
       jusqu'à 0,006% de S,
       jusqu'à 4% de Ni,
       de 17,0 à 25,0% de Cr,
       de 0,2 à 0,8% de Nb,
       de 1,0 à 4,5% de Mo,
       de 0,1 à 2,5% de Cu, et
       jusqu'à 0,03% de N,
    le reste étant constitué de Fe et d'impuretés inévitables, dans lequel les éléments d'alliage sont dosés ultérieurement pour que le rapport de Mn% / S% ne soit pas inférieur à 200, [Nb] défini par l'équation :

    [Nb] = Nb% - 8 (C% + N%)
    Figure imgb0009


    ne soit pas inférieur à 0,2, et ( Ni% + Cu%) ne soit pas supérieur à 4.
  2. Acier inoxydable ferritique réfractaire selon la revendication 1, contenant une quantité de molybdène supérieure à 2,5%.
  3. Acier inoxydable ferritique réfractaire présentant d'excellentes propriétés de ténacité à basse température, de soudabilité et de résistance thermique, caractérisé en ce qu'il comprend, en poids,
       jusqu'à 0,03% de C,
       de 0,1 à 0,8% de Si,
       de 0,6 à 2,0% de Mn,
       jusqu'à 0,006% de S,
       jusqu'à 4% de Ni,
       de 17,0 à 25,0% de Cr,
       de 0,2 à 0,8% de Nb,
       de 1,0 à 4,5% de Mo,
       de 0,1 à 2,5% de Cu, et
       jusqu'à 0,03% de N,
       jusqu'à 0,5% de Al,
       jusqu'à 0,6% de Ti,
       jusqu'à 0,5% de V,
       jusqu'à 1,0% de Zr,
       jusqu'à 1,5% de W,
       jusqu'à 0,01% de B, et
       jusqu'à 0,1% de métaux des terres rares,
    le reste étant constitué de Fe et d'impuretés inévitables, dans lequel les éléments d'alliage sont dosés ultérieurement pour que le rapport de Mn% / S% ne soit pas inférieur à 200, [Nb] défini par l'équation :

    [Nb] = Nb% - 8 (C% + N%)
    Figure imgb0010


    ne soit pas inférieur à 0,2, et ( Ni% + Cu%) ne soit pas supérieur à 4.
  4. Acier inoxydable ferritique réfractaire selon la revendication 3, contenant une quantité de molybdène supérieure à 2,5%.
  5. L'utilisation de l'acier inoxydable ferritique réfractaire selon les revendications 1, 2, 3 et 4, caractérisée en ce qu'on l'applique à la construction d'un tuyau d'échappement de gaz d'un moteur vers un instrument de purification des gaz d'échappement.
EP91906263A 1990-03-24 1991-03-13 Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance Expired - Lifetime EP0478790B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2074785A JP2696584B2 (ja) 1990-03-24 1990-03-24 低温靭性,溶接性および耐熱性に優れたフエライト系耐熱用ステンレス鋼
JP74785/90 1990-03-24
PCT/JP1991/000344 WO1991014796A1 (fr) 1990-03-24 1991-03-13 Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance

Publications (3)

Publication Number Publication Date
EP0478790A1 EP0478790A1 (fr) 1992-04-08
EP0478790A4 EP0478790A4 (en) 1992-08-12
EP0478790B1 true EP0478790B1 (fr) 1995-06-28

Family

ID=13557292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91906263A Expired - Lifetime EP0478790B1 (fr) 1990-03-24 1991-03-13 Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance

Country Status (6)

Country Link
EP (1) EP0478790B1 (fr)
JP (1) JP2696584B2 (fr)
KR (1) KR0180206B1 (fr)
CA (1) CA2056362C (fr)
DE (1) DE69110816T2 (fr)
WO (1) WO1991014796A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250672B (zh) * 2006-12-07 2011-09-14 日新制钢株式会社 用于汽车废气通道部件的铁素体不锈钢和焊接钢管

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69221096T2 (de) * 1991-12-19 1998-02-26 Sumitomo Metal Ind Auspuffkrümmer
WO1993021356A1 (fr) * 1992-04-09 1993-10-28 Nippon Steel Corporation Acier inoxydable ferritique a resistance excellente a l'alteration saline a temperature elevee et a resistance aux temperatures elevees
MY118759A (en) * 1995-12-15 2005-01-31 Nisshin Steel Co Ltd Use of a stainless steel as an anti-microbial member in a sanitary environment
FR2746114B1 (fr) * 1996-03-15 1998-04-24 Procede d'elaboration d'un acier inoxydable ferritique presentant une resistance a la corrosion amelioree, et notamment une resistance a la corrosion intergranulaire et par piqure
KR20000034395A (ko) * 1998-11-30 2000-06-26 이구택 용접부에서의 인성이 우수한 페라이트계 스테인레스강
KR100605678B1 (ko) * 1999-11-08 2006-07-31 주식회사 포스코 내열강도가 우수한 내열 스테인레스강
DE60100880T2 (de) 2000-07-25 2004-09-02 Kawasaki Steel Corp., Kobe Ferritisch rostfreier Stahl mit guter Verformbarkeit bei Raumtemperatur und mit guten mechanischen Eigenschaften bei höheren Temperaturen, und Verfahren zur Herstellung derselben
EP1413640B1 (fr) * 2001-07-05 2005-05-25 Nisshin Steel Co., Ltd. Acier inoxydable ferritique pour element de debit de gaz d'echappement
CN1308477C (zh) * 2003-10-31 2007-04-04 烨联钢铁股份有限公司 具有良好热加工性及抗菌效果的肥粒铁系不锈钢
EP1818421A1 (fr) * 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Acier inoxydable ferritique dit à 19% de chrome stabilisé au niobium
CN100485077C (zh) * 2007-06-13 2009-05-06 陈卫东 超薄合金材料软管及其制造方法
JP5178157B2 (ja) * 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5428396B2 (ja) * 2008-03-07 2014-02-26 Jfeスチール株式会社 耐熱性と溶接性に優れるフェライト系ステンレス鋼
KR20110018455A (ko) * 2008-07-23 2011-02-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 요소수 탱크용 페라이트계 스테인리스강
JP5462583B2 (ja) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Egrクーラ用フェライト系ステンレス鋼板
EP2460899A4 (fr) * 2009-07-27 2014-07-09 Nisshin Steel Co Ltd Acier inoxydable ferritique pour refroidisseur rge et refroidisseur rge
CN102791897A (zh) 2010-03-11 2012-11-21 新日铁住金不锈钢株式会社 耐氧化性优异的铁素体系不锈钢板和耐热性优异的铁素体系不锈钢板及其制造方法
JP5609571B2 (ja) * 2010-11-11 2014-10-22 Jfeスチール株式会社 耐酸化性に優れたフェライト系ステンレス鋼
CN103348023B (zh) 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 铁素体系不锈钢热轧钢板及其制造方法、以及铁素体系不锈钢板的制造方法
JP5703075B2 (ja) * 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 耐熱性に優れたフェライト系ステンレス鋼板
CA2860746C (fr) * 2012-01-30 2017-12-19 Jfe Steel Corporation Feuille d'acier inoxydable ferritique
JP6037882B2 (ja) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6071608B2 (ja) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 耐酸化性に優れたフェライト系ステンレス鋼板
JP5793459B2 (ja) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 加工性に優れた耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
FI125855B (fi) 2012-06-26 2016-03-15 Outokumpu Oy Ferriittinen ruostumaton teräs
KR101692660B1 (ko) 2013-03-06 2017-01-03 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내열성이 우수한 페라이트계 스테인레스 강판
JP5885884B2 (ja) * 2013-03-27 2016-03-16 新日鐵住金ステンレス株式会社 フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
CN110678566A (zh) * 2017-05-26 2020-01-10 杰富意钢铁株式会社 铁素体系不锈钢
SI3670692T1 (sl) 2018-12-21 2022-11-30 Outokumpu Oyj, Feritno nerjavno jeklo
CN112458379A (zh) * 2020-10-30 2021-03-09 萍乡德博科技股份有限公司 一种适用于汽油机可变截面喷嘴环盘类零件的材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2701329C2 (de) * 1977-01-14 1983-03-24 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Korrosionsbeständiger ferritischer Chrom-Molybdän-Nickelstahl
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
US4286986A (en) * 1979-08-01 1981-09-01 Allegheny Ludlum Steel Corporation Ferritic stainless steel and processing therefor
CA1184402A (fr) * 1980-04-11 1985-03-26 Sumitomo Metal Industries, Ltd. Acier inoxydable ferritique a bonne resistance a la corrosion
US4391635A (en) * 1980-09-22 1983-07-05 Kubota, Ltd. High Cr low Ni two-phased cast stainless steel
US4331474A (en) * 1980-09-24 1982-05-25 Armco Inc. Ferritic stainless steel having toughness and weldability
FR2589482B1 (fr) * 1985-11-05 1987-11-27 Ugine Gueugnon Sa Tole ou bande en acier ferritique inoxydable, en particulier pour systemes d'echappement
JP2514367B2 (ja) * 1987-06-27 1996-07-10 日新製鋼株式会社 自動車エンジンのマニホ−ルド用鋼
US4834808A (en) * 1987-09-08 1989-05-30 Allegheny Ludlum Corporation Producing a weldable, ferritic stainless steel strip
JPH02145752A (ja) * 1988-11-28 1990-06-05 Toshiba Corp フェライト系ステンレス鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250672B (zh) * 2006-12-07 2011-09-14 日新制钢株式会社 用于汽车废气通道部件的铁素体不锈钢和焊接钢管

Also Published As

Publication number Publication date
JPH03274245A (ja) 1991-12-05
DE69110816D1 (de) 1995-08-03
EP0478790A1 (fr) 1992-04-08
KR920702434A (ko) 1992-09-04
WO1991014796A1 (fr) 1991-10-03
DE69110816T2 (de) 1995-11-30
EP0478790A4 (en) 1992-08-12
JP2696584B2 (ja) 1998-01-14
CA2056362A1 (fr) 1991-09-25
CA2056362C (fr) 2001-08-28
KR0180206B1 (ko) 1999-02-18

Similar Documents

Publication Publication Date Title
EP0478790B1 (fr) Acier inoxydable ferritique thermo-resistant presentant d'excellentes proprietes de tenacite a basse temperature, de soudabilite et de thermo-resistance
US5302214A (en) Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
EP1413640B1 (fr) Acier inoxydable ferritique pour element de debit de gaz d'echappement
JP3271262B2 (ja) 耐食性にすぐれた二相ステンレス鋼
EP0560375B1 (fr) Acier refractaire ferritique à faible teneur en chrome et présentant des propriétés améliorées de résistance au fluage et de tenacité
SU1741611A3 (ru) Сплав на основе железа с эффектом пам ти формы
KR100308401B1 (ko) 내고온산화성및스케일밀착성이우수한페라이트계스테인레스강
JP2001059141A (ja) オーステナイト系ステンレス鋼および自動車排気系部品
JP2803538B2 (ja) 自動車排気マニホールド用フェライト系ステンレス鋼
JPH0860306A (ja) 自動車排気系部材用フェライトステンレス鋼
JP2000234140A (ja) 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP3219099B2 (ja) 耐熱性, 低温靭性および溶接性に優れたフエライト系耐熱用ステンレス鋼
JP4173611B2 (ja) 二重構造エキゾーストマニホールドの内管用オーステナイト系ステンレス鋼
JPH08239737A (ja) 熱間加工性および耐σ脆化性に優れた耐熱用オーステナイト系ステンレス鋼
JP4297631B2 (ja) 溶接部の耐粒界腐食性および低温靭性に優れたクロム含有鋼
JP3387145B2 (ja) 高温延性および高温強度に優れた高Crフェライト鋼
JPH0762497A (ja) 高温強度と靱性の優れた高Crフェライト系耐熱鋼
JPS6217022B2 (fr)
JPH11256287A (ja) 耐高温酸化性およびスケール密着性に優れたフェライト系ステンレス鋼
JP4286055B2 (ja) 溶接部の耐粒界腐食性に優れた自動車用クロム含有鋼
JP2001262284A (ja) 溶接部の耐食性に優れた石炭焚火力発電プラント煙突内筒用クラッド鋼および煙突
JPH0959746A (ja) 高温強度に優れた高Crフェライト鋼
JP3367770B2 (ja) 耐食鋼
JPS62151548A (ja) フエライト系高Cr耐熱鋳鋼
JPH06179954A (ja) フェライト系耐熱鋼およびフェライト系ボイラ鋼管用鋼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19920407

A4 Supplementary search report drawn up and despatched

Effective date: 19920623

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19940610

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 69110816

Country of ref document: DE

Date of ref document: 19950803

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090311

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090321

Year of fee payment: 19

Ref country code: SE

Payment date: 20090306

Year of fee payment: 19

Ref country code: DE

Payment date: 20090306

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090316

Year of fee payment: 19

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100313

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100313

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100314