EP0468903B1 - Méthode d'obtention sous forme divisée d'un matériau magnétique de type terre rare - métaux de transition bore pour des aimants résistant à la corrosion - Google Patents

Méthode d'obtention sous forme divisée d'un matériau magnétique de type terre rare - métaux de transition bore pour des aimants résistant à la corrosion Download PDF

Info

Publication number
EP0468903B1
EP0468903B1 EP91420269A EP91420269A EP0468903B1 EP 0468903 B1 EP0468903 B1 EP 0468903B1 EP 91420269 A EP91420269 A EP 91420269A EP 91420269 A EP91420269 A EP 91420269A EP 0468903 B1 EP0468903 B1 EP 0468903B1
Authority
EP
European Patent Office
Prior art keywords
patm
log
magnets
rare earth
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91420269A
Other languages
German (de)
English (en)
Other versions
EP0468903A1 (fr
Inventor
Armand Gabriel
Masato Sagawa
Philippe Tenaud
Pierre Turillon
Fernand Vial
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugimag SA
Original Assignee
Ugimag SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugimag SA filed Critical Ugimag SA
Priority to AT91420269T priority Critical patent/ATE101451T1/de
Publication of EP0468903A1 publication Critical patent/EP0468903A1/fr
Application granted granted Critical
Publication of EP0468903B1 publication Critical patent/EP0468903B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Definitions

  • the invention relates to a method for obtaining, in divided form, magnetic materials of the TR Fe B type which are brittle and relatively inert with respect to air and which lead to magnets with improved corrosion resistance.
  • TR Fe B By magnetic materials type TR Fe B is meant materials essentially consisting of a magnetic tetragonal phase T1, analogous to TR2 Fe14 B, TR designating one (or more) rare earth (s), including Yttrium, Iron and Boron can be partially substituted, as is known, by other elements such as cobalt, with or without the addition of metals such as aluminum, copper, gallium, or refractory metals. See EP-A-101552, EP-A-106948, EP-A-344542, and French patent applications Nos 89-16731 and 89-16732.
  • rare earth is constituted by Neodymium, which can be partly replaced by praseodymium and dysprosium.
  • the magnets of this family have to date, the most efficient magnetic properties in particular with regard to the residual induction (Br), the intrinsic coercivity (H cJ ) and the specific energy [( BH) max ].
  • the classic method of manufacturing magnets of this type consists in obtaining a fine powder, possibly compressing it under magnetic field and sintering it before various finishes and final magnetization.
  • hydrogen decrepitation is meant a process for dividing an alloy consisting in subjecting an alloy in pieces to a hydrogen atmosphere under temperature and pressure conditions dependent on the alloy and allowing the conversion at least partially. into a hydride and then subjecting it to different conditions of temperature and pressure such that the hydride decomposes.
  • This cycling often leads to a noisy fragmentation of the alloy, which is said to "decrepitate”.
  • GB 1 313 272 and GB 1 554 384 for binary combinations of a rare earth and a transition metal, mainly cobalt, combinations for which this process has not provided 'major advantages over conventional grinding methods, and therefore has not received notable industrial applications.
  • the powders Although the grinding, compression and sintering operations can be carried out under protective atmospheres, the powders partially oxidize during their transformation before densification (sintering) by reaction with the residual O2 and / or H2O contents of said atmospheres. This oxidation is particularly strong when the developed surface of the material is large, for example in the stages of pre-grinding, grinding, storage, compression of the powders, and during the rise in sintering temperature. As the Applicant has observed for itself, the method of decrepitation with hydrogen does not make it possible, in the art described above, to resolve these drawbacks.
  • the applicant has sought a method considerably reducing the reactivity of these materials with respect to atmospheres, in particular those containing oxygen and / or water vapor, and leading to sintered magnets increased resistance to corrosion.
  • the process according to the invention consists in treating the material (crushed ingot or granules resulting from reduction of oxides) in a reactor where hydrogen is introduced under specific conditions of temperature (T) and pressure (P) defined below, at least in a final phase.
  • the temperature T is chosen between 350 ° C and 550 ° C and in particular between 350 and 500 ° C if P ⁇ Patm. and the conditions 350 + 100 log P / Patm. ⁇ T ⁇ 550 + 100 log (P / Patm.) and in particular 350 + 100 log (P / Patm.) ⁇ T ⁇ 500 + 100 log (P / Patm.) if P> Patm. More preferably, the temperature is kept above 400 ° C.
  • reaction kinetics it is preferable to operate with a pressure P greater than or equal to 50.6 kPa (0.5 atm.); in addition, for reasons of safety and simplicity of construction of the treatment enclosure, in particular with regard to its sealing, it is preferable to operate below 101.3 kPa (1 atm.).
  • hydrogen pressure P is meant its absolute pressure in the case of a gas atmosphere alone, or its partial pressure in the case of a mixture of gases containing hydrogen or of a body providing nascent hydrogen such as ammonia NH3.
  • temperature T to which H2 is introduced is meant the minimum temperature to which the product is brought by a heat source, independently of the heating which may result from the exothermic hydriding reaction; the actual temperature of the material is that reached by it during its transformation. The duration of treatment depends on the operating conditions used; the reaction is considered to be complete when the hydrogen pressure and the temperature have become constant.
  • the reactor containing the product is then brought back to the usual temperature, pressure and atmosphere conditions.
  • rare earth hydrides are not strict defined compounds, but the stoichiometry of which can vary within wide limits.
  • these hydrides, of formula TR Hx have a value of x which can vary continuously from 1.8 to 3.
  • TRH2 a TR hydride of formula TR Hx with x between 1.8 and 2.45 - designated here by "TRH2" - to the exclusion of all others; in particular, the formation of a hydride of the standard formula has not been detected under the conditions of the invention TR2 Fe14 B Hy or ⁇ -Fe or a more hydrogenated hydride such as NdH3.
  • the material at the end of the hydrogen treatment essentially consists of 3 main phases: TR2 Fe14 B, called T1, "TR H2", and a boron-rich phase already described in the prior art.
  • this rare earth-rich hydride is attributed to the appearance of appreciable friability of the stable and passive hydrogenated products, without creating the hydrated phase of T1.
  • this friability does not constitute a disadvantage for the health of the tablet during the rise in temperature towards the sintering, since this phase is a minority in volume opposite T1.
  • the Applicant has found that the hydrogen treatment also leads to brittle materials but comprising significant amounts of the hydride of T1, the hydride NdH3, or of ⁇ -Fe. These materials did not make it possible to obtain magnets resistant to corrosion, see the examples outside the invention.
  • Tests have been carried out on materials obtained by fusion, having the following composition (in at%), which is not limiting, which contains a low TR content in order to obtain the highest remanences. They made it possible to test the passivity of the materials obtained under different conditions according to the invention and outside the invention and the quality of corrosion resistance of the final magnets.
  • the method described in this invention has been successfully applied to other TR or B compositions, or comprising substitutions and / or additions described in the prior art (see EP-A-101552, EP-A-106558, EP-A-344542), or alternatively to granules coming from the so-called diffusion reduction process.
  • the friability was measured by the particle size spectrum (% by weight passing through the sieve, without external constraint) of the material obtained after the hydriding treatment.
  • the nature of the phases present in the hydrated material was determined by X-ray diffraction.
  • the magnetic characteristics - B r and H cJ - were determined on sintered magnets, prepared according to the process recalled in the introduction, and without extreme precautions for handling atmospheres.
  • the oxygen content of the magnets obtained is situated according to their composition in the most desirable range for the particular use thereof. It is known that the prior art recommends either relatively high oxygen contents in order to improve the resistance to corrosion, this is the case of US Pat. No. 4,588,439; or on the contrary very low rates, as in the patent. EP 0.197.712, if it is desired to achieve high magnetic properties (Br, (BH)).
  • the corrosion resistance of sintered magnets has been estimated by their service life in autoclave at 115 ° C, under 0.175 MPa at 100% relative humidity. In all cases, the magnets were coated before testing under identical conditions, with an epoxy resin after a surface preparation (phosphating). The resistance of the coating was estimated by visual examination (blisters) and by the cross-cutting test.
  • Examples 1, 6 and 7 relate to the prior art, or to conditions outside the invention, the other tests (Examples 2 to 5 and 8) relate to the invention.
  • Example 1 shows that under conditions close to those of the prior art (25 ° C. at around 0.1 MPa of H2), and for the composition exemplified a duration of 4 days is the maximum that the magnet coated in autoclave, before blistering occurs, sign of corrosion.
  • Example 2 shows that hydriding at 300 ° C under conditions representative of the invention leads to a considerably increased autoclave service life (+ 100%) compared to Example 1, which may be related to an improved compactness.
  • Example 6 shows that at 550 ° C, there is no longer any embrittlement. Mechanical pre-grinding is then necessary. Densification becomes difficult; the service lives in the autoclave are extremely short, as are the magnetic properties, no doubt due to the presence of numerous open porosities.
  • example 8 At 700 ° C. (example 8), the magnetic properties as well as the corrosion resistance are optimal, similar to those of example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

  • L'invention concerne une méthode d'obtention sous forme divisée de matériaux magnétiques type TR Fe B friables et relativement inertes vis à vis de l'air et conduisant à des aimants à résistance à la corrosion améliorée.
  • Par matériaux magnétiques type TR Fe B on entend des matériaux essentiellement constitués d'une phase tétragonale magnétique T1, analogue à TR2 Fe14 B, TR désignant une (ou plusieurs) terre(s) rare(s), y compris l'Yttrium, le Fer et le Bore pouvant être partiellement substitués, comme cela est connu, par d'autres éléments comme le cobalt, avec addition ou non de métaux tels que l'aluminium, le cuivre, le gallium, ou de métaux réfractaires. Voir EP-A-101552, EP-A-106948, EP-A-344542, et les demandes françaises de brevet n° 89-16731 et 89-16732.
  • De préférence, l'essentiel de la terre rare est constitué par le Néodyme pouvant être substitué en partie par le praséodyme et le dysprosium.
  • Les aimants de cette famille, particulièrement les aimants frittés, possédent à ce jour, les propriétés magnétiques les plus performantes en particulier en ce qui concerne l'induction rémanente (Br), la coercitivité intrinsèque (HcJ) et l'énergie spécifique [(BH)max].
  • Cependant les matériaux constitutifs de ces aimants présentent un inconvénient qui est celui de leur grande sensibilité à la corrosion, en particulier en atmosphère humide, tant à l'état massif que divisé. Des substitutions partielles de cobalt au fer ont été faites pour réduire cette sensibilité, elles ont donné des résultats insuffisants.
  • La méthode classique de fabrication des aimants de ce type consiste à obtenir une poudre fine, à la comprimer éventuellement sous champ magnétique et à la fritter avant finitions diverses et aimantation finale.
  • Les poudres sont généralement obtenues par deux voies:
    • élaboration par fusion de l'alliage qui est d'abord concassé (morceaux de l'ordre de quelques cm3), prébroyé jusqu'à une taille de 5/10 mm environ (mécaniquement ou par décrépitation à l'hydrogène) et broyé finement dans un broyeur à jet de gaz (jet mill), ou par attrition dans un milieu humide, jusqu'à une taille inférieure à 50 µm et de préférence 20 µm.
    • réduction par le calcium des oxydes, en présence de poudres métalliques, la taille maximale des granulés formés par les particules d'alliage ainsi obtenus étant de l'ordre de 300 µm, les autres étapes du procédé restant les mêmes.
  • Par décrépitation à l'hydrogène, on entend un procédé de division d'un alliage consistant à soumettre un alliage en morceaux à une atmosphère d'hydrogène dans des conditions de température et de pression dépendant de l'alliage et permettant la conversion au moins partielle en un hydrure, puis à le soumettre à des conditions différentes de température et de pression telles que l'hydrure se décompose. Ce cyclage entraine souvent une fragmentation bruyante de l'alliage, que l'on dit "se décrépiter". Il est dans son principe assez généralement décrit dans GB 1 313 272 et GB 1 554 384 pour des combinaisons binaires d'une terre rare et d'un métal de transition, principalement le cobalt, combinaisons pour lesquelles ce procédé n'a pas apporté d'avantages majeurs par rapport aux méthodes classiques de broyage, et n'a donc pas reçu d'applications industrielles notables. La même méthode a été appliquée dans FR 2 566 758 pour obtenir des poudres fines et réactives en passant par des hydrures nouveaux TR₂ Fe₁₄ BHy par hydruration, de préférence à la température ambiante et sous une pression d'hydrogène au moins égale à 20 bars, puis par déshydruration partielle en les chauffant au-dessus de 150°C à la pression ambiante, ou par déshydruration totale en les chauffant à au moins 400°C sous vide primaire.
  • Cette méthode a été ensuite reprise dans EP A-0280372, où l'on ajoute à l'hydrogène un gaz neutre comme l'argon ou l'azote, pour réduire les risques d'explosion. Si les conditions de déshydruration y sont décrites comme dans FR 2 566 758 (début de déshydruration de Nd₂ Fe₁₄ BHy vers 150-260°C, le reste de l'hydrogène partant vers 350-650°C), les conditions d'hydruration sont plus floues, en se bornant à rester en-dessous de 300°C pour éviter un risque de décomposition de l'alliage ("disproportionation" en anglais) avec la formation de fer très divisé. Dans cette demande, on y forme la poudre en aimant permanent à cru par compression, lorsqu'elle est à l'état hydruré car on la dit moins réactive envers l'oxygène en air sec. La déshydruration se fait dans le four de frittage, ce qui, pour des charges industrielles, représente des quantités élevées de gaz à évacuer par pompage soutenu.
  • Bien que les opérations de broyage, compression, frittage peuvent être effectuées sous atmosphères protectrices, les poudres s'oxydent en partie au cours de leurs transformations avant la densification (frittage) par réaction avec les teneurs résiduelles en O2 et/ou H2O desdites atmosphères. Cette oxydation est particulièrement forte lorsque la surface développée du matériau est importante, par exemple dans les étapes de prébroyage, broyage, stockage, compression des poudres, et durant la montée en température de frittage. Comme la Demanderesse l'a constaté par elle-même, la méthode de décrépitation à l'hydrogène ne permet pas, dans l'art décrit plus haut, de résoudre ces inconvénients.
  • Cette oxydation, qui affecte essentiellement la (ou les) terre(s) rare(s) (TR) contenues dans le matériau, se traduit par les inconvénients suivants:
    • cette réaction consomme la TR, diminuant ainsi la fraction de phase intermétallique riche en TR active.
    • la présence d'oxydes (ou d'hydroxydes) entraîne des difficultés au frittage (densification moindre)
    • elle diminue les propriétés magnétiques de l'aimant final, en particulier la rémanence Br, l'énergie spécifique (BH)max et peut accroître considérablement sa sensibilité à la corrosion atmosphérique.
    • elle augmente le coût du produit fini: nécessité d'accroître le taux initial de TR de l'alliage et d'utiliser des équipements protégés complexes.
  • Pour toutes ces raisons, la demanderesse a cherché une méthode réduisant considérablement la réactivité de ces matériaux vis-à-vis des atmosphères, en particulier celles contenant de l'oxygène et/ou de la vapeur d'eau, et conduisant pour les aimants frittés à une résistance accrue à la corrosion.
  • Elle a trouvé que d'autres conditions que celles décrites antérieurement permettaient de préparer par traitement à l'hydrogène des matériaux friables, utilisables après broyage pour la fabrication d'aimants permanents, relativement passifs vis-à-vis de l'air atmosphérique à la température ambiante, donc plus aisés à manipuler lors des différentes étapes du procédé, ne nécessitant que des traitements de dégazage réduits dans le four de frittage, et surtout conduisant à des aimants remarquablement résistants à la corrosion.
  • Le procédé selon l'invention consiste à traiter le matériau (lingot concassé ou granulés issus de réduction d'oxydes) dans un réacteur où l'on introduit de l'hydrogène dans des conditions particulières de température (T) et pression (P) définies ci-après, au moins dans une phase finale.
  • "Patm."désignant la pression atmosphérique normale ( 1 bar, soit 0,1 MPa.
    • Si P = < Patm. on doit avoir 250 < T°C < 550
    • Si P > Patm. on doit avoir :
      250 + 100 log (P/Patm.) < T°C < 550 + 100 log (P/Patm.) ; (log base 10).
  • De façon préférentielle, et pour mieux contrôler la cinétique de réaction, on choisit la température T comprise entre 350°C et 550°C et en particulier entre 350 et 500°C si P<Patm. et les conditions 350+100 log P/Patm.<T<550 + 100 log (P/Patm.) et en particulier 350+100 log (P/Patm.)<T<500+100 log (P/Patm.) si P > Patm.
    De façon encore préférée, la température est tenue supérieure à 400°C.
  • Il a été en effet curieusement constaté que l'exothermicité de la réaction est d'autant plus faible que la température initiale est plus élevée, ce qui constitue un facteur de sécurité d'utilisation et de longévité des appareillages.
  • Par ailleurs, pour que la cinétique de réaction soit suffisante, il est préférable d'opérer avec une pression P supérieure ou égale à 50,6kPa (0,5 atm.) ; de plus, pour des questions de sécurité et de simplicité de construction de l'enceinte de traitement, en particulier en ce qui concerne son étanchéité,il est préférable d'opérer au-dessous de 101,3kPa (1 atm.).
  • Par pression d'hydrogène P, on entend sa pression absolue s'il s'agit d'une atmosphère de gaz seul, ou sa pression partielle dans le cas d'un mélange de gaz contenant de l'hydrogène ou d'un corps apportant de l'hydrogène naissant comme l'ammoniac NH₃ . Par température T à laquelle on introduit H₂ , on entend la température minimum à laquelle est porté le produit par une source de chaleur, indépendamment de l'échauffement pouvant résulter de la réaction exothermique d'hydruration ; la température réelle du matériau est celle atteinte par celui-ci au cours de sa transformation.
    La durée du traitement dépend des conditions opératoires utilisées ; on considère que la réaction est terminée lorsque la pression d'hydrogène et la température sont devenues constantes.
  • Le réacteur contenant le produit est ensuite ramené aux conditions de température, de pression et d'atmosphère habituelles.
  • Il est remarquable de constater que dans des conditions extérieures au domaine revendiqué ci-dessus, le traitement à l'hydrogène conduit à des matériaux extrêmement sensibles à l'oxydation, comme le montrent certains exemples donnés plus loin.
  • Il est possible que la plus grande sensibilité des poudres préparées par les méthodes déjà décrites dans l'art antérieur, de décrépitation par l'hydrogène, soit à relier à la formation effective de l'hydrure stable associé à la phase magnétique TR₂ Fe₁₄ BHy(0 <y <5), dont la décomposition ultérieure doit générer beaucoup de sites actifs vis-à-vis de l'environnement.
  • Cette décomposition peut d'ailleurs, dans certaines conditions de température et de pression conduire à la destruction de la phase magnétique TR₂ Fe₁₄ B ("disproportionation") avec formation de α - Fe très divisé, de Fe₂B, de TR₂ Fe₁₇ et de TR. La demanderesse a constaté, dans les conditions qu'elle a explorées, que cette disproportionation n'intervient pas et elle l'attribue à l'absence de formation de l'hydrure stable de la phase magnétique, laquelle absorberait et transmettrait l'hydrogène par simple diffusion solide, sans création, ou faiblement, de sites actifs.
  • Il est connu que les hydrures de terres rares ne sont pas des composés définis stricts, mais dont la stoechiométrie peut varier dans de larges proportions. Ainsi, il est connu que ces hydrures, de formule TR Hx ont une valeur de x pouvant varier de façon continue de 1,8 à 3.
  • Poursuivant ses recherches, la demanderesse a cependant constaté que lors de l'hydruration selon l'invention, il se forme essentiellement un hydrure de TR de formule TR Hx avec x compris entre 1,8 et 2,45 - désigné ici par "TRH2"- à l'exclusion de tout autre ; en particulier il n'a pas été détecté, dans les conditions de l'invention, la formation d'un hydrure de formule type TR₂ Fe₁₄ B Hy
    Figure imgb0001

    ou de α -Fe ou d'un hydrure plus hydrogéné tel que NdH₃. Le matériau à l'issue du traitement à l'hydrogène est essentiellement constitué de 3 phases principales : TR₂ Fe₁₄ B,appelée T1,
    Figure imgb0002
    "TR H₂",
    Figure imgb0003

    et une phase riche en bore déjà décrite dans l'art antérieur. On attribue à la formation de cet hydrure riche en terre-rare l'apparition d'une friabilité appréciable des produits hydrogénés stables et passifs, et ceci sans création de la phase hydrurée de T1. Cependant, cette friabilité ne constitue pas un désavantage pour la santé du comprimé lors de la montée en température vers le frittage, car cette phase est minoritaire en volume en face de T₁.
  • A l'opposé, à l'extérieur du domaine revendiqué, la demanderesse a constaté que le traitement à l'hydrogène conduit aussi à des matériaux friables mais comportant des quantités importantes de l'hydrure de T1, de l'hydrure NdH₃, ou de α -Fe. Ces matériaux n'ont pas permis d'obtenir des aimants résistant bien à la corrosion, voir les exemples hors invention.
  • L'invention sera mieux comprise à l'aide des exemples suivants :
       Des essais ont été effectués sur des matériaux obtenus par fusion, ayant la composition suivante (en at%), non limitative, qui contient une faible teneur en TR afin d'obtenir les rémanences les plus élevées. Ils ont permis de tester la passivité des matériaux obtenus dans différentes conditions selon l'invention et hors invention et la qualité de résistance à la corrosion des aimants finaux. Le procédé décrit dans cette invention a été appliqué avec succès à d'autres compositions en TR ou en B, ou comportant des substitutions et/ou additions décrites dans l'art antérieur (voir EP-A-101552, EP-A-106558, EP-A-344542), ou encore à des granulés venant du procédé dit de réduction diffusion.
    Figure imgb0004
  • La friabilité a été mesurée par le spectre granulométrique (% en poids passant au tamis, sans contrainte externe) du matériau obtenu après le traitement d'hydruration.
  • La nature des phases présentes dans le matériau hydruré a été déterminée par diffraction de rayons X.
  • Les caractéristiques magnétiques - Br et HcJ - ont été déterminées sur les aimants frittés, préparés selon le procédé rappelé dans l'introduction, et sans précautions extrêmes pour les atmosphères de manipulation.
  • La teneur en oxygène des aimants obtenus se situe en fonction de leur composition dans le domaine le plus souhaitable pour l'utilisation particulière de ceux-ci. On sait que l'art antérieur préconise soit des teneurs en oxygène relativement élevées afin d'améliorer la résistance à la corrosion, c'est le cas du brevet US 4,588,439 ; soit au contraire des taux très faibles, comme dans le brevet. EP 0.197.712, si l'on veut atteindre des propriétés magnétiques (Br, (BH)max) élevées.
  • La résistance à la corrosion des aimants frittés a été estimée par leur durée de vie en autoclave à 115°C, sous 0,175 MPa à 100% d'humidité relative. Dans tous les cas, les aimants ont été revêtus avant essai dans des conditions identiques, par une résine époxy après une préparation de surface (phosphatation). La tenue du revêtement a été estimée par examen visuel (cloques) et par le test des rayures croisées (cross-cutting test.).
  • Les résultats sont reportés dans les Tableaux 1 à 8 (suivants).
  • Les exemples 1, 6 et 7 sont relatifs à l'art antérieur, ou à des conditions hors invention, les autres essais (exemples 2 à 5 et 8) sont relatifs à l'invention.
  • EXEMPLE 1 HYDRURATION A 25°C SOUS P = 0,1 MPa d'H₂ (hors invention)
  • Figure imgb0005
  • EXEMPLE 2 HYDRURATION A 300°C SOUS P = 0,1 MPa D'H₂ (invention)
  • Figure imgb0006
  • EXEMPLE 3 HYDRURATION A 400°C SOUS P = 0,1 MPa D'H₂ (invention)
  • Figure imgb0007
  • EXEMPLE 4 HYDRURATION A 400°C SOUS P = 0,01 MPa D'H₂ (invention)
  • Figure imgb0008
  • EXEMPLE 5 HYDRURATION A 400°C SOUS P = 0,001 MPa D'H₂ (invention)
  • Figure imgb0009
  • EXEMPLE 6 HYDRURATION A 550°C SOUS P = 0,1 MPa D'H₂ (hors invention)
  • Figure imgb0010
  • EXEMPLE 7 HYDRURATION A 250°C SOUS P = 100 BAR (10 MPa) D'H₂ (hors invention)
  • Figure imgb0011
  • EXEMPLE 8 HYDRURATION A 700°C SOUS P = 100 BAR (10 MPa) D'H₂ (invention)
  • Figure imgb0012
  • L'exemple 1 montre que dans des conditions voisines de celles de l'art antérieur (25°C à environ 0,1 MPa d'H₂), et pour la composition exemplifiée une durée de 4 jours est le maximum que peut endurer l'aimant revêtu en autoclave, avant que ne survienne la formation de cloques, signe de la corrosion.
  • L'exemple 2 montre que l'hydruration à 300°C dans des conditions représentatives de l'invention conduit à une durée de vie en autoclave considérablement augmentée (+100%) par rapport à l'exemple 1, qui est peut-être liée à une compacité améliorée.
  • Un résultat similaire est obtenu en hydrurant à 400°C sous 0,1 MPa d'H₂ (exemple 3), sous 0,01 MPa d'H₂ (exemple 4), ou bien sous 10⁻³ MPa d'H₂ (exemple 5).
  • L'exemple 6 montre qu'à 550°C, il n'y a plus de fragilisation. Un prébroyage mécanique est alors nécessaire. La densification devient difficile ; les durées de vie en autoclave sont extrêmement réduites ainsi que les propriétés magnétiques sans doute en raison de la présence de nombreuses porosités ouvertes.
  • A 250°C sous 100 bar (10MPa) - exemple 7- et de façon identique à l'exemple 1, on retrouve une corrosion aisée.
  • A 700°C (exemple 8), les propriétés magnétiques ainsi que la résistance à la corrosion sont optimales, similaires à celles de l'exemple 2.
  • Outre la grande passivité des matériaux obtenus et la résistance améliorée à la corrosion des aimants qui sont préparés avec eux, le procédé selon l'invention apporte les avantages économiques et techniques suivants :
    • moindre consommation d'H₂ puisque la phase riche en terre-rare, qui occupe quelques % de la structure, est hydrurée à son niveau le plus bas
    • faible désorption de l'H₂ en cours de frittage, ce qui évite l'apparition de défauts tels que soufflures ou fissurations, et permet l'obtention de pièces de volume unitaire important
    • facilité de broyage des matériaux passivés
    • absence de formation d'une phase ferromagnétique Fe α par suite de la réaction de "disproportionation", décrite dans l'art antérieur
    • moindre consommation de TR
    • sécurité améliorée par le volume réduit d'H₂ à mettre en oeuvre.

Claims (6)

  1. Méthode d'obtention sous forme divisée d'un matériau magnétique type Fe TR B friable et relativement inerte contenant au moins la phase T1, Nd₂ Fe₁₄ B et un hydrure de terre-rare, TR Hx avec x compris entre 1,8 et 2,45, permettant de faire des aimants permanents frittés résistant bien à la corrosion, dans une atmosphère contenant de l'hydrogène, caractérisé en ce que les conditions de pression absolue (P) et de température T (°C) sont les suivantes :
       si P ≦ Patm., 250 < T < 550°C
       si P > Patm., 250+100 log (P/Patm.)< T < 550+100 log (P/Patm.)
    formules dans lesquelles Patm. désigne la pression atmosphérique et log le logarithme à base 10.
  2. Méthode selon la revendication 1 caractérisée en ce que :
       si P ≦ Patm., 350 < T < 550°C
       si P > Patm., 350+100 log (P/Patm.) < t < 550+100 log (P/Patm.)
  3. Méthode selon l'une des revendications 1 ou 2 caractérisée en ce que :
       si P ≦ Patm., 350 < T < 500°C
       si P > Patm., 350+100 log (P/Patm.) < T < 500+100 log (P/Patm)
  4. Méthode selon l'une des revendications 1 à 3, caractérisée en ce que la température est > 400°C.
  5. Méthode selon l'une des revendications 1 à 4, caractérisée en ce que la pression P est supérieure à 50,6 kPa (0,5 atmosphère).
  6. Méthode selon la revendication 5 caractérisée en ce que la pression P est inférieure à 101,3 kPa (1 atmosphère).
EP91420269A 1990-07-25 1991-07-23 Méthode d'obtention sous forme divisée d'un matériau magnétique de type terre rare - métaux de transition bore pour des aimants résistant à la corrosion Expired - Lifetime EP0468903B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91420269T ATE101451T1 (de) 1990-07-25 1991-07-23 Herstellungsverfahren von seltenerduebergangsmetall-bortyp-magnetpulver fuer korrosionsfeste magnete.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR909009722A FR2665295B1 (fr) 1990-07-25 1990-07-25 Methode d'obtention sous forme divisee d'un materiau magnetique de type terre-rare - metaux de transition - bore pour des aimants resistant a la corrosion.
FR9009722 1990-07-25

Publications (2)

Publication Number Publication Date
EP0468903A1 EP0468903A1 (fr) 1992-01-29
EP0468903B1 true EP0468903B1 (fr) 1994-02-09

Family

ID=9399244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91420269A Expired - Lifetime EP0468903B1 (fr) 1990-07-25 1991-07-23 Méthode d'obtention sous forme divisée d'un matériau magnétique de type terre rare - métaux de transition bore pour des aimants résistant à la corrosion

Country Status (12)

Country Link
US (1) US5221368A (fr)
EP (1) EP0468903B1 (fr)
JP (1) JP2933293B2 (fr)
AT (1) ATE101451T1 (fr)
CA (1) CA2046478A1 (fr)
DE (1) DE69101155T2 (fr)
ES (1) ES2050519T3 (fr)
FI (1) FI107303B (fr)
FR (1) FR2665295B1 (fr)
HK (1) HK39195A (fr)
IE (1) IE66827B1 (fr)
SG (1) SG29795G (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788782A (en) * 1993-10-14 1998-08-04 Sumitomo Special Metals Co., Ltd. R-FE-B permanent magnet materials and process of producing the same
JP2881409B2 (ja) * 1996-10-28 1999-04-12 愛知製鋼株式会社 異方性磁石粉末の製造方法
JP3452254B2 (ja) 2000-09-20 2003-09-29 愛知製鋼株式会社 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119701A (ja) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd 希土類・ボロン・鉄系永久磁石用合金粉末の製造方法
JPS6390104A (ja) * 1986-10-03 1988-04-21 Tdk Corp 希土類−鉄−ホウ素系永久磁石の製造方法
GB2201426B (en) * 1987-02-27 1990-05-30 Philips Electronic Associated Improved method for the manufacture of rare earth transition metal alloy magnets
JPS6448403A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Rare earth-iron-boron magnet powder and manufacture thereof
CN1012477B (zh) * 1987-08-19 1991-05-01 三菱金属株式会社 稀土-铁-硼磁体粉末及其制备方法
JP2564492B2 (ja) * 1987-10-13 1996-12-18 三菱マテリアル株式会社 希土類−Fe−B系鋳造体永久磁石の製造法
US5091020A (en) * 1990-11-20 1992-02-25 Crucible Materials Corporation Method and particle mixture for making rare earth element, iron and boron permanent sintered magnets

Also Published As

Publication number Publication date
ES2050519T3 (es) 1994-05-16
HK39195A (en) 1995-03-24
EP0468903A1 (fr) 1992-01-29
DE69101155T2 (de) 1994-06-01
FI913546A (fi) 1992-01-26
JP2933293B2 (ja) 1999-08-09
FI107303B (fi) 2001-06-29
FR2665295A1 (fr) 1992-01-31
US5221368A (en) 1993-06-22
FR2665295B1 (fr) 1994-09-16
IE912607A1 (en) 1992-01-29
ATE101451T1 (de) 1994-02-15
JPH06120015A (ja) 1994-04-28
SG29795G (en) 1995-08-18
FI913546A0 (fi) 1991-07-24
DE69101155D1 (de) 1994-03-24
CA2046478A1 (fr) 1992-01-26
IE66827B1 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
TW550601B (en) Rare earth magnet and method for manufacturing the same
JP5999106B2 (ja) R−t−b系焼結磁石の製造方法
CN104488048B (zh) NdFeB系烧结磁体的制造方法
JP5760400B2 (ja) R−Fe−B系焼結磁石の製造方法
CN107363257A (zh) 一种聚晶金刚石坯料真空净化方法
Kianvash et al. Hydrogen decrepitation as a method of powder preparation of a 2: 17-type, Sm (Co, Cu, Fe, Zr) 8.92 magnetic alloy
EP0468903B1 (fr) Méthode d&#39;obtention sous forme divisée d&#39;un matériau magnétique de type terre rare - métaux de transition bore pour des aimants résistant à la corrosion
EP0428718A1 (fr) Matieres magnetiques ameliorees et procede pour leur production
CN112453384A (zh) 一种扩散粘接钛粉制备方法
JP2731337B2 (ja) 希土類焼結磁石の製造方法
TWI755348B (zh) 磁石及其製造方法
JP2020161704A (ja) 希土類磁石の製造方法
WO2002063052A1 (fr) Procede de preparation d&#34;un produit fritte, produit fritte et materiau magnetostrictif
WO2006098238A1 (fr) Procede de production d’un aimant aux terres rares et dispositif d&#39;impregnation
Žužek et al. Hydrogen absorption and desorption in Ta-doped SmFe-based alloys
WO2017069131A1 (fr) Procédé de fabrication de matériau magnétique
TWI758222B (zh) 磁石及其製造方法
JP2001155912A (ja) 永久磁石用希土類系合金粉末の製造方法並びにその中間生成物の原料合金とその製造方法
CN114267510A (zh) 一种磁体材料及其制备方法和钐钴磁体材料
JPH03167803A (ja) 希土類永久磁石の製造方法
Murray et al. Desorption of hydrogen from Sm2Fe17: the role of water
JPS6334606B2 (fr)
JPS63143209A (ja) 4a族金属粉末の製造方法
CN115938783A (zh) 磁性材料及其制备方法
JPS62274002A (ja) 希土類−鉄−ホウ素系磁性粉末とその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19920215

17Q First examination report despatched

Effective date: 19930521

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UGIMAG SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 101451

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940217

REF Corresponds to:

Ref document number: 69101155

Country of ref document: DE

Date of ref document: 19940324

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050519

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940620

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940621

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940624

Year of fee payment: 4

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940809

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 91420269.2

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19950724

Ref country code: SE

Effective date: 19950724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: S.A. UGIMAG

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

EUG Se: european patent has lapsed

Ref document number: 91420269.2

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050708

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050721

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050727

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060723

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070723